首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
胡荣  赵凌霞 《人类学学报》2012,31(4):371-380
釉面横纹的分布与数目可以反映牙齿生长发育的时间和速率变化, 在化石研究中能为复原个体生活史提供重要依据。本研究运用扫描电子显微镜观察华南化石猩猩门齿、犬齿釉面横纹分布与数目, 并估算门齿和犬齿牙冠形成时间, 结果如下: 牙冠从牙尖至牙颈方向釉面横纹分布密度有疏密变化, 牙尖釉面横纹密度小于10条/mm, 中间至牙颈釉面横纹密度较尖部增大, 大约10-15条/mm; 犬齿釉面横纹数目多于门齿, 雄性犬齿釉面横纹数目多于雌性; 根据釉面横纹计数及其生长周期的组织切片观察结果, 估算门齿牙冠形成时间大约为2.97-6.66年, 犬齿雄性长于雌性, 分别为6.25-11.31年和4.28-7.29年。与一些古猿、早期人类、现代人以及现生大猿比较, 华南化石猩猩釉面横纹整体密度稍大于南方古猿和傍人, 小于黑猩猩、大猩猩、现代人和禄丰古猿; 除侧门齿外, 华南化石猩猩釉面横纹数目明显多于南方古猿、傍人和现代人, 与大猩猩接近; 华南猩猩前部牙齿牙冠形成时间与现生大猿、禄丰古猿差别不大, 与现生猩猩最相近, 长于南方古猿和傍人。  相似文献   

2.
A recent study demonstrated that variation in enamel cap crown formation in the anterior teeth is greater than that in the molars from two geographically distinct populations: native indigenous southern Africans and northern Europeans. Eighty southern African and 69 northern European premolars (P3 and P4) were analyzed in the present study. Cuspal, lateral, and total enamel formation times were assessed. Although cuspal enamel formation times were not consistently different between the two populations, both lateral and total enamel formation times generally were. Bonferroni-corrected t-tests showed that southern Africans had significantly shorter lateral enamel formation time for five of the six cusps, as well as significantly shorter total enamel formation time for these same cusps. An analysis of covariance performed on the lingual cusps of the upper third and fourth premolars showed that differences in enamel formation times between these populations remained when crown height was statistically controlled. A further goal of this study was to ascertain, based on perikymata counts, what Neandertal periodicities would have to be in order for their teeth to have lateral enamel formation times equivalent to either southern Africans or northern Europeans. To this end, perikymata were counted on 32 Neandertal premolars, and the counts were inserted into regression formulae relating perikymata counts to periodicity for each population and each tooth type. Neandertal enamel formation times could be equivalent to those of southern Africans or northern Europeans only if their hypothetical periodicities fall within the range of periodicities for African apes and modern humans (i.e., 6-12 days). The analysis revealed that both populations could encompass Neandertal timings, with hypothetical periodicities based on the southern African population necessitating a lower range of periodicity (6-8 days) than those based on the northern European population (8-11 days).  相似文献   

3.
Two hypotheses, based on previous work on Neandertal anterior and premolar teeth, are investigated here: (1) that estimated molar lateral enamel formation times in Neandertals are likely to fall within the range of modern human population variation, and (2) that perikymata (lateral enamel growth increments) are distributed across cervical and occlusal halves of the crown differently in Neandertals than they are in modern humans. To investigate these hypotheses, total perikymata numbers and the distribution of perikymata across deciles of crown height were compared for Neandertal, northern European, and southern African upper molar mesiobuccal (mb) cusps, lower molar mesiobuccal cusps, and the lower first molar distobuccal (db) cusp. Sample sizes range from five (Neandertal M(1)db) to 29 (southern African M(1)mb). Neandertal mean perikymata numbers were found to differ significantly from those of both modern human samples (with the Neandertal mean higher) only for the M(2)mb. Regression analysis suggests that, with the exception of the M(2)mb, the hypothesis of equivalence between Neandertal and modern human lateral enamel formation time cannot be rejected. For the M(2)mb, regression analysis strongly suggests that this cusp took longer to form in the Neandertal sample than it did in the southern African sample. Plots of perikymata numbers across deciles of crown height demonstrate that Neandertal perikymata are distributed more evenly across the cervical and occlusal halves of molar crowns than they are in the modern human samples. These results are integrated into a discussion of Neandertal and modern human lateral enamel formation across the dentition, with reference to issues of life history and enamel growth processes.  相似文献   

4.
This study of linear enamel hypoplasia (LEH) in Plio-Pleistocene hominins builds on a previous study (Guatelli-Steinberg [2003] Am. J. Phys. Anthropol. 120:309-322) that focused on LEH in early South African hominins. The present study is more comprehensive, encompassing dental specimens of hominins from East Africa as well, including early Homo. As a developmental defect of enamel, LEH is used in anthropological contexts to reveal information about physiological stress. However, intrinsic aspects of enamel development and morphology can affect the expression of LEH, complicating efforts to understand the significance of these defects. In this study, the analysis of LEH is conducted with respect to enamel development and morphology. It is predicted that Paranthropus should have fewer defects on its canine teeth than Australopithecus and Homo, owing to its abbreviated period of enamel formation. This prediction is supported: Paranthropus has statistically significantly fewer defects per canine than Australopithecus and Homo. The previous study demonstrated that despite the wider spacing of perikymata on the teeth of South African Paranthropus, defects on the canine teeth of this genus were not wider than those of Australopithecus. A multiple linear regression analysis in that study, as well as a separate analysis in the present study, indicate that the number of perikymata within defects is a better predictor of defect width than perikymata spacing. In this study, it was additionally found that the average number of perikymata within Australopithecus defects is statistically significantly greater than it is in Paranthropus, thus explaining why Paranthropus defects are not wider than those of Australopithecus. The biological significance of this difference in the number of perikymata within the defects of Australopithecus and Paranthropus is considered in light of several factors, including: 1) the possibility that other intrinsic attributes of enamel morphology may be involved (specifically the faster extension rates of Paranthropus that result in shallower defects), 2) generic differences in the canalization of enamel development, and 3) generic differences in the duration of disruptions to enamel growth.  相似文献   

5.
This study reports on a sample of 12 modern human incisors (from two archaeological sites) that were viewed with a scanning electron microscope and whose perikymata were counted. These 12 incisors more than doubles the previously published sample size of modern human incisors that have served as the published standard for perikymata number in human incisors and have been employed to define taxonomic relationships in fossil hominids. All previously published fossil specimens fall within the expanded range of modern human perikymata counts and can no longer be considered distinctively nonhuman in dental formation time. Five neandertal incisors from the Krapina site in Croatia, Yugoslavia, were also examined. These incisors substantially expand the previous data base for counts of perikymata in Homo sapiens neanderthalensis, likewise overlapping the previously published modern human range. Finally, the validity of methods that have been employed for deriving crown formation times from perikymata counts in fossil hominines is called into question. Utilizing the presently known perikymata ranges for modern humans, these methods do not predict the range of known crown formation times of modern humans as assessed from studies of living children.  相似文献   

6.
Quantification of dental long-period growth lines (Retzius lines in enamel and Andresen lines in dentine) and matching of stress patterns (internal accentuated lines and hypoplasias) are used in determining crown formation time and age at death in juvenile fossil hominins. They yield the chronology employed for inferences of life history. Synchrotron virtual histology has been demonstrated as a non-destructive alternative to conventional invasive approaches. Nevertheless, fossil teeth are sometimes poorly preserved or physically inaccessible, preventing observation of the external expression of incremental lines (perikymata and periradicular bands). Here we present a new approach combining synchrotron virtual histology and high quality three-dimensional rendering of dental surfaces and internal interfaces. We illustrate this approach with seventeen permanent fossil hominin teeth. The outer enamel surface and enamel-dentine junction (EDJ) were segmented by capturing the phase contrast fringes at the structural interfaces. Three-dimensional models were rendered with Phong’s algorithm, and a combination of directional colored lights to enhance surface topography and the pattern of subtle variations in tissue density. The process reveals perikymata and linear enamel hypoplasias on the entire crown surface, including unerupted teeth. Using this method, highly detailed stress patterns at the EDJ allow precise matching of teeth within an individual’s dentition when virtual histology is not sufficient. We highlight that taphonomical altered enamel can in particular cases yield artificial subdivisions of perikymata when imaged using X-ray microtomography with insufficient resolution. This may complicate assessments of developmental time, although this can be circumvented by a careful analysis of external and internal structures in parallel. We further present new crown formation times for two unerupted canines from South African Australopiths, which were found to form over a rather surprisingly long time (> 4.5 years). This approach provides tools for maximizing the recovery of developmental information in teeth, especially in the most difficult cases.  相似文献   

7.
釉面横纹的数目可用于推断个体牙齿的牙冠形成时间,在生长发育研究中具有重要的意义。本研究运用数码体视显微镜和扫描电镜观察了云南石灰坝禄丰禄丰古猿(简称禄丰古猿)30枚齿冠完整的前部牙齿,包括上下颌中门齿6枚、侧门齿10枚和犬齿14枚。根据唇侧面釉面横纹计数的观察结果,分别以7天和9天芮氏线生长周期,估算各齿型的牙冠形成时间,结果显示:以生长周期7天计算,中门齿牙冠形成时间约为3.6-4.1年,侧门齿牙冠形成时间约为2.7-3.7年,犬齿牙冠形成时间约为4.2-7.0;以生长周期9天计算,中门齿牙冠形成时间约为4.4-5.2年,侧门齿牙冠形成时间约为3.4-4.7年,犬齿牙冠形成时间约为5.2-8.8年。为更深入地了解禄丰古猿牙冠形成时间在不同齿型及性别间足否存在明显差异,本文用SPSS软件对其进行显著性差异检验。采用小样本平均值的t值假设检验(置信区间为95%),结果如下:禄丰古猿前部牙齿的牙冠形成时间在各类牙齿的上下颌中不存在显著性差异;犬齿牙冠形成时间存在非常显著的性别差异,雄性牙冠形成时间明显长于雌性,侧门齿也存在显著的性别差异,而中门齿性别间则无显著性差异。此外对禄丰古猿中门齿,侧门齿和犬齿的牙冠形成时间进行单因素方差分析并两两对比,结果显示中门齿与侧门齿的牙冠形成时间不存在显著性差异,而犬齿与中门齿和侧门齿均存在显著性差异,犬齿牙冠形成时间明显长于门齿。同时也对禄丰古猿前部牙齿的牙冠形成时间与齿冠高进行相关性分析,其结果表明两者有显著的正相关性。将禄丰古猿与其他古猿和现生大猿、南方古猿以及人属成员进行对比,结果显示其前部牙齿牙冠形成时间长于原修康尔猿、南方古猿、傍人、人属成员,接近于蝴蝶禄丰古猿和大猩猩,而明显小于黑猩猩、华南化石猩猩及现生猩猩。  相似文献   

8.
The formation of lateral enamel in Neandertal anterior teeth has been the subject of recent studies. When compared to the anterior teeth of modern humans from diverse regions (Point Hope, Alaska; Newcastle upon Tyne, England; southern Africa), Neandertal anterior teeth appear to fall within the modern human range of variation for lateral enamel formation time. However, the lateral enamel growth curves of Neandertals are more linear than those of these modern human samples. Other researchers have found that the lateral enamel growth curves of Neandertals are more linear than those of Upper Paleolithic and Mesolithic modern humans as well. The statistical significance of this apparent difference between Neandertal and modern human lateral enamel growth curves is analyzed here. The more linear Neandertal enamel growth curves result from the smaller percentage of total perikymata located in the cervical halves of their teeth. The percentage of total perikymata in the cervical halves of teeth is therefore compared between the Neandertal sample (n=56 teeth) and each modern human population sample: Inuit (n=65 teeth), southern African (n=114 teeth), and northern European (n=115 teeth). There are 18 such comparisons (6 tooth types, Neandertals vs. each of the three modern human populations). Eighteen additional comparisons are made among the modern human population samples. Statistically significant differences are found for 16 of the 18 Neandertal vs. modern human comparisons but for only two of the 18 modern human comparisons. Statistical analyses repeated for subsamples of less worn teeth show a similar pattern. Because surface curvature is thought to affect perikymata spacing, we also conducted measurements to assess surface curvature in thirty teeth. Our analysis shows that surface curvature is not a factor in this lateral enamel growth difference between Neandertals and modern humans.  相似文献   

9.
Recent studies have suggested that Neandertals and modern humans differ in the distribution of perikymata (enamel growth increments) over their permanent anterior tooth crowns. In modern humans, perikymata become increasingly more compact toward the cervix than they do in Neandertals. Previous studies have suggested that a more homogeneous distribution of perikymata, like that of Neandertals, characterizes the anterior teeth of Homo heidelbergensis and Homo erectus as well. Here, we investigated whether Qafzeh anterior teeth (N = 14) differ from those of modern southern Africans, northern Europeans, and Alaskans (N = 47–74 depending on tooth type) in the percentage of perikymata present in their cervical halves. Using the normally distributed modern human values for each tooth type, we calculated Z‐scores for the 14 Qafzeh teeth. All but two of the 14 Qafzeh teeth had negative Z‐scores, meaning that values equal to these would be found in the bottom 50% of the modern human samples. Seven of the 14 would be found in the lowest 5% of the modern human distribution. Qafzeh teeth therefore appear to differ from those of modern humans in the same direction that Neandertals do: with generally lower percentages of perikymata in their cervical regions. The similarity between them appears to represent the retention of a perikymata distribution pattern present in earlier members of the genus Homo, but not generally characteristic of modern humans from diverse regions of the world. Am J Phys Anthropol 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

10.
We examined the histology of canine teeth in extant hominoids and provided a comparative database on several aspects of canine development. The resultant data augment the known pattern of differences in aspects of tooth crown formation among great apes and more importantly, enable us to determine the underlying developmental mechanisms responsible for canine dimorphism in them. We sectioned and analyzed a large sample (n = 108) of reliably-sexed great ape mandibular canines according to standard histological techniques. Using information from long- and short-period incremental markings in teeth, we recorded measurements of daily secretion rates, periodicity and linear enamel thickness for specimens of Pan troglodytes, Gorilla gorilla, Pongo pygmaeus and Homo sapiens. Modal values of periodicities in males and females, respectively, are: Pan 7/7; Gorilla 9/10; Pongo 10/10; and Homo 8/8. Secretion rates increase from the inner to the outer region of the enamel cap and decrease from the cuspal towards the cervical margin of the canine crown in all great ape species. Female hominoids tend to possess significantly thicker enamel than their male counterparts, which is almost certainly related to the presence of faster daily secretion rates near the enamel-dentine junction, especially in Gorilla and Pongo. Taken together, these results indicate that sexual differences in canine development are most apparent in the earlier stages of canine crown formation, while interspecific differences are most apparent in the outer crown region. When combined with results on the rate and duration of canine crown formation, the results provide essential background work for larger projects aimed at understanding the developmental basis of canine dimorphism in extant and extinct large-bodied hominoids and eventually in early hominins.  相似文献   

11.
胡荣  赵凌霞 《人类学学报》2015,34(3):404-416
华南和东南亚发现大量更新世的猩猩牙齿化石。本研究应用CT扫描三维重建的技术方法研究了广西更新世化石猩猩牙齿釉质厚度,并与现生类人猿、现代人、化石类人猿以及早期人类进行比较分析。结果显示:广西猩猩同类牙齿的釉质厚度与牙齿大小相关性很小;臼齿和前臼齿釉质厚度在上下颌之间不存在显著性差异;来自广西不同地区的猩猩化石牙釉质厚度无显著差异。与早期人科成员相比,广西猩猩的牙釉质相对较薄,平均与相对釉质厚度值都明显小于南方古猿、傍人。与早期人属相比,小于直立人、尼人以及非洲和欧洲的早期人属化石。与现代人和现生灵长类相比,广西化石猩猩釉质厚度明显大于大部分猴类和非洲大猿;平均釉质厚度稍大于现生猩猩,而与现代人更为接近;相对釉质厚度小于现代人,而与现生猩猩差异不大,都属于偏厚型釉质。本文讨论了釉质厚度与系统分类演化、食性适应的相关问题,作者推测釉质厚度可能是物种的特征属性,与牙齿功能适应有密切关联。  相似文献   

12.
Enamel extension rates (EERs), the rates at which ameloblasts differentiate, determine how fast tooth crowns grow in height. Studies of fossil primate (including hominin) enamel microstructure usually focus on species differences in enamel formation time, but they have also begun to address species-level variation in enamel extension rates. To improve our ability to compare EERs among primate species, a better understanding how EERs vary within species is necessary. Using a large and diverse modern human histological sample, we find that initial EERs and patterns of EER change along the enamel-dentine junction (EDJ) vary in relation to EDJ length. We also find that enamel formation time varies in relation to EDJ length, but that it does so independently of initial EERs. These results suggest that EDJ length variation within a species sample can affect interspecific comparisons not only of EERs but also of enamel formation times. Additionally, these results lend within-species support to the hypothesis, based on comparisons among hominin species, that EERs and crown formation times can vary independently (Dean, 2009). In a second approach, we analyzed EER changes specifically in the lateral enamel of two modern human population samples as these changes relate to the distribution of perikymata. As surface manifestations of internal enamel growth increments, perikymata provide a valuable source of information about enamel growth in fossils. We find that EER declines in the lateral enamel are associated with an increase in perikymata density from first to last-formed lateral enamel. Moreover, variation in the extent of EER decline among individuals is associated with variation in the distribution of perikymata along their enamel surfaces. These latter findings suggest that the distribution of perikymata on the enamel surface provides information about rates of EER decline in lateral enamel, at least in modern humans.  相似文献   

13.
运用扫描电子显微镜,对4枚禄丰古猿牙齿(恒齿)的釉质结构进行了观察研究。发现:禄丰古猿牙齿釉质表面有明显的釉面横纹结构;釉面横纹的密度向牙颈方向逐渐增大;观察记数了4枚牙齿的釉面横纹数,进而推算出牙冠的形成时间和年龄。与化石人科成员、现代人及现生大猿比较,禄丰古猿牙冠发育模式及时间,与南方古猿纤细种比较接近或相似,明显长于南方古猿粗壮种,有别于现生大猿。  相似文献   

14.
步氏巨猿(Gigantopithecus blacki)是更新世时期生活于我国华南地区的一种超大型猿类, 它的体态特征和演化分类倍受关注。牙齿釉质厚度在探讨灵长类食性、环境适应以及系统演化方面具有重要意义。本文利用显微CT技术构建18颗巨猿臼齿虚拟模型, 测量其釉质厚度。将巨猿釉质厚度与现代人、现生类人猿、古人类、中新世古猿及其他现生灵长类进行比较, 从牙齿釉质厚度探讨巨猿的食性适应和系统演化问题。结果发现巨猿的实测釉质厚度是目前所有已知现生和化石灵长类中最厚的, 只有傍人、南非早期人属及奥兰诺古猿三种化石灵长类与之接近; 如果考虑不同物种牙齿与身体大小的关联因素, 相对釉质厚度指数显示巨猿属于"厚"釉质类型, 但非"超厚"类型, 低于奥兰诺古猿、傍人、南非早期人属; 巨猿与某些中新世古猿 (如原康修尔猿尼安萨种、非洲古猿)、南方古猿、东非早期人属、亚洲直立人以及现代人、现生卷尾猴的相对釉质厚度指数相近。巨猿的厚釉质特征与其食性和环境适应密切相关, 使得牙齿具有非常强的抗磨损功能, 能够适应长时间的咀嚼和研磨食物。从釉质厚度的系统演化角度推测, 厚釉质应该是人类祖先的特征性状, 巨猿有可能是早期人类支系演化过程中的一个特化旁支, 同时也不排除巨猿是从某种具有厚釉质的中新世古猿旁支平行演化而来的可能性。  相似文献   

15.
Tooth crown morphology plays a central role in hominin systematics, but the removal of the original outer enamel surface by dental attrition often eliminates from consideration the type of detailed crown morphology that has been shown to discriminate among hominin taxa. This reduces the size of samples available for study. The enamel-dentine junction (EDJ) is the developmental precursor and primary contributor to the morphology of the unworn outer enamel surface, and its morphology is only affected after considerable attrition. In this paper, we explore whether the form of the EDJ can be used to distinguish between the mandibular molars of two southern African fossil hominins: Paranthropus (or Australopithecus) robustus and Australopithecus africanus. After micro-computed tomographic scanning the molar sample, we made high-resolution images of the EDJ and used geometric morphometrics to compare EDJ shape differences between species, in addition to documenting metameric variation along the molar row within each species. Landmarks were collected along the marginal ridge that runs between adjacent dentine horns and around the circumference of the cervix. Our results suggest that the morphology of the EDJ can distinguish lower molars of these southern African hominins, and it can discriminate first, second, and third molars within each taxon. These results confirm previous findings that the EDJ preserves taxonomically valuable shape information in worn teeth. Mean differences in EDJ shape, in particular dentine horn height, crown height, and cervix shape, are more marked between adjacent molars within each taxon than for the same molar between the two taxa.  相似文献   

16.
This study uses macroscopic and microscopic methods to analyze the expression of linear enamel hypoplasia (LEH) in Plio-Pleistocene South African hominins. LEH is a developmental defect of enamel that is used in many anthropological contexts as a physiological stress indicator. Previous research has not settled the question as to whether differences in LEH expression exist between Paranthropus and Australopithecus and if they exist, to what extent these differences might be explained simply by taxonomic differences in enamel development and morphology rather than by differential stress experience. In this study, the analysis of LEH is conducted with respect to differences between Paranthropus and Australopithecus in aspects of enamel development and morphology that are thought to influence LEH expression. Two factors impacting LEH expression are considered: the duration of enamel formation, and the spacing of perikymata. It is predicted that if the first factor strongly influences the expression of LEH, then there should be fewer defects per tooth in Paranthropus because of its abbreviated crown formation spans (and fast extension rates) relative to Australopithecus. It is also predicted that because Australopithecus has more densely packed perikymata in comparable regions of the crown than Paranthropus, this taxon should, on average, have narrower defects than Paranthropus. To address these questions, 200 Australopithecus and 137 Paranthropus teeth were examined for LEH, and the analysis of defect width with respect to perikymata spacing was conducted on tooth impressions examined under a scanning electron microscope using INCA (Oxford Instruments) measurement software. Data support the first prediction: Australopithecus does have significantly more defects per canine tooth than Paranthropus. Data do not support the second prediction in large part because several Australopithecus specimens have wide groove defects in which perikymata are not visible and enamel is irregular. Such wide grooves are not predicted by perikymata spacing such that alternative explanations, including taxonomic differences in ameloblast sensitivity and the duration/severity of disruptions to enamel growth, must be considered.  相似文献   

17.
The Plio-Pleistocene site of Kromdraai, South Africa, is well known for the recovery of the holotype of Paranthropus robustus, one of nine individual hominids recovered from this site to date. Among the Kromdraai sample, the specimen KB 5223 comprises several isolated deciduous and permanent lower teeth assigned to Paranthropus, the only recognized genus at this site. However, a more recent analysis of this specimen suggested that it should be classified as Homo. The lower right first permanent molar of KB 5223 had been previously sectioned along the tips of the mesial cusps, exposing its enamel microstructure. Previous studies had indicated differences between Homo and Paranthropus at the microstructural level. A portable confocal scanning microscope was used to describe details of the enamel microstructure of the M1 and I1 of this specimen. Angles formed between the striae of Retzius and the enamel dentine junction (EDJ), daily secretion rates in cuspal enamel of the protoconid and metaconid and crown formation time of the RM1 are provided. The number of perikymata on the right I1 was counted. Results indicate that some features recorded in the KB 5223 molar differ from those of Paranthropus. However, the number of perikymata on the I1 is lower than values so far reported for early Homo but similar to Paranthropus. Crown formation time of KB 5223 M1 was markedly lower than mean values of M1 in H. sapiens, but similar to other early hominids. Daily secretion rates in the cuspal enamel of KB 5223 M1 were higher than in modern humans.  相似文献   

18.
In addition to evidence for bipedality in some fossil taxa, molar enamel thickness is among the few characters distinguishing (thick-enameled) hominins from the (thin-enameled) African apes. Despite the importance of enamel thickness in taxonomic discussions and a long history of scholarship, measurements of enamel thickness are performed almost exclusively on molars, with relatively few studies examining premolars and anterior teeth. This focus on molars has limited the scope of enamel thickness studies (i.e., there exist many fossil hominin incisors, canines, and premolars). Increasing the available sample of teeth from which to compare enamel thickness measurements from the fossil record could substantially increase our understanding of this aspect of dental biology, and perhaps facilitate greater taxonomic resolution of early hominin fossils. In this study, we report absolute and relative (size-scaled) enamel thickness measurements for the complete dentition of modern humans and chimpanzees. In accord with previous studies of molars, chimpanzees show lower relative enamel thickness at each tooth position, with little overlap between the two taxa. A significant trend of increasing enamel thickness from anterior to posterior teeth is apparent in both humans and chimpanzees, indicating that inter-taxon comparisons should be limited to the same tooth position in order to compare homologous structures. As nondestructive imaging techniques become commonplace (facilitating the examination of increasing numbers of fossil specimens), studies may maximize available samples by expanding beyond molars.  相似文献   

19.
This study describes the expression of linear enamel hypoplasia (LEH), a sensitive dental indicator of physiological stress, in Thailand gibbons (Hylobates lar carpenteri). Previous studies of enamel hypoplasia in hominoids have focused on great apes, with little attention given to the expression of this stress indicator in gibbons. In that gibbons differ from both monkeys and great apes in numerous life history features, LEH expression in gibbons might be expected to show significant differences from both. In this study, 92 gibbon specimens from two sites in Thailand were compared with several samples of monkeys and great apes in their expression of LEH. The intertooth distribution of LEH in gibbons was compared to that of chimpanzees and rhesus monkeys. Gibbon populations from both sites exhibit LEH frequencies intermediate between those of the monkey samples, in which LEH prevalence is usually low, and those of the great ape samples, in which LEH prevalence is high. Gibbons differ significantly from monkeys, but not great apes, in the number of individuals whose teeth record multiple stress events. Multiple episodes of stress are rarely recorded in the teeth of monkeys, while multiple stress events occur with higher frequency in gibbons and great apes. Taxonomic variation in the duration of crown formation, the prominence and spacing of perikymata on dental crowns, life history features, and/or experience of physiological stress may explain these patterns. The intertooth distribution of LEH in gibbons is, for different reasons, unlike that of either chimpanzees or rhesus monkeys. The mandibular canines of gibbons have significantly more LEH than any of their other teeth. Aspects of crown morphology, perikymata prominence/spacing, enamel thickness, and crown formation spans are potential causes of taxonomic variation in the intertooth distribution of LEH.  相似文献   

20.
Most of what we know about the timing of human enamel formation comes from radiographic studies on children of known age. Here, we present new longitudinal data derived from a histological analysis of tooth enamel. Two samples, one from southern Africa and one from northern Europe, contained all anterior and molar tooth types. Two further samples contained only one tooth type: canines from a medieval Danish sample and third molars from a modern North American sample. Data were collected on 326 molars and 352 anterior teeth. Each tooth was sectioned and prepared for polarized light microscopy. We used daily enamel cross striations to determine cuspal enamel formation time, recorded the periodicity of long-period striae in the lateral enamel, and used this value to calculate enamel formation times for each decile of crown length. We present data that reveal some of the processes whereby differences in enamel formation times arise between our samples. Mean cuspal enamel formation times were similar in southern African and northern European anterior teeth, but differed in certain molar cusps. All the southern African anterior teeth completed enamel formation earlier. The greatest difference in mean chronological age at enamel completion was 5.2 vs. 6.2 years of age in lower canines. However, enamel completion times in the molar teeth showed few differences between the samples, with mean times for the longest forming cusps all falling between 3.0 years and 3.45 years. Our data suggest fewer differences between samples and smaller ranges of variation than in many radiographic studies and present a more realistic picture of worldwide variation in enamel formation times.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号