首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The addition of inositol 1,4,5-trisphosphate (IP3) to a 45Ca-preloaded human platelet membrane fraction (dense tubular system) induced a transient release of Ca2+. When the vesicle fraction was loaded with 45Ca2+ to isotopic equilibrium in the presence of the catalytic subunit of the cAMP-dependent protein kinase, the level of Ca2+ uptake was increased and the subsequent IP3-induced Ca2+ release was enhanced. The stimulation was observed regardless of the IP3 concentration used, and was maximal with an enzyme concentration of 5 micrograms/ml. The addition of the protein kinase inhibitor prevented the stimulatory effect of the catalytic subunit on IP3-induced calcium release, and also abolished the calcium release detected in the absence of added enzyme. It is concluded that a cAMP-dependent protein phosphorylation may be involved in the regulation of the IP3-induced Ca2+ release in human platelets.  相似文献   

2.
We have examined the effects of added cAMP-dependent protein kinase and endogenous calmodulin-dependent kinase on Ca2+ transport in purified internal membranes from human platelets. Both Ca2+ uptake and Ca2+-ATPase activity were maximally stimulated about 2-fold by addition of cAMP-dependent protein kinase. Cyclic AMP-dependent protein kinase inhibitor reduced both Ca2+ uptake and Ca2+-ATPase activities at concentrations which also inhibited cAMP-dependent protein phosphorylation. In addition, concerted stimulation of Ca2+-ATPase by exogenous calmodulin and added catalytic subunit of cAMP-dependent protein kinase was observed. A 22-kDa protein was phosphorylated by both cAMP-dependent and calmodulin-dependent kinases at the same rate as stimulation of the Ca2+-ATPase. Cyclic AMP-dependent phosphorylation of the 22-kDa polypeptide was inhibited by the protein kinase inhibitor and calmodulin-dependent phosphorylation was inhibited by chlorpromazine and EGTA. These results are consistent with the hypothesis that one mode of control of Ca2+ homeostasis in platelets may be similar to the phospholamban system in cardiac muscle.  相似文献   

3.
The Ca2+-ATPase of dog heart sarcolemma (1, 2) is affected by phosphorylation. As normally prepared, sarcolemmal vesicles are phosphorylated to a high degree, resulting in a relatively low additional incorporation of hydroxylamine resistant [32P]phosphate from [gamma-32P]ATP. The 32P incorporation is increased up to 20-fold by pretreating the vesicles with phosphorylase phosphatase and is inhibited by an inhibitor of cAMP-dependent protein kinases. The phosphatase treatment inhibits markedly the Ca2+-ATPase and the ATP-dependent Ca2+ uptake. The inhibition is more evident at relatively higher levels of free Ca2+ and is reversed by preincubation with ATP. The Ca2+-pumping activity is stimulated markedly by phosphorylase b kinase and inhibited by the (cAMP-dependent) protein kinase inhibitor. Both the protein kinase inhibitor and ethylene glycol bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid prevent the rephosphorylation of sarcolemmal vesicles, but the effects are not additive. The Ca2+ dependence curve of the Ca2+ uptake in phospho- and dephosphorylated vesicles suggests that the phosphorylation might affect the efficiency of the enzyme (turnover rate) rather than its affinity for Ca2+.  相似文献   

4.
Relationship between cAMP and Ca2+ fluxes in human platelet membranes   总被引:2,自引:0,他引:2  
The effect of cAMP (which involved a 23 kDa protein phosphorylation) has been studied on the Ca2+ uptake and Ca2+ release from a human platelet membrane vesicle fraction. It was tested in the presence of the catalytic subunit of the cAMP-dependent protein kinase (C Sub). The addition of C Sub increased the steady state level of the Ca2+ uptake into the membrane vesicles. The effect was enhanced when tested in the absence of Ca2+ precipitating agent. The response was proportional to the dose of C Sub. Moreover, the effect varied with the Ca2+ concentration. The effect of C Sub has been tested on the inositol 1,4,5-trisphosphate (IP3)-induced Ca2+ release. A phosphorylated state of the 23 kDa protein appeared to be necessary. Indeed, a phosphorylation inhibition prevented the IP3 effect and the addition of C Sub increased the percentage of released Ca2+ (without modification of the time course). However, the C Sub dose-dependent response was not linear. The effect of cAMP on the two functions (Ca2+ uptake and Ca2+ release) appears to be different. Therefore, these results led us to suggest a more complex role of cAMP in the regulation of platelet Ca2+ concentration.  相似文献   

5.
Rat liver soluble proteins were phosphorylated by endogenous protein kinase with [gamma-32P]ATP. Proteins were separated in dodecyl sulphate slab gels and detected with the aid of autoradiography. The relative role of cAMP-dependent, cAMP-independent and Ca2+-activated protein kinases in the phosphorylation of soluble proteins was investigated. Heat-stable inhibitor of cAMP-dependent protein kinase inhibits nearly completed the phosphorylation of seven proteins, including L-type pyruvate kinase. The phosphorylation of eight proteins is not influenced by protein kinase inhibitor. The phosphorylation of six proteins, including phosphorylase, is partially inhibited by protein kinase inhibitor. These results indicate that phosphoproteins of rat liver can be subdivided into three groups: phosphoproteins that are phosphorylated by (a) cAMP-dependent protein kinase or (b) cAMP-independent protein kinase; (c) phosphoproteins in which both cAMP-dependent and cAMP-independent protein kinase play a role in the phosphorylation. The relative phosphorylation rate of substrates for cAMP-dependent protein kinase is about 15-fold the phosphorylation rate of substrates for cAMP-independent protein kinase. The Km for ATP of cAMP-dependent protein kinase and phosphorylase kinase is 8 microM and 38 microM, respectively. Ca2+ in the micromolare range stimulates the phosphorylation of (a) phosphorylase, (b) a protein with molecular weight of 130 000 and (c) a protein with molecular weight of 15 000. The phosphate incorporation into a protein with molecular weight of 115 000 is inhibited by Ca2+. Phosphorylation of phosphorylase and the 15 000-Mr protein in the presence of 100 microM Ca2+ could be completely inhibited by trifluoperazine. It can be concluded that calmodulin is involved in the phosphorylation of at least two soluble proteins. No evidence for Ca2+-stimulated phosphorylation of subunits of glycolytic or gluconeogenic enzymes, including pyruvate kinase, was found. This indicates that it is unlikely that direct phosphorylation by Ca2+-dependent protein kinases is involved in the stimulation of gluconeogenesis by hormones that act through a cAMP-independent, Ca2+-dependent mechanism.  相似文献   

6.
Sarcoplasmic reticulum isolated from moderately fast rabbit skeletal muscle contains intrinsic adenosine 3',5'-monophosphate (cAMP)-independent protein kinase activity and a substrate of 100 000 Mr. Phosphorylation of skeletal sarcoplasmic reticulum by either endogenous membrane bound or exogenous cAMP-dependent protein kinase results in stimulation of the initial rates of Ca2+ transport and Ca2+-ATPase activity. To determine the molecular mechanism by which protein kinase-dependent phosphorylation regulates the calcium pump in skeletal sarcoplasmic reticulum, we examined the effects of protein kinase on the individual steps of the Ca2+-ATPase reaction sequence. Skeletal sarcoplasmic reticulum vesicles were preincubated with cAMP and cAMP-dependent protein kinase in the presence (phosphorylated sarcoplasmic reticulum) and absence (control sarcoplasmic reticulum) of adenosine 5'-triphosphate (ATP). Control and phosphorylated sarcoplasmic reticulum were subsequently assayed for formation (5-100 ms) and decomposition (0-73 ms) of the acid-stable phosphorylated enzyme (E approximately P) of Ca2+-ATPase. Protein kinase mediated phosphorylation of skeletal sarcoplasmic reticulum resulted in pronounced stimulation of initial rates and levels of E approximately P in sarcoplasmic reticulum preincubated with either ethylene glycol bis(beta-aminoethyl ether)-N,N'-tetraacetic acid (EGTA) prior to assay (Ca2+-free sarcoplasmic reticulum), or with calcium/EGTA buffer (Ca2+-bound sarcoplasmic reticulum). These effects were evident within a wide range of ionized Ca2+. Phosphorylation of skeletal sarcoplasmic reticulum by protein kinase also increased the initial rate of E approximately P decomposition. These findings suggest that protein kinase-dependent phosphorylation of skeletal sarcoplasmic reticulum regulates several steps in the Ca2+-ATPase reaction sequence which result in an overall stimulation of the active calcium transport observed at steady state.  相似文献   

7.
Regulation of erythrocyte Ca2+ pump activity by protein kinase C   总被引:8,自引:0,他引:8  
Using either inside-out vesicles (IOV) prepared from human erythrocytes or purified Ca2+-ATPase from the same source, the effects of protein kinase C (Ca2+/phospholipid-dependent enzyme) on Ca2+ transport and Ca2+-ATPase activity were measured. Incubation of IOV with protein kinase C in the presence, but not absence, of either 12-O-tetradecanoylphorbol-13-acetate or diolein led to a Ca2+-dependent stimulation of ATP-dependent calcium uptake. The effect was a 5-7-fold increase of Vmax without a significant change in the apparent Km for Ca2+. By comparison, the effect of calmodulin was a 14-fold stimulation of Vmax and a 4-fold reduction in apparent Km. The effect of protein kinase C and calmodulin on Ca2+ uptake were nearly additive. Stimulation of IOV Ca2+ transport by protein kinase C was entirely reversible by treatment of activated IOV with alkaline phosphatase. Incubation of purified Ca2+-ATPase with protein kinase C in the presence of 12-O-tetradecanoylphorbol-13-acetate or diolein led to a stimulation of Ca2+-dependent ATPase activity. These results indicate that protein kinase C stimulates the activity of the plasma membrane Ca2+ pump by a direct effect on the pump protein.  相似文献   

8.
The aim of this study was to investigate (a) whether Ca2+/calmodulin-dependent protein kinase II (CaM kinase II) participates in the regulation of plasma membrane Ca2+-ATPase and (b) its possible cross-talk with other kinase-mediated modulatory pathways of the pump. Using isolated innervated membranes of the electrocytes from Electrophorus electricus L., we found that stimulation of endogenous protein kinase A (PKA) strongly phosphorylated membrane-bound CaM kinase II with simultaneous substantial activation of the Ca2+ pump (approximately 2-fold). The addition of cAMP (5-50 pM), forskolin (10 nM), or cholera toxin (10 or 100 nM) stimulated both CaM kinase II phosphorylation and Ca2+-ATPase activity, whereas these activation processes were cancelled by an inhibitor of the PKA alpha-catalytic subunit. When CaM kinase II was blocked by its specific inhibitor KN-93, the Ca2+-ATPase activity decreased to the levels measured in the absence of calmodulin; the unusually high Ca2+ affinity dropped 2-fold; and the PKA-mediated stimulation of Ca2+-ATPase was no longer seen. Hydroxylamine-resistant phosphorylation of the Ca2+-ATPase strongly increased when the PKA pathway was activated, and this phosphorylation was suppressed by inhibition of CaM kinase II. We conclude that CaM kinase II is an intermediate in a complex regulatory network of the electrocyte Ca2+ pump, which also involves calmodulin and PKA.  相似文献   

9.
Closed vesiculate preparations of pig myometrium sarcolemma (predominantly with inside-out orientation) are characterized by passive permeability for Ca2+. The kinetics of Ca2+ release from the vesicles is exponential. Using the grapho-analytical subtraction method, the kinetic parameters of this reaction were determined. Myometrium sarcolemma contains endogenous Ca2+-calmodulin-dependent protein kinase and phosphoprotein phosphatase which is inhibited by sodium o-vanadate. The Ca2+-calmodulin-dependent phosphorylation stimulates passive Ca2+ release from sarcolemmal vesicles. In the course of phosphorylation the capacity of the pool providing for rapid Ca2+ release increases by 61%, the initial rate of Ca2+ release showing a 28% increase. Trifluoroperazine, an inhibitor of Ca2+-calmodulin-dependent processes, eliminates the activating effect of phosphorylation on the rate of Ca2+ release from sarcolemmal vesicles.  相似文献   

10.
The effects of protein kinase C (PKC) on Ca2+ transport were investigated in human intact platelets. The indicator quin2 was used to measure the free cytoplasmic Ca2+ concentration ([Ca2+]cyt) and to search for possible PKC effects on the Ca(2+)-ATPase extrusion pump located in the plasma membrane. The Ca2+ indicator chlorotetracycline (CTC) was used to study PKC effects on the dense tubular Ca(2+)-ATPase uptake pump. The activity of PKC was stimulated by phorbol 12-myristate 13-acetate (PMA) and was inhibited with calphostin C. Neither PKC activation nor inhibition had any effect on [Ca2+]cyt or the Ca2+ extrusion pump. Substantial activation of the dense tubular pump was observed with PMA. In resting platelets bathed in 2 mM external Ca2+ giving [Ca2+]cyt = 102-106 nM, activation of PKC by PMA (100 nM) increases the rate and extent of dense tubular Ca2+ uptake to 1.62 +/- 0.35 and 1.25 +/- 0.3 times control value (respectively). The Vm of the dense tubular pump was measured by using ionomycin to manipulate [Ca2+]cyt. It is shown that PMA increases the Vm by a factor of 1.7 +/- 0.4 but has no effect on the Km value (= 180 nM). An unexpected finding was that PKC activity supports a portion of the basal activity of the dense tubular Ca2+ pump in resting platelets. Preincubation with the inhibitor calphostin C (100 nM) decreases the rate and extent of dense tubular Ca2+ uptake in resting platelets by 38 +/- 5% and 29 +/- 21% (respectively). This is due to a 28 +/- 9% decrease in the Vm of the dense tubular pump. This suggests that there is a low level of stimulation of dense tubular Ca2+ pump mediated by PKC in resting platelets.  相似文献   

11.
Both Ca2+ and cyclic AMP (cAMP) are implicated in the regulation of insulin release in the pancreatic beta cell. In hamster insulinoma cells used in our laboratory to study the mechanism of insulin release, Ca2+ and cAMP trigger secretion independently. Concomitant with stimulation of the secretory apparatus both cAMP and Ca2+ promote phosphorylation of distinct insulinoma cell proteins. Calmodulin may be involved in the stimulation of insulin release and protein phosphorylation induced by Ca2+ influx. The Ca2+-dependent protein kinase of the insulinoma cell is activated by exogenous calmodulin and blocked by trifluoperazine, and inhibitor of calmodulin action. This drug also inhibits glucose-induced insulin release in pancreatic islets. In insulinoma cells trifluoperazine blocks Ca2+ influx-mediated insulin release and protein phosphorylation with no effect on basal or cAMP-mediated insulin release and protein phosphorylation with no effect on basal or cAMP-mediated secretion. Inhibition of Ca2+ influx-mediated insulin release and protein phosphorylation occurs with nearly identical dose dependence. Inasmuch as trifluoperazine affects voltage-dependent Ca2+ uptake in insulinoma cells, an involvement of calmodulin cannot be directly inferred. The evidence suggests that protein phosphorylation may be involved in the activation of the secretory apparatus by both cAMP and Ca2+. It is proposed that stimulation of insulin release by cAMP and Ca2+ is mediated by cAMP-dependent protein kinase and calmodulin-dependent protein kinase, respectively.  相似文献   

12.
The Ca2+-dependent K+ permeability of heart sarcolemma vesicles was measured by following the transmembrane movement of the charge compensating tetraphenylborate anion. The increase in vesicles permeability induced by Ca2+ is lost when membrane proteins are dephosphorylated by an endogenous protein phosphatase and is restored by a phosphorylation process catalysed by a cAMP-dependent protein kinase. The calmodulin antagonist R 24571 lowers the Ca2+-dependent K+ permeability by decreasing the Ca2+ affinity of the K+ transporting system.  相似文献   

13.
The effect of cyclic AMP on Ca2+ uptake by rabbit heart microsomal vesicular fractions representing mainly fragments of either sarcoplasmic reticulum or sarcolemma was investigated in the presence and absence of soluble cardiac protein kinase and with microsomes prephosphorylated by cyclic AMP-dependent protein kinase. The acceleration of oxalate-promoted Ca2+ uptake by fragmented sarcoplasmic reticulum following cyclic AMP-dependent membrane protein phosphorylation, observed by other authors, was confirmed. In addition it was found that the acceleration was greatest at pH 7.2 and almost negligible at pH 6.0 and pH 7.8. A very marked increase in Ca2+ uptake by cyclic AMP-dependent membrane protein phosphorylation was observed in the presence of boric acid, a reversible inhibitor of Ca2+ uptake. In addition to the microsomal fraction thought to represent mainly fragments of the sarcoplasmic reticulum, the effect of protein kinase and cyclic AMP on Ca2+ uptake was investigated in a cardiac sarcolemma-enriched membrane fraction. Ca2+ uptake by sarcolemmal vesicles, unlike Ca2+ uptake by sarcoplasmic reticulum vesicles, was inhibited by low doses of digitoxin. The acceleration of oxalate-promoted Ca2+ uptake by cyclic AMP and soluble cardiac protein kinase, however, was quite similar to what was seen in preparations of fragmented sarcoplasmic reticulum, which suggests that it may reflect an acceleration of active Ca2+ transport across the myocardial cell surface membrane.  相似文献   

14.
Matrix free Ca2+ in isolated chromaffin vesicles   总被引:3,自引:0,他引:3  
D Bulenda  M Gratzl 《Biochemistry》1985,24(26):7760-7765
Isolated secretory vesicles from bovine adrenal medulla contain 80 nmol of Ca2+ and 25 nmol of Mg2+ per milligram of protein. As determined with a Ca2+-selective electrode, a further accumulation of about 160 nmol of Ca2+/mg of protein can be attained upon addition of the Ca2+ ionophore A23187. During this process protons are released from the vesicles, in exchange for Ca2+ ions, as indicated by the decrease of the pH in the incubation medium or the release of 9-aminoacridine previously taken up by the vesicles. Intravesicular Mg2+ is not released from the vesicles by A23187, as determined by atomic emission spectroscopy. In the presence of NH4Cl, which causes the collapse of the secretory vesicle transmembrane proton gradient (delta pH), Ca2+ uptake decreases. Under these conditions A23187-mediated influx of Ca2+ and efflux of H+ cease at Ca2+ concentrations of about 4 microM. Below this concentration Ca2+ is even released from the vesicles. At the Ca2+ concentration at which no net flux of ions occurs the intravesicular matrix free Ca2+ equals the extravesicular free Ca2+. In the absence of NH4Cl we determined an intravesicular pH of 6.2. Under these conditions the Ca2+ influx ceases around 0.15 microM. From this value and the known pH across the vesicular membrane an intravesicular matrix free Ca2+ concentration of about 24 microM was calculated. This is within the same order of magnitude as the concentration of free Ca2+ in the vesicles determined in the presence of NH4Cl.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
The phosphorylation state of six cytoplasmic proteins is increased following treatment of isolated rat hepatocytes with hormones that elevate free intracellular Ca2+ levels (Garrison, J. C. and Wagner, J. D. (1982) J. Biol. Chem. 257, 13135-13143). Tryptic 32P-phosphopeptide maps of two of the substrates, pyruvate kinase and a 49,000-dalton protein, the major 32P-labeled protein in hepatocytes, were prepared following stimulation of cells with vasopressin, a Ca2+-linked hormone. Peptide maps of the 49,000-dalton protein phosphorylated in vitro with the recently identified multifunctional Ca2+/calmodulin-dependent protein kinase contained phosphopeptides identical to those observed in the intact cell, suggesting that this kinase is activated in response to Ca2+-mobilizing hormones. Similar in vitro phosphorylation experiments with pyruvate kinase suggested that the Ca2+/calmodulin-dependent protein kinase can phosphorylate not only the serine residues observed following vasopressin stimulation of the intact cell but also additional threonine residues. Both pyruvate kinase and the 49,000-dalton protein are also phosphorylated in the hepatocyte in response to glucagon and in vitro by the cAMP-dependent protein kinase. Both vasopressin and glucagon appear to stimulate the phosphorylation of identical serine residues in pyruvate kinase but only vasopressin enhances the phosphorylation of certain sites in the 49,000-dalton protein. Comparison of the tryptic phosphopeptide maps of these substrates phosphorylated in vitro with either the Ca2+/calmodulin-dependent protein kinase or the cAMP-dependent protein kinase suggests that the Ca2+-dependent kinase can phosphorylate unique sites in both substrates. It appears to share specificity at other sites with the cAMP-dependent protein kinase. Overall, the results suggest that the multifunctional Ca2+/calmodulin-dependent protein kinase plays an important role in the response of the hepatocyte to a Ca2+ signal.  相似文献   

16.
Plasma membranes of pig myometrium show the ability for endogenous phosphorylation (160 +/- 45 pmol 32P/mg.min); the initial rate of this process increases 2.5-fold in the presence of 10(-6) cAMP. Micromolar concentrations of cAMP activate the ATP-dependent transport of Ca2+ in myometrium plasma membranes; cAMP at concentrations of 10(-9)-10(-4) M has no effect on Ca,Mg-ATPase. Myometrium plasma membranes possess the Mg2+-dependent phosphatase activity. Dephosphorylation of membranes is accompanied by a decrease (by 25-50%) of the Ca,Mg-ATPase activity and Ca2+ uptake, respectively. The exogenous catalytic subunit of cAMP-dependent protein kinase increases the activity of Ca,Mg-ATPase in native and dephosphorylated membranes. Tolbutamide diminishes the activity of Ca,Mg-ATPase in native membranes by 25% without causing any appreciable influence on the enzyme activity in dephosphorylated membranes. Taking into account the similarity of dependence of Ca2+ uptake on Ca2+ concentration in native and cAMP-phosphorylated vesicles, it can be assumed that the cAMP-dependent phosphorylation affects the enzyme turnover number but not its affinity for Ca2+. The dephosphorylation-induced inhibition of Ca,Mg-ATPase activity and accumulation of Ca2+ are reversible processes.  相似文献   

17.
Phospholamban, a putative regulator of cardiac sarcoplasmic reticulum Ca2+ transport, has been shown to be phosphorylated in vitro by cAMP-dependent protein kinase and an intrinsic Ca2+-calmodulin-dependent protein kinase activity. This study was conducted to determine if Ca2+-calmodulin-dependent phosphorylation of phospholamban occurs in response to physiologic increases in intracellular Ca2+ in intact myocardium. Isolated guinea pig and rat ventricles were perfused with 32Pi after which membrane vesicles were isolated from individual hearts by differential centrifugation. Administration of isoproterenol (10 nM) to perfused hearts stimulated 32P incorporation into phospholamban, Ca2+-ATPase activity, and Ca2+ uptake of sarcoplasmic reticulum isolated from these hearts. These biochemical changes were associated with increases in contractility and shortening of the t 1/2 of relaxation. Elevated extracellular Ca2+ produced comparable increases in contractility but failed to stimulate phospholamban phosphorylation or Ca2+ transport and did not alter the t 1/2 of relaxation. Inhibition of trans-sarcolemmal Ca2+ influx by perfusing the ventricles with reduced extracellular Ca2+ (50 microM) attenuated the increases in 32P incorporation produced by 10 nM isoproterenol. Trifluoperazine (10 microM) also attenuated isoproterenol-induced increases in 32P incorporation into phospholamban. In both cases, Ca2+ transport was reduced to a degree comparable to the reduction in phospholamban phosphorylation. These results suggest that direct physiologic increases in intracellular Ca2+ concentration do not stimulate phospholamban phosphorylation in intact functioning myocardium. Ca2+-calmodulin-dependent phosphorylation of phospholamban may occur in response to agents which stimulate cAMP-dependent mechanisms in intact myocardium.  相似文献   

18.
We have used GH3 cells permeabilized by electric field discharge to examine the effects of Ca2+ and protein kinase C activators (phorbol ester and diacylglycerol) on prolactin (PRL) release. Ca2+ was found to stimulate PRL release approximately 4 fold at 3 microM Ca2+ with a half-maximal response at approximately .5 microM estimated free Ca2+. 12-O-tetradecanoyl phorbol-13-acetate and 1-oleoyl-2-acetyl-sn-glycerol stimulated PRL release throughout a range of Ca2+ concentrations (1 nM -3 microM), but stimulation was greater at higher Ca2+ concentrations (.1 microM to 1 microM). Both agents decreased by 1.8 fold the apparent [Ca2+] at which half-maximal stimulation of secretion occurred. Quin 2 was used to measure the free [Ca2+] of intact and permeable cells; PRL secretion at a free [Ca2+] corresponding to resting cytoplasmic [Ca2+] was 10% of maximal, while secretion at the [Ca2+] corresponding to the Ca2+ spike induced by thyrotropin-releasing hormone was approximately 25% of maximal.  相似文献   

19.
A plasma membrane-enriched fraction from rat myometrium shows ATP-Mg2+-dependent active calcium uptake which is independent of the presence of oxalate and is abolished by the Ca2+ ionophore A23187. Ca2+ loaded into vesicles via the ATP-dependent Ca2+ uptake was released by extravesicular Na+. This showed that the Na+/Ca2+ exchange and the Ca2+ uptake were both occurring in plasma membrane vesicles. In a medium containing KCl, vanadate readily inhibited the Ca2+ uptake (K1/2 5 microM); when sucrose replaced KCl, 400 microM-vanadate was required for half inhibition. Only a slight stimulation of the calcium pump by calmodulin was observed in untreated membrane vesicles. Extraction of endogenous calmodulin from the membranes by EGTA decreased the activity and Ca2+ affinity of the calcium pump; both activity and affinity were fully restored by adding back calmodulin or by limited proteolysis. A monoclonal antibody (JA3) directed against the human erythrocyte Ca2+ pump reacted with the 140 kDa Ca2+-pump protein of the myometrial plasma membrane. The Ca2+-ATPase activity of these membranes is not specific for ATP, and is not inhibited by mercurial agents, whereas Ca2+ uptake has the opposite properties. Ca2+-ATPase activity is also over 100 times that of calcium transport; it appears that the ATPase responsible for transport is largely masked by the presence of another Ca2+-ATPase of unknown function. Measurements of total Ca2+-ATPase activity are, therefore, probably not directly relevant to the question of intracellular Ca2+ control.  相似文献   

20.
Human platelet membrane vesicles that accumulated Ca2+ in the presence of ATP were isolated on an isoosmotic KCl-Percoll gradient. ATP-dependent Ca2+ uptake was stimulated by oxalate and phosphate to steady-state levels of greater than 100 nmol/mg protein, and the accumulated Ca2+ could be largely released by ionophore A23187. Inositol 1,4,5-trisphosphate, in a dose-dependent manner (0.5-5.0 microM), caused the rapid release (less than 5 s) of 40-70% of the total A23187-releasable store of accumulated Ca2+. The membrane vesicles that release accumulated Ca2+ in response to inositol 1,4,5-trisphosphate were enriched in enzymes characteristically found in smooth endoplasmic reticulum. These results support the hypothesis that inositol 1,4,5-trisphosphate, produced by the hydrolysis of phosphatidylinositol 1,4-bisphosphate in response to stimulation of cell surface receptors, is a second messenger mediating the release of Ca2+ from intracellular storage sites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号