首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The bacterium Klebsiella aerogenes (type 25) produced an inducible alginate lyase, whose major activity was located intracellularly during all growth phases. The enzyme was purified from the soluble fraction of sonicated cells by ammonium sulfate precipitation, anion- and cation-exchange chromatography and gel filtration. The apparent molecular weight of purified alginate lyase of 28,000 determined by gel filtration and of 31,600 determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis indicated that the active enzyme was composed of a single polypeptide. The alginate lyase displayed a pH optimum around 7.0 and a temperature optimum around 37°C. The purified enzyme depolymerized alginate by a lyase reaction in an endo manner releasing products which reacted in the thiobarbituric acid assay and absorbed strongly in the ultraviolet region at 235 nm. The alginate lyase was specific for guluronic acidrich alginate preparations. Propylene glycol esters of alginate and O-acetylated bacterial alginates were poorly degraded by the lyase compared with unmodified polysaccharide. The guluronate-specific lyase activity was applied in an enzymatic method to detect mannuronan C-5 epimerase in three different mucoid (alginate-synthesizing) strains of Pseudomonas aeruginosa. This enzyme which converts polymannuronate to alginate could not be demonstrated either extracellularly or intracellularly in all strains suggesting the absence of a polymannuronate-modifying enzyme in P. aeruginosa.Abbreviations poly(ManA) (1–4)--D-mannuronan - poly(GulA) (1–4)--L-guluronan - TBA 2-thiobarbituric acid  相似文献   

2.
Cells of Clostridium sporosphaeroides which were grown on citrate contained citrate lyase and citrate lyase acetylating enzyme, but no detectable citrate synthase and citrate lyase deacetylase activities. Citrate lyase from C. sporosphaeroides was purified to homogeneity as judged by polyacrylamide gel electrophoresis and high performance liquid chromatography. In contrast to the enzyme from Clostridium sphenoides, the addition of l-glutamate was not necessary for activity and stabilization of the enzyme. The purified enzyme had a specific activity of 34 U/mg protein and was comparable to other citrate lyases with respect to its molecular weight and subunit composition. Electron microscopic investigations showed that similar to the lyase from C. sphenoides and in contrast to all other citrate lyases examined so far, the majority of the enzyme molecules was present in star form.  相似文献   

3.
A soil isolate, Bacillus sp. DT7 has been found to produce significant amounts of an extracellular pectinase subsequently characterized as pectin lyase (EC 4.2.2.10). By optimizing growth conditions, Bacillus sp. DT7 produced higher amount of pectin lyase (53 units/ml) than that has been reported in the literature. Using gel filtration and ion exchange chromatography, this enzyme was purified and found to have a molecular mass of 106 kDa. The purified enzyme exhibited maximal activity at a temperature of 60 C and pH 8.0. The presence of 100 mM concentrations of CaCl2 and mercaptoethanol significantly enhanced pectinase activity of the purified enzyme. This pectinase has tremendous applications in textile industry, plant tissue maceration and fruit juice wastewater treatments.  相似文献   

4.
Isocitrate lyase was purified to homogeneity from ethanol-grown Euglena gracilis. The specific activity was 0.26 μmol/min/mg protein. The molecular mass of the enzyme was calculated to be 380 kDa by gel filtration on a Superose 6 column. The subunit molecular mass of the enzyme was 116 kDa as determined by SDS-polyacrylamide gel electrophoresis. These results showed that the native form of this enzyme was a trimer composed of three identical subunits. The pH optimum for cleavage and condensation reactions was 6.5 and 7.0, respectively. The Km values for isocitrate, glyoxylate and succinate were 3.8, 1.3 and 7.7 mM, respectively. Isocitrate lyase absolutely required Mg for enzymatic activity. This is the first report of the purification of isocitrate lyase to homogeneity from Euglena gracilis.  相似文献   

5.
Extracellular alginate lyase was purified from the culture supernatant of Corynebacterium sp. isolated from the sewage of a sea tangle processing factory in order to elucidate the structure—function relationship of alginate lyase. The electrophoretically homogeneous enzyme was shown to have a molecular mass of 27 kDa by sodium dodecyl sulfate (SDS)—polyacrylamide gel electrophoresis (PAGE) and by gel filtration, with an isoelectric point of 7.3. The molecular mass from amino acid analysis was 28.644 kDa. The optimal pH and temperature for the enzyme reaction were around 7.0 and 55°C, respectively. Metal compounds such as MnCl2 and NiCl2 increased the enzyme activity. The enzyme was identified as the endolytic poly(-L-guluronate)lyase, which was active on poly(-L-1,4-guluronate) and caused a rapid decrease in the viscosity of alginate solution. Measurement of the far-UV circular dichroic spectrum of the enzyme molecule gave a spectrum with a deep trough at 215nm accompanied by a shallow one at around 237 nm, and with a high peak at 197 nm and a much lower one at 230 nm. This spectrum was most likely to be that of the -form of the enzyme molecule and resembled poly(-D-mannuronate)lyase from Turbo cornutus (wreath shell) and poly(-L-guluronate)lyase from Vibrio sp. (marine bacterium). The near-UV circular dichroic spectrum was characteristic for aromatic amino acid residues. In the presence of 6 M urea, these spectra changed drastically in the near-UV and a little in the far-UV with the disappearance of the enzyme activity. Removal of the denaturant in the enzyme solution by dialysis restored both the activity and inherent circular dichroic spectra. The -sheets observed in alginate lyases as the major ordered structure seem to be a common conformation for the lyases.  相似文献   

6.
Cystine lyase degrades l-cystine by a β-elimination to form cysteine persulfide, pyruvate, and ammonia. This enzyme is common in Brassica sp. and has been purified to homogeneity from extracts of broccoli (Brassica oleracea var botrytis) buds. Two isozymes were separated on DEAE-Fractogel columns and the first peak, cystine lyase I further purified to homogeneity. The purified enzyme had a narrow range of substrate specificity with l-cystine and S-alkyl-l-cysteine sulfoxides being the primary substrates. The Km for l-cystine was 1.9 millimolar and for S-ethyl-l-cysteine sulfoxide was 15.6 millimolar, suggesting that l-cystine would be preferred in vivo. Using gel filtration and sodium dodecyl sulfate-polyacrylamide gel electrophoresis the molecular weight of the holoenzyme was estimated as 152,000 composed of subunits of approximately 49,000. This strongly suggests the native enzyme is a trimer. The presence of carbohydrate in the native enzyme was detected at the level of 5.8% on a weight basis. Except for the ability to utilize l-cystine as a substrate there are many similarities between cystine lyase I and the alliin lyase of onion (Allium cepa).  相似文献   

7.
Pectinase is an important kind of enzyme with many industrial applications, among which pectinases produced by bacteria were scarce compared with fungal sources. In this study, a novel bacterium which produced extracellular pectinase was firstly isolated from flue-cured tobacco leaves and identified as Bacillus subtilis PB1 according to its 16S rRNA gene. The pectinolytic enzyme was purified by ammonium sulfate precipitation, ion-exchange and gel filtration chromatography, after which molecular weight was determined as 43.1?±?0.5 kDa by SDS–PAGE. Peptide mass fingerprinting of the pectinase by MALDI-TOF MS showed that the purified enzyme shared homology with pectate lyase and was designated as BsPel-PB1. The optimal temperature for BsPel-PB1 was 50 °C. The optimal pH was pH 9.5 for BsPel-PB1 while it had a broad pH stability from 5 to 11. The values of K m and V max were 0.312 mg/mL and 1248 U/mL, respectively. Accordingly, the BsPel-PB1 was a novel alkaline pectate lyase which could find potential application as a commercial candidate in the pectinolytic related industries.  相似文献   

8.
Alliin lyase (alliin alkyl-sulfenate-lyase, EC 4.4.1.4; alliinase) of onion bulbs has been purified to homogeneity. The enzyme catalyzes the following β-elimination reaction.
Based on sedimentation equilibrium centrifugation data, the enzyme has a molecular weight of 150,000. Analysis by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) showed a single subunit of Mr 50,000. Urea-polyacrylamide gel electrophoresis also yielded a single band after staining with Coomassie blue. The enzyme was shown to be a glycoprotein by the use of a periodic acid-Schiff base staining technique on SDS-PAGE-treated preparations. The carbohydrate moiety was 5.8% of the total protein molecular weight. It consisted of simple sugars, hexoseamines, and methyl pentose, but no sialic acid was found. The enzyme activity showed no requirement for exogenous pyridoxal 5′-phosphate. Inhibition and spectrophotometric studies indicated this cofactor was already bound to the enzyme. Chemical analysis revealed that there were 3 mol of pyridoxal 5′-phosphate per 150,000 g of enzyme.  相似文献   

9.
Pyruvate decarboxylase (EC 4.1.1.1) from the ethanol producing bacterium Zymomonas mobilis was purified to homogeneity. This enzyme is an acidic protein with an isoelectric point of 4.87 and has an apparent molecular weight of 200,000±10,000. The enzyme showed a single band in sodium dodecylsulfate gel electrophoresis with a molecular weight of 56,500±4,000 which indicated that the enzyme consists of four probably identical subunits. The dissociation of the cofactors Mg2+ and thiamine pyrophosphate at pH 8.9 resulted in a total loss of enzyme activity which could be restored to 99.5% at pH 6.0 in the presence of both cofactors. For the apoenzyme the apparent K m values for Mg2+ and thiamine pyrophosphate were determined to be 24 M and 1.28 M. The apparent K m value for the substrate pyruvate was 0.4 mM. Antiserum prepared against this purified pyruvate decarboxylase failed to crossreact with cell extracts of the reportedly pyruvate decarboxylase positive bacteria Sarcina ventriculi, Erwinia amylovora, or Gluconobacter oxydans, or with cell extracts of Saccharomyces cerevisiae.Abbreviations Tris-buffer 0,01 M tris-HCl buffer, containing 1 mM MgCl2 0.1 mM EDTA, 1.0 mM thiamine pyrophosphate, 2 mM mercaptopropanediol, pH 7.0  相似文献   

10.
Chitobiase (EC 3.2.1.29), from the culture filtrate ofTrichoderma harzianum, was purified in sequential steps by ammonium sulfate precipitation, ion exchange chromatography, and gel filtration. The physical and biochemical properties of the enzyme have been determined. The native enzyme has a molecular weight of 118 kDa when determined by gel filtration, and 64 kDa by SDS-PAGE. The enzyme catalyzed the hydrolysis of N,N-diacetylchitobiose andp-nitrophenyl--N-acetyl glucosamine with apparent Km of 575 µM and 235 µM, respectively. The pH optimum for the enzyme was pH 5.5, and maximum activity was obtained at 50°C. Glucosamine and N-acetylglyucosamine strongly inhibited the enzyme.  相似文献   

11.
High activity (>60 munit/mg protein) of 5-deoxyadenosylcobalamin-dependent methylmalonyl-CoA mutase (EC 5.4.99.2) was constantly found during growth of a strain of the root-nodule-forming bacterium Sinorhizobium meliloti harboring an extra plasmid-encoded copy of the methylmalonyl-CoA-mutase-encoding bhbA gene. The enzyme was purified to homogeneity and characterized. The purified enzyme was found to be a colorless apo-form. The apparent molecular weight of the enzyme was calculated to be 165,000±5,000 by Superdex 200 HR gel filtration. SDS-PAGE of the purified enzyme resolved one protein band with an apparent molecular mass of 80.0±2.0 kDa, indicating that the S. meliloti enzyme is composed of two identical subunits. The NH2-terminal sequence was identical to that predicted from the bhbA nucleotide sequence. Monovalent cations were required for enzyme activity.Abbreviations AdoCbl 5-Deoxyadenosylcobalamin - KPB Potassium phosphate buffer - MCM Methylmalonyl-CoA mutase - PVDF Polyvinylidene difluoride  相似文献   

12.
The distribution of γ-glutamylcysteine synthetase (l-glutamate: L-cysteine γ-ligase, EC 6.3.2.2) was investigated in bacteria, and the enzyme was purified from Proteus mirabilis approximately 9,000-fold with an over-all yield of 10%. The purification procedure included ammonium sulfate fractionation, protamine treatment, DEAE-cellulose and hydroxylapatite column chromatographies and Sephadex gel filtrations. The purified enzyme was homogeneous by the criteria of ultracentrifugation. It showed multiple bands on disc-polyacrylamide gel electrophoresis and on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. One band with a molecular weight of 62,000 was obtained on SDS-polyacrylamide gel electrophoresis after cross-linking of the enzyme with dimethylsuberimidate. The molecular weight was determined from the sedimentation and diffusion coefficients to be 64,000 and by Sephadex G-150 gel filtration to be 62,000. The purified enzyme catalyzed the stoichiometric formation of γ-glutamylcysteine and the reaction showed a sigmoidal dependence upon l-cysteine concentration. The enzyme also catalyzed γ-glutamyl amino acid formation from l-α-aminobutyrate, l-homoserine, glycine, l-serine, dl-norvaline or dl-homocysteine, but at lower rates than from l-cysteine. The γ-glutamyl-α-aminobutyrate formation by the enzyme did not show a sigmoidal but a hyperbolic dependence upon l-α-aminobutyrate concentration.  相似文献   

13.
-Ketothiolase from Zoogloea ramigera I-16-M was purified 140-fold to electrophoretic homogeneity. The bacterium appeared to contain a single isoenzyme of -ketothiolase with a molecular weight of 190000, as determined by Sephadex G-200 gel filtration. The monomer molecular weight was 44000, as estimated by polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate. The native enzyme thus appeared to be a tetramer with identical subunits.The enzyme showed a pH optimum of 7.5 in the condensation reaction, and 8.5 in the thiolysis reaction. The enzyme employed a Bi Bi ping pong mechanism for the forward thiolysis reaction. The apparent K m value for acetoacetyl coenzyme A in the thiolysis reaction was 10 M, and that for coenzyme A was 8.5 M. The apparent K m value for acetyl coenzyme A in the condensation reaction was 0.33 mM. The condensation reaction was inhibited by coenzyme A concentrations lower than 0.1 mM.The enzyme was stable in the presence of dithiothreitol and other SH-compounds, but was strongly inhibited by 0.4 mM p-chloromercuribenzoate.Non-Standard Abbreviation PHB poly--hydroxybutyrate  相似文献   

14.
Arylsulfatase was purified from Sphingomonas sp. AS6330 through ionic exchange, hydrophobic- and gel-chromatographies. The purity increased 12,800-fold with approximately 19.1% yield against cell homogenate. The enzyme was a monomeric protein with apparent molecular weight of 62 kDa as determined by sodium dodecylsulfate-polyacrylamide gel electrophoresis, and 41 kDa as determined by gel filtration. The enzyme had optimum reaction conditions for hydrolysis of sulfate ester bonds in agar and p-nitrophenyl sulfate (NPS) at pH 7.0 and 45°C, with a specific activity of 3.93 and 97.2 U, respectively. The enzyme showed higher activity towards agar than other sulfated marine polysaccharides such as porphyran, fucoidan and carrageenan. The K m and V max of the enzyme for hydrolysis of NPS were 54.9 M and 113 mM/min, respectively. With reaction of 200 g agar with 100 U arylsulfatase for 8 h at 45°C, gel strength increased 2.44-fold, and 97.7% of the sulfate in the agar was hydrolyzed.  相似文献   

15.
An α-galactosidase from tubers of S. affinis was purified about 130 fold by ammonium sulfate fractionation, chromatography on DEAE-cellulose and gel filtration on Sephadex G-75. The purified enzyme showed a single protein band on disc gel electrophoresis. The molecular weight of the enzyme was determined to be approximately 42,000 by gel filtration and 44,000 by SDS disc gel electrophoresis. The optimum reaction pH was 5.2. The enzyme hydrolyzed raffinose more rapidly than planteose. The activation energy of raffinose and planteose by the enzyme was estimated to be 7.89 and 11.4 kcal/mol, respectively. The enzyme activity was inhibited by various galactosides and structural analogs of d-galactose. Besides hydrolytic activity, the enzyme also catalyzed the transfer reaction of d-galactosyl residue from raffinose to methanol.  相似文献   

16.
Pyridoxamine (pyridoxine) 5′-phosphate oxidase purified from baker’s yeast was found to have a molecular weight of ca, 55,000 daltons based on polyacrylamide gel electrophoresis. The size of the enzyme subunit was analyzed by gel electrophoresis in the presence of sodium dodecylsulfate. This showed that the enzyme was composed of two nonidentical subunits with a molecular weight of 27,000 and 25,000 daltons. Fluorescence titration of the apoenzyme with FMN suggested that the holoenzyme contained one mol of FMN per mol of the enzyme. The Km value of FMN for apoenzyme was calculated to be ca. 16 nm on both activities of pyridoxamine 5′-phosphate oxidase and pyridoxine 5′-phosphate oxidase.  相似文献   

17.
Phosphoenolpyruvate carboxylase (EC 4.1.1.31) was purified 43-fold from Amaranthus viridis leaves by using a combination of ammonium-sulphate fractionation, chromatography on O-(diethylaminoethyl)-cellulose and hydroxylapatite, and filtration through Sepharose 6B. The purified enzyme had a specific activity of 17.1 mol·(mg protein)-1·min-1 and migrated as a single band of relative molecular weight 100000 on sodium dodecyl sulphate-polyacrylamide gel electrophoresis. A homotetrameric structure was determined for the native enzyme. Phosphoenolpyruvate carboxylase from Zea mays L. and A. viridis showed partial identity in Ouchterlony two-dimensional diffusion. Isoelectric focusing showed a band at pI 6.2. Km values for phosphoenolpyruvate and bicarbonate were 0.29 and 0.17 mM, respectively, at pH 8.0. The activation constant (Ka) for Mg2+ was 0.87 mM at the same pH. The carboxylase was activated by glucose-6-phosphate and inhibited by several organic acids of three to five carbon atoms. The kinetic and structural properties of phosphoenolpyruvate carboxylase from A. viridis leaves are similar to those of the enzyme from Zea mays leaves.Abbreviations MW molecular weight - PEP (Case) phosphoenolpyruvate (carboxylase) - SDS-PAGE sodium dodecyl sulphate-polyacrylamide gel electrophoresis  相似文献   

18.
Cytosolic glycerol-3-phosphate dehydrogenase was purified from jerboa (Jaculus orientalis) skeletal muscle and its physical and kinetic properties investigated. The purification method consisted of a multi-step procedure and this procedure is presented. The specific activity of the purified enzyme is 53.6 U/mg of protein, representing a 77-fold increase in specific activity. The apparent Michaelis constant (Km) for dihydroxyacetone is 137.39 (± 25.56) M whereas the Km for glycerol-3-phosphate is 468.66 (±27.59) M. The kinetic mechanism of purified enzyme is ordered Bi-Bi and this result is confirmed by the product inhibition pattern. Under the conditions of assay, the pH optimum occurs at pH 7.7 for the reduction of dihydroxyacetone phosphate and at pH 9.0 for glycerol-3-phosphate oxidation. In the direction of dihydroxyacetone phosphate, the optimal temperature is 35°C. The molecular weight of the purified enzyme determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis is 33,000 (±1,000), whereas non-denaturing polyacrylamide gel yields a molecular weight of 72,000 (±2,000), suggesting that the enzyme may exist as a dimer. A polyclonal antiserum raised against the purified enzyme was used to localize the enzyme in different jerboa tissues by Western blot method. The purified enzyme is sensitive to N-ethylmaleimide, and incubation of the enzyme with 20 mm N-ethylmaleimide resulted in a complete loss of catalytic activity. The purified enzyme is inhibited by several metal ions including Zn2+ and by 2,4-dichlorophenoxyacetic acid.  相似文献   

19.
Summary NADP-dependent glutamate dehydrogenase from Dictyostelium discoideum was purified 9300 fold with a yield of 4.6%. The enzyme is a hexamer of apparent molecular weight 294 kDa on Sephacryl S400 and a subunit molecular weight of 52 kDa as determined by SDS gel electrophoresis. The apparent KmS for -ketoglutarate, NADPH and NH inf4 sup+ are 1.2 mM, 9.7 µM and 2.2 mM respectively, and the purified enzyme has a broad pH optimum with a peak at pH 7.75. GTP has a slight stimulatory effect (22% at 83 µM) as does ADP (11% at 1 mM), and AMP is slightly inhibitory (9% at 1 mM) whereas adenosine, ATP and cAMP have little or no effect. Neither the Zn2+ chelating compound 1,10-phenanthroline nor EDTA have any effect on the enzyme while p-hydroxymercuribenzoic acid inhibits enzyme activity (50% at 80 µM) yet N-ethylmaleimide does not.In addition, the NADP-GDH activity varies little during the various stages of morphogenesis.Abbreviations EDTA Ethylenediamine Tetraacetic Acid - Tris Tris(hydroxymethyl)aminomethane - Bis-tris bis(2-hydroxyethyl)imino-tris(hydroxymethyl)methane - TRITON X-100 iso-octylphenoxypoly-ethoxyethanol - pHMB p-Hydroxymercuribenzoic acid  相似文献   

20.
Summary An NADH-cytochromeb 5 reductase was purified from rat liver plasma membranes. Rat liver plasma membranes were prepared by aqueous two-phase partition. Peripheral proteins were removed by EDTA extraction and integral membrane proteins were solubilized with Triton X-100. The NADH-cytochromeb 5 reductase was purified by hydroxyapatite, anion exchange, and gel filtration chromatographies. The purified preparation was homogeneous and estimated to have an apparent molecular weight of 32 kDa on SDS-polyacrylamide gel electrophoresis. Two tryptic peptides of the purified enzyme had sequence homologies with rat, human, and bovine NADH-cytochromeb 5 reductases.Abbreviations CHAPS 3-[(3-cholamidopropyl)dimethylammonio]-1-propane sulfonate - BCA bicinchonicic acid - EDTA ethylenediamine tetraacetate acid disodium salt - FeCN ferricyanide - HPLC high-performance liquid chromatography - NADH nicotinamide adenine dinucleotide reduced form - PMSF -phenylmethylsulfonyl fluoride  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号