首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Two mechanisms of passive Ca2+ transport, Na+-Ca2+ exchange and Ca2+-Ca2+ exchange, were studied using highly-purified dog heart sarcolemmal vesicles. About 80% of the Ca2+ accumulated by Na+-Ca2+ exchange or Ca2+-Ca2+ exchange could be released as free Ca2+, while up to 20% was probably bound. Na+-Ca2+ exchange was simultaneous, coupled countertransport of Na+ and Ca2+. The movement of anions during Na+-Ca2+ exchange did not limit the initial rate of Na+-Ca2+ exchange. Na+-Ca2+ exchange was electrogenic, with a reversal potential of about -105 mV. The apparent flux ratio of Na+-Ca2+ exchange was 4 Na+:1 Ca2+. Coupled cation countertransport by the Na+-Ca2+ exchange mechanism required a monovalent cation gradient with the following sequence of ion activation: Na+ much greater than Li+ greater than Cs+ greater than K+ greater than Rb+. In contrast to Na+-Ca2+ exchange, Ca2+-Ca2+ exchange did not require a monovalent cation gradient, but required the presence of Ca2+ plus a monovalent cation on both sides of the vesicle membrane. The sequence of ion activation of Ca2+-Ca2+ exchange was: K+ much greater than Rb+ greater than Na+ greater than Li+ greater than Cs+. Na+ inhibited Ca2+-Ca2+ exchange when Ca2+-Ca2+ exchange was supported by another monovalent cation. Both Na+-Ca2+ exchange and Ca2+-Ca2+ exchange were inhibited, but with different sensitivities, by external MgCl2, quinidine, or verapamil.  相似文献   

3.
4.
5.
6.
7.
Recent studies in heart cells have shown taurine to induce a sustained increase of both intracellular Ca2+ and Na+. These results led us to believe that the increase in Na+ by taurine could be due to Na+ entry through the taurine-Na+ cotransporter which in turn favours transarcolemmal Ca2+ influx through Na+-Ca2+ exchange. Therefore, we investigated the effect of -alanine, a blocker of the taurine-Na+ cotransporter and low concentrations of CBDMB (a pyrazine derivative, 5-(N-4chlorobenzyl)-2,4-dimethylbenzamil), a Na+-Ca2+ exchanger blocker on taurine-induced [Ca]i increase in embryonic chick heart cells. Using Fura-2 Ca2+ imaging and Fluo-3 Ca2+ confocal microscopy techniques, taurine (20 mM) as expected, induced a sustained increase in [Ca]i at both the cytosolic and the nuclear levels. Preexposure to 500 M of the blocker of the taurine-Na+ cotransporter, -alanine, prevented the amino acid-induced increase of total [Ca]i. On the other hand, application of -alanine did not reverse the action of taurine on total [Ca]i. However, low concentrations of the Na+-Ca2+ exchanger blocker, CBDMB, reversed the taurine-induced sustained increase of cytosolic and nuclear free calcium (in presence or absence of -alanine). Thus, the effect of taurine on [Ca]i in heart cells appears to be due to Na+ entry through the taurine-Na+ cotransporter which in turn favours transarcolemmal Ca2+ influx through the Na+-Ca2+ exchanger.  相似文献   

8.
The modulation of rat brain Na(+)-Ca2+ exchange by K+   总被引:1,自引:0,他引:1  
The involvement of potassium ions in the Na(+)-Ca2+ exchange process was studied in rat brain synaptic plasma membrane (SPM) vesicles. Addition of equimolar [K+] to the intravesicular and the extravesicular medium led to a stimulation of the Na+ gradient-dependent Ca2+ influx; this stimulation was noticeable already at 0.5 mM and reached its maximum at 2 mM K+. The magnitude of the K+ stimulation was between 1.3-2.5-fold in different SPM preparations. K+ ions also stimulated the Na(+)-dependent Ca2+ efflux. K+ stimulation of Na(+)-Ca2+ exchange is of considerable specificity, since it is not mimicked by either Li+ or H+. The following lines of evidence suggest that K+ modulation of Na(+)-Ca2+ exchange involves the catalytic moiety of the transporter itself and not an unrelated K+ channel which modulates the membrane potential. 1) K+ stimulation of the transport process was conserved following reconstitution of the transporter into phospholipid-rich liposomes, an experimental condition which presumably separates the native membrane proteins among different vesicular structures. 2) K+ stimulation of Na+ gradient-dependent Ca2+ influx persists also when the build up of negative inside membrane potential is prevented by addition of carbonyl cyanide p-trifluoromethoxy phenylhydrazone which renders the membrane highly permeable to protons both in the native and the reconstituted preparation. 3) K+ stimulation of Na+ gradient-dependent Ca2+ influx is obtained also when tetraethylammonium chloride, 2,3-diaminopyridine and Cs+ are added to the Ca2+ uptake medium. Reconstituted SPM vesicles take up 86Rb+ in response to activation of Na+ gradient-dependent Ca2+ influx. The ratio of Ca2+ taken up by SPM vesicles in a Na+ gradient-dependent manner to the corresponding amounts of Rb+ taken up varies between 8-5 in different SPM preparations. If the stoichiometry of the process is 1 Rb+/1 Ca2+, then Rb+ cotransport is mediated by 10-20% of the transporters present in the preparation.  相似文献   

9.
Summary The purpose of this study was to examine the effect of three classes of Ca2+ antagonists, diltiazem, verapamil and nifedipine on Na+-Ca2+ exchange mechanism in the sarcolemmal vesicles isolated from canine heart. Na+-Ca2+ exchange and Ca2+ pump (ATP-dependent Ca2+ uptake) activities were assessed using the Millipore filtration technique. sarcolemmal vesicles used in this study are estimated to consist of several subpopulations wherein 23% are inside-out and 55% are right side-out sealed vesicles in orientation. The affect of each Ca2+ antagonist on the Na+-dependent Ca2+ uptake was studied in the total population of sarcolemmal vesicles, in which none of the agents depressed the initial rate of Ca2+ uptake until concentrations of 10 M were incubated in the incubation medium. However, when sarcolemmal vesicles were preloaded with Ca2+ via ATP-dependent Ca2+ uptake, cellular Ca2+ influx was depressed only by verapamil (28%) at 1 M in the efflux medium with 8 mM Na+. Furthermore, inhibition of Ca2+ efflux by verapamil was more pronounced in the presence of 16 mM Na+ in the efflux medium. The order of inhibition was; verapamil > diltiazem > nifedipine. These results indicate that same forms of Ca2+-antagonist drugs may affect the Na+-Ca2+ exchange mechanism in the cardiac sarcolemmal vesicles and therefore we suggest this site of action may contribute to their effects on the myocardium.  相似文献   

10.
Sarcoplasmic reticulum vesicles were preloaded with either 45Ca2+ or unlabeled Ca2+. 45Ca2+ efflux and influx were determined in the presence and absence of acetylphosphate. Phosphorylation of the membrane-bound (Ca2+,Mg2+)-ATPase by [32P]acetylphosphate was also determined. The rate of efflux with acetylphosphate was considerably higher than that without acetylphosphate. When the acetylphosphate concentration was greatly reduced by diluting the reaction mixture after the start of the reaction, the rate of the efflux decreased markedly. These results demonstrate the acceleration of 45Ca2+ efflux by acetylphosphate. This acetylphosphate-induced efflux required external Ca2+. The external Ca2+ concentration giving half-maximum activation of efflux was 3.8 microM. The Ca2+ concentration dependence of the efflux coincided with that of phosphorylation. When the acetylphosphate concentration was varied, the rate of acetylphosphate-induced efflux changed approximately in proportion to the phosphoenzyme concentration. These and other findings show that acetylphosphate-induced 45Ca2+ efflux represents Ca2+-Ca2+ exchange (between the external medium and the internal medium) mediated by the phosphoenzyme and further demonstrate the direct dissociation of Ca2+ from the Ca2+-bound phosphoenzyme to the external medium in Ca2+-Ca2+ exchange.  相似文献   

11.
12.
Na+-Ca2+ exchange in human neutrophils   总被引:4,自引:0,他引:4  
  相似文献   

13.
14.
The objective of this study was to assess the contribution of Na+-Ca2+ exchange activity to Ca2+ efflux at various cytosolic Ca2+ concentrations ([Ca2+]i) in transfected Chinese hamster cells expressing the bovine cardiac Na+-Ca2+ exchanger. Ionomycin was added to fura-2 loaded cells and the resulting [Ca2+]i transient was monitored in Ca2+-free media with or without extracellular Na+. The presence of Na+ reduced both the amplitude and duration of the [Ca2+]i transient. Na+ had similar effects when the peak of the [Ca2+]i transient was buffered to 100 nM by cytosolic EGTA, or when Ca2+ was slowly released from internal stores with thapsigargin. Ca2+ efflux following ionomycin addition was directly measured with extracellular fura-2 and followed a biphasic time course (t(1/2) approximately = 10 s and 90s). The proportion of total efflux owing to the rapid phase was increased by Na+ and reduced by EGTA-loading. Na+ accelerated the initial rate of Ca2+ efflux by 65% in unloaded cells but only by 16% in EGTA-loaded cells. In both cases, the stimulation by Na+ was less than expected, given the pronounced effects of Na+ on the [Ca2+]i transient. We conclude that the exchanger contributes importantly to Ca2+ efflux activity at all [Ca2+]i values above 40 nM. We also suggest that Ca2+ efflux pathways may involve non-cytosolic or local routes of Ca2+ traffic.  相似文献   

15.
16.
In order to identify defects in Na+-Ca2+ exchange and Ca2+-pump systems in cardiomyopathic hearts, the activities of sarcolemmal Na+-dependent Ca2+ uptake, Na+-induced Ca2+ release, ATP-dependent Ca2+ uptake and Ca2+-stimulated ATPase were examined by employing cardiomyopathic hamsters (UM-X7.1) and catecholamine-induced cardiomyopathy produced by injecting isoproterenol into rats. The rates of Na+-dependent Ca2+ uptake, ATP-dependent Ca2+ uptake and Ca2+-stimulated ATPase activities of sarcolemmal vesicles from genetically-linked cardiomyopathic as well as catecholamine-induced cardiomyopathic hearts were decreased without any changes in Na+-induced Ca2+-release. Similar results were obtained in Ca2+-paradox when isolated rat hearts were perfused for 5 min with a medium containing 1.25 mM Ca2+ following a 5 min perfusion with Ca2+-free medium. Although a 2 min reperfusion of the Ca2+-free perfused hearts depressed sarcolemmal Ca2+-pump activities without any changes in Na+-induced Ca2+-release, Na+-dependent Ca2+ uptake was increased. These results indicate that alterations in the sarcolemmal Ca2+-efflux mechanisms may play an important role in cardiomyopathies associated with the development of intracellular Ca2+ overload.  相似文献   

17.
Activity-dependent modulation of synaptic transmission is an essential mechanism underlying many brain functions. Here we report an unusual form of synaptic modulation that depends on Na+ influx and mitochondrial Na(+)-Ca2+ exchanger, but not on Ca2+ influx. In Ca(2+)-free medium, tetanic stimulation of Xenopus motoneurons induced a striking potentiation of transmitter release at neuromuscular synapses. Inhibition of either Na+ influx or the rise of Ca2+ concentrations ([Ca2+]i) at nerve terminals prevented the tetanus-induced synaptic potentiation (TISP). Blockade of Ca2+ release from mitochondrial Na(+)-Ca2+ exchanger, but not from ER Ca2+ stores, also inhibited TISP. Tetanic stimulation in Ca(2+)-free medium elicited an increase in [Ca2+]i, which was prevented by inhibition of Na+ influx or mitochondrial Ca2+ release. Inhibition of PKC blocked the TISP as well as mitochondrial Ca2+ release. These results reveal a novel form of synaptic plasticity and suggest a role of PKC in mitochondrial Ca2+ release during synaptic transmission.  相似文献   

18.
19.
We examine the effects of 5-, 12- and 16-doxylstearic acids on the Na+-Ca2+ exchange and passive Ca2+ permeability of cardiac sarcolemmal vesicles. Stearic acid is a weak stimulator of Na+-Ca2+ exchange. A doxyl moiety potentiates stimulation with the order of increasing potency being 5-, 12- and then 16-doxylstearic acid. Stearic acid has little effect on vesicle Ca2+ permeability but again the doxylstearates are more effective. The sequence of potency is reversed, however, from that for increasing Na+-Ca2+ exchange. 5-Doxylstearic acid most markedly exchanges passive Ca2+ flux followed by the 12-, and then 16-doxylstearic acids. Methyl esters of the doxylstearates have no effect on either Na+-Ca2+ exchange or Ca2+ permeability. We model the results as follows. For a fatty acid to stimulate Na+-Ca2+ exchange activity, an anionic charge is required to interact with the exchanger protein at the membrane surface. Stimulation is potentiated by a perturbation (such as provided by a doxyl group) within the lipid bilayer. The perturbation is most effective at a location towards the center of the bilayer. To increase passive Ca2+ permeability an anionic charge is again essential. Disorder within the bilayer is also important, but now the most important site is near the membrane surface. Results of experiments with linolenic and gamma-linolenic acid and previous studies with other fatty acids also support this model.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号