首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
目的观察ABRA(Actin binding Rho activator)在成年大鼠大脑皮质和海马中的表达。方法制备成年大鼠脑的冰冻切片,采用共聚焦免疫荧光技术和免疫荧光强度测量检测ABRA在大鼠大脑皮质和海马区的表达。结果 ABRA在神经元的胞核、胞浆、突起内可见,其中胞核着色最强。在大脑皮质,ABRA阳性的神经元胞体和突起广泛分布于皮质的分子层、外颗粒层、外锥体细胞层、内颗粒层、内锥体细胞层、多形细胞层,其免疫荧光强度分别为129.22±16.94、125.39±29.83、117.67±22.50、105.85±17.65、103.90±18.00、100.23±20.38,ABRA阳性细胞率分别为0.51±0.01、0.69±0.02、0.64±0.03、0.58±0.05、0.65±0.09、0.63±0.01。在海马,ABRA均匀分布于海马各部,阳性神经元集中于锥体细胞层,而其阳性突起弥散分布于海马分子层和多形层。海马锥体细胞层、分子层、多形层免疫荧光强度分别为141.19±35.48、53.19±10.38、43.32±9.59,ABRA阳性细胞率分别为0.62±0.04、0.27±0.07、0.25±0.03。结论 ABRA广泛表达于大鼠大脑皮质和海马各层,提示ABRA可能在大鼠这些部位的神经细胞功能活动方面起重要作用。  相似文献   

4.
Neurogenesis occurs in the cerebral cortex of adult rats after focal cerebral ischemia. Whether or not the newborn neurons could synthesize neurotransmitters is unknown. To elucidate such a possibility, a photothrombotic ring stroke model with spontaneous reperfusion was induced in adult male Wistar rats. The DNA duplication marker BrdU was repeatedly injected, and the rats were sacrificed at various times after stroke. To detect BrdU nuclear incorporation and various neurotransmitters, brain sections were processed for single/double immunocytochemistry and single/double/triple immunofluorescence. Stereological cell counting was performed to assess the final cell populations. At 48 h, 5 days, 7 days, 30 days, 60 days and 90 days after stroke, numerous cells were BrdU-immunolabeled in the penumbral cortex. Some of these were doubly immunopositive to the cholinergic neuron-specific marker ChAT or GABAergic neuron-specific marker GAD. As analyzed by 3-D confocal microscopy, the neurotransmitters acetylcholine and GABA were colocalized with BrdU in the same cortical cells. In addition, GABA was colocalized with the neuron-specific marker Neu N in the BrdU triple-immunolabeled cortical cells. This study suggests that the newborn neurons are capable of synthesizing the neurotransmitters acetylcholine and GABA in the penumbral cortex, which is one of the fundamental requisites for these neurons to function in the poststroke recovery.  相似文献   

5.
Wang Y  Cao D  Chen J  Liu A  Yu Q  Song X  Xiang Z  Lu J 《Journal of neurochemistry》2011,116(3):374-384
Stomatin is an important membrane raft protein which can combine skeleton protein, some ion channel, and transporter to regulate their functions. However, until now no data on its expression and function in CNS are available. In this study, we examined distribution of stomatin in CNS of rat, and investigated the effects of hypoxia exposure and glucocorticoid on stomatin expression in cerebral cortex of rat. Immunofluorescence staining revealed a broad expression of stomatin protein in many areas of adult rat brain and spinal cord, including the ventral horn of spinal cord, causal magnocellular nucleus of hypothalamus, the V layer of the cerebral cortex, solitary nucleus, 10 and 12 nuclei, and so on. Hypoxia or ischemic hypoxia significantly up-regulated stomatin expression in cerebral cortex, and the up-regulation was independent on adrenocortical steroids since it also occurred in adrenalectomized (ADX) rats. Moreover, treatment of ADX or sham-operated rats with dexamethasone, a synthetic glucocorticoid alone could significantly stimulate expression of stomatin in lung and heart, but not in cerebral cortex. However, dexamethasone could enhance the hypoxia-stimulated expression of stomatin in cerebral cortex of ADX rats. These findings suggested that stomatin might be involved in various physiological functions and cellular events of neurons in CNS under physiological conditions and play a potential protective role under hypoxic conditions.  相似文献   

6.
7.
Poly(ADP-ribose) polymerase (PARP) is a conserved enzyme involved in the regulation of DNA repair and genome stability. The role of PARP during aging is not well known. In this study PARP activity was investigated in nuclear fractions from hippocampus, cerebellum, and cerebral cortex of adult (4 months), old adult (14 months) and aged (24-27 months) rats. Concomitantly, the free radical evoked lipid peroxidation was estimated as thiobarbituric acid reactive substances (TBARS). The specific activity of PARP in adult brain was about 25, 21 and 16 pmol/mg protein per min in hippocampus, cerebellum and cerebral cortex, respectively. The enzyme activity was higher in all investigated parts of the brain of old adults. In aged animals PARP activity was lower in hippocampus by about 50%, and was unchanged in cerebral cortex and in cerebellum comparing to adult rats. The concentration of TBARS was the same in all parts of the brain and remained unchanged during aging. There is no direct correlation between PARP activity and free radical evoked lipid peroxidation during brain aging. The lowered enzyme activity in aged hippocampus may decrease DNA repair capacity which subsequently may be responsible for the higher vulnerability of hippocampal neurons to different toxic insults.  相似文献   

8.
长寿保障基因LAG1是从酵母中克隆的与酵母寿命相关的基因,随酵母生命衰老而表达发生变化.对大鼠中同源基因LASS1进行克隆、测序和序列分析,发现其mRNA序列不同于GenBank中的预测序列,开放阅读框包含1 053碱基对,编码蛋白由350个氨基酸组成,内含Lag1蛋白家族保守的Lag1p motif和TLC结构域.从新生、1月龄、6月龄、12月龄和24月龄大鼠脑顶叶皮质提取总RNA,用半定量RT-PCR及RNA印迹方法对LASS1在大鼠脑皮质中的表达随年龄变化情况进行分析.结果表明,出生后LASS1表达量随年龄增加而增高,至6月龄达高峰,然后随年龄增加而逐渐下降,至24月老龄鼠达最低.衰老相关β半乳糖苷酶(SA-β-gal)对鼠脑皮层染色发现,神经元阳性染色随年龄增长明显增加.大鼠LASS1基因表达在正常衰老过程中发生变化,为进一步研究该基因的作用奠定了基础.  相似文献   

9.
In adult rats, when plasma osmolality increases, water flows across the blood-brain barrier down its concentration gradient from brain to plasma, and brain volume deceases. The brain responds to this stress by gaining osmotically active solutes, which limit water loss. This phenomenon is termed brain volume (water) regulation. We tested the hypothesis that brain volume regulation is more effective in young lambs and adult sheep than in fetuses, premature lambs, and newborn lambs. Brain water responses to acute hyperosmolality were measured in the cerebral cortex, cerebellum, and medulla of fetuses at 60 and 90% of gestation, premature ventilated lambs at 90% of gestation, newborn lambs, young lambs at 20-30 days of age, and adult sheep. After exposure of the sheep to increases in systemic osmolality with mannitol plus NaCl, brain water content and electrolytes were quantified. The ideal osmometer is a system in which impermeable solutes do not enter or leave in response to an osmotic stress. There were significant differences from an ideal osmometer in the cerebral cortex of fetuses at 90% of gestation, cerebral cortex, and cerebellum of newborn lambs, and cerebral cortex, cerebellum, and medulla of young lambs and adult sheep; however, there were no differences in the brain regions of fetuses at 60% of gestation and premature lambs, cerebellum and medulla of fetuses at 90% of gestation, and medulla of newborn lambs. We conclude that 1) brain water loss is maximal and brain volume regulation impaired in most brain regions of fetuses at 60 and 90% of gestation and premature lambs; 2) brain volume regulation develops first in the cerebral cortex of the fetuses at 90% of gestation and in the cerebral cortex and cerebellum of newborn lambs, and then it develops in the medulla of the lambs at 20-30 days of age; 3) brain water loss is limited and volume regulation present in the brain regions of young lambs and adult sheep; and 4) the ability of the brain to exhibit volume regulation develops in a region- and age-related fashion.  相似文献   

10.
目的检测Actin binding Rho activator(ABRA)在不同年龄大鼠腰段脊髓中的表达变化。方法采用Western blot定量检测不同年龄大鼠腰段脊髓中ABRA蛋白水平表达变化,采用免疫荧光染色显示不同年龄大鼠腰髓中ABRA细胞定位。结果Western blot显示ABRA在新生鼠腰段脊髓中表达显著高于成年鼠及老年鼠。免疫荧光染色显示ABRA广泛表达于神经元的胞核、胞浆和突起,在腰髓前角,与前角运动神经元存在共定位,在腰髓后角,与小的NeuN阳性感觉神经元存在共定位。腰髓前角、后角的阳性细胞计数均显示新生鼠ABRA+NeuN双阳性细胞占总ABRA阳性细胞百分比显著低于成年鼠及老年鼠。结论ABRA广泛表达于腰髓中的神经元,ABRA在新生鼠腰髓中表达最强,随年龄的增长呈现明显的时相变化,提示ABRA可能参与了腰髓中神经元的发育和成熟。  相似文献   

11.
Tissue distribution of bikunin mRNA, which encodes a Kunitz-type serine protease inhibitor of the inter-alpha-inhibitor family (IalphaI), was studied in rats and mice by the reverse-transcripsion polymerase chain reaction (RT-PCR). We found that the liver as well as other tissues, such as the kidney, testis and adrenal gland, expressed bikunin mRNA. Although signals of bikunin mRNA were faint in the whole brain of rats and mice, distinct signals were found in limited portions of rat brain, such as the hippocampus, cerebral cortex and pituitary, but undetectable in cerebellum, medulla oblongata, hypothalamus, striatum, midbrain and choroid plexus. In three distinct types of cells, such as neurons, astrocytes and meningeal cells, in primary cultures isolated from the cerebral cortex and meninges of 1-day-old newborn rats, only neurons positively expressed bikunin mRNA. These results suggest that, in addition to peripheral tissues, neurons in the hippocampus and cerebral cortex produce bikunin, suggesting a potential role of bikunin/IalphaI family in these brain regions.  相似文献   

12.
In an attempt to isolate genes involved in the brain development using ordered differential display PCR, we cloned rgpr85 which encodes rat G-protein-coupled receptor with high degree of identity to the amine-like neurotransmitter receptors. This gene was found to be localized at rat chromosome 4q21. In situ hybridization demonstrated that rgpr85 was predominantly expressed in the developing brain and spinal cord. Hybridization signal was especially abundant within the embryonic cortical plates where postmitotic cortical neurons are localized. In the cerebral cortex, the expression of rgpr85 was gradually decreased postnatally and became undetectable by P18. However, weak but significant expression of rgpr85 was maintained in the adult hippocampal formation, olfactory bulb, and cerebellum. Interestingly, rgpr85 expression was transiently induced in the adult hippocampal formation, piriform cortex, and amygdaloid complex by kainic acid (KA) treatment. Thus, dynamic regulation of rgpr85 expression suggests an importance of rgpr85-mediated signaling in the development of cerebral cortex and in the KA-induced responses in the adult brain.  相似文献   

13.
We studied the level of the basal (constitutive) HSP70 expression (inducible and constitutive forms) in the central nervous system (CNS) of male and female rats from the postnatal period to maturity. HSP70 levels were analyzed by immunoblotting in five different areas (cortex, hippocampus, hypothalamus, cerebellum, and spinal cord). The highest levels of HSP70 were found in juvenile rats and decreased progressively until reaching baseline levels between 2 and 4 months. A slight and nonsignificant increase in aged (2-year-old) rats compared with adult subjects was observed in some cerebral areas (cerebral cortex, hippocampus, and cerebellum). In the first weeks of postnatal development, HSP70 immunoreactivity was distributed throughout CNS sections and no specific immunopositive cells could be clearly determined. In adult animals, strong immunostaining was observed in some large neurons (Purkinje neurons and mesencephalic and spinal cord motor neurons), some perivascular and subpial astrocytes, and ependymocytes. Immunoelectron microscopy revealed that HSP70 in these cells is located in the perinuclear area and in mitochondria, rough endoplasmic reticulum, and microtubules. In neurons, strong immunolabeling was also observed in synaptic membranes. The postnatal time course of HSP70 levels and the location and size of HSP70-immunopositive cells suggest that HSP70 constitutively expressed in the rat CNS may be mainly determined by the degree of development and metabolic activity of the neural cells.  相似文献   

14.
We have previously demonstrated that psychological stress (PS) can cause iron to accumulate in the cerebral cortex, hippocampus, and striatum of rats. However, why iron accumulates and in what oxidation state iron it accumulates in the brain of PS-exposed rats has not been well elucidated. In the present study, we investigated the influence of PS on the low molecular weight iron pool (LMWIP) in the rat brain. The results showed that: (1) PS significantly expanded LMWIP in the cerebral cortex, hippocampus, and striatum in rats; (2) PS caused derangement of pyramidal cells and reduced the layers of pyramidal CA1 and CA2 neurons; (3) PS exposure greatly lowered the expression of ferritin (Fn) and hephaestin (HP) in the rat cortex and hippocampus; and (4) PS decreased superoxide dismutase, glutathione peroxidase, and glutathione level and increased malondialdehyde level in the cerebral cortex, hippocampus, and striatum in rats. These results indicated that PS could expand LMWIP significantly, which may be attributed to PS-induced decrease in Fn, HP expression, and the subsequent reduction in iron storage and utilization, and expansion of LMWIP could in turn lead to aggravation of oxidative damage.  相似文献   

15.
Serum cholinesterase, hepatic histidase and monoamine oxidase activity levels are higher in adult female rats than in adult male rats. Exposure of neonatal rats to antioestrogen (tamoxifen or CI-628) resulted in increased serum cholinesterase in adult females only and no effect on hepatic histidase and monoamine oxidase in both sexes. Neonatal tamoxifen or CI-628 treatment resulted in reduced body weights in adult male rats and reduced uterine wet weights in adult female rats. Circulating oestrogen levels measured in adult female rats treated neonatally with tamoxifen were not significantly different from controls. Specific oestrogen uptake in the brain of adult male and female rats was found to be higher in the pituitary than in the preoptic-anterior hypothalamic area and the median eminence-basal hypothalamus than in the cerebral cortex. There was higher uptake of [3H]oestradiol-17 beta in male pituitaries than in female pituitaries. No other sex-difference was observed. Neonatal tamoxifen treatment did not alter the capacity of these brain tissues to take up oestrogen. It is suggested that neonatal antioestrogen exposure has altered the endocrine expression of serum cholinesterase in adult female rats by interfering with normal imprinting mechanisms.  相似文献   

16.
应用常规电生理学细胞外记录技术,研究了生后3周龄幼年大鼠皮层听-视双模态神经元及听-视信息整合特性,并与成年动物进行对照。在听皮层的背侧,听皮层和视皮层的交界处,即颞-顶-枕联合皮层区,共记录到了324个神经元,其中45个为听-视双模态神经元,占13.9%,远低于成年动物双模态神经元所占比例(42.8%)。这些双模态神经元可分为A-V型,v-A型和a-V型3种类型。根据它们对听-视信息的整合效应,可分为增强型、抑制型和调制型。整合效应与给予的声和光组合刺激的时间间隔有关,以获得整合效应的时间间隔范围为整合时间窗,幼年动物的平均整合时间窗为11.9 ms,远小于成年动物的整合时间窗(平均为23.2 ms)。结果提示,与单模态感觉神经元对模态特异性反应特性一样,皮层听-视双模态神经元生后有一个发育、成熟的过程。研究结果为深入研究中枢神经元多感觉整合机制提供了重要实验资料。  相似文献   

17.
Different regions of the prosencephalon and mesencephalon of the adult hamster brain displayed differences in the immunofluorescence expression of astrocytic proteins, namely glial fibrillary acidic protein and J1-31 antigen (30 kD protein). Neither of these proteins could be detected in layers II-VI of the cerebral cortex. However, varying degrees of immunostaining were detectable in perivascular glia, stria medullaris thalamus, the basal cerebral peduncle and the dentate molecular layer of the hippocampus. Vimentin was conspicuous in neurons, particularly in the cerebral cortex and hippocampus, and in glial fibrillary acidic protein-positive astrocytes in major fibre tracts. These observations are discussed in relation to interspecies differences in the expression of intermediate filament proteins.  相似文献   

18.
The 5 alpha-reductase, the enzyme which converts testosterone into dihydrotestosterone (DHT), is present in several CNS structures of the rat. Recent reports from this laboratory indicate that the subcortical white matter and the myelin possess a 5 alpha-reductase activity several times higher than that present in the cerebral cortex. Moreover, previous ontogenetic observations indicate that in all cerebral tissues examined (including the myelin) the 5 alpha-reductase has a higher activity in immature animals. This study was performed in order to verify whether the differences in the 5 alpha-reductase activity on the various brain components might be due to the presence of different concentrations of the same enzyme or to different isoenzymes. To this purpose, the kinetic properties Km and Vmax were measured in the purified myelin as well as in homogenates of the subcortical white matter and of the cerebral cortex, obtained from the brain of adult (60-90-day-old), immature (23-day-old), and aged (greater than 20-month-old) male rats. The results indicate that the enzymes present in the myelin, in the subcortical white matter and in the cerebral cortex of adult male rats possess a very similar apparent Km (1.93 +/- 0.2, 2.72 +/- 0.73 and 3.83 +/- 0.49 microM respectively). On the contrary, the Vmax values obtained in the myelin (34.40 +/- 5.54), in the white matter (19.57 +/- 2.36) and in the cerebral cortex (6.47 +/- 1.03 ng/h/mg protein) of adult animals have been found to be consistently different. Very similar Km values were found in the myelin obtained from the brain of immature and very old rats (2.14 +/- 0.11 and 3.39 +/- 0.75 microM respectively). The Vmax measured in the myelin purified from the immature rat brain (62.25 +/- 4.52) showed a value which was much higher than that found in the myelin of adult animals (34.40 +/- 5.54); a Vmax (34.31 +/- 9.41) almost identical to that of adult animals was found in the myelin prepared from the brain of aged rats.  相似文献   

19.
Jin K  Minami M  Xie L  Sun Y  Mao XO  Wang Y  Simon RP  Greenberg DA 《Aging cell》2004,3(6):373-377
The adult mammalian brain retains the capacity for neurogenesis, by which new neurons may be generated to replace those lost through physiological or pathological processes. However, neurogenesis diminishes with aging, and this casts doubt on its feasibility as a therapeutic target for cell replacement therapy in stroke and neurodegenerative disorders, which disproportionately affect the aged brain. In previous studies, neurogenesis was stimulated by cerebral ischemia in young rodents, and the neurogenesis response of the aged rodent brain to physiological stimuli, such as hormonal manipulation and growth factors, was preserved. To investigate the effect of aging on ischemia-induced neurogenesis, transient (60 min) middle cerebral artery occlusion was induced in young adult (3-month) and aged (24-month) rats, who were also given bromodeoxyuridine to label newborn cells. As found in prior studies, basal neurogenesis in control, nonischemic rats was reduced with aging. Ischemia failed to stimulate neurogenesis in the dentate gyrus (DG) subgranular zone (SGZ), in contrast to results obtained previously after more prolonged (90-120 min) middle cerebral artery occlusion, but increased the number of BrdU-labeled cells in the forebrain subventricular zone (SVZ). This effect was less prominent in aged than in young adult rats, with fold-stimulation of BrdU incorporation reduced by approximately 20% and the total number of cells generated diminished by approximately 50%. BrdU-labeled cells in SVZ coexpressed neuronal lineage markers, consistent with newborn neurons. We conclude that ischemia-induced neurogenesis occurs in the aged brain, and that measures designed to augment this phenomenon might have therapeutic applications.  相似文献   

20.
Newborn striatal neurons induced by middle cerebral artery occlusion (MCAO) can form functional projections targeting into the substantia nigra, which should be very important for the recovery of motor function. Exercise training post-stroke improves motor recovery in clinic patients and increases striatal neurogenesis in experimental animals. This study aimed to investigate the effects of exercise on axon regeneration of newborn projection neurons in adult rat brains following ischemic stroke. Rats were subjected to a transient MCAO to induce focal cerebral ischemic injury, followed by 30 minutes of exercise training daily from 5 to 28 days after MCAO. Motor function was tested using the rotarod test. We used fluorogold (FG) nigral injection to trace striatonigral and corticonigral projection neurons, and green fluorescent protein (GFP)-targeting retroviral vectors combined with FG double labeling (GFP+ -FG+) to detect newborn projection neurons. The results showed that exercise improved the recovery of motor function of rats after MCAO. Meanwhile, exercise also increased the levels of BDNF and VEGF, and reduced Nogo-A in ischemic brain. On this condition, we further found that exercise significantly increased the number of GFP+ -FG+ neurons in the striatum and frontal and parietal cortex ipsilateral to MCAO, suggesting an increase of newborn striatonigral and corticonigral projection neurons by exercise post-stroke. In addition, we found that exercise also increased NeuN+ and FG+ cells in the striatum and frontal and parietal cortex, the ischemic territory, and tyrosine hydroxylase (TH) immunopositive staining cells in the substantia nigra, a region remote from the ischemic territory. Our results provide the first evidence that exercise can effectively enhance the capacity for regeneration of newborn projection neurons in ischemic injured mammalian brains while improving motor function. Our results provide a very important cellular mechanism to illustrate the effectiveness of rehabilitative treatment post-stroke in the clinic.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号