首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
A phylogenetic analysis based on 16S rRNA was performed on the genera Planococcus, Marinococcus, Sporosarcina and endospore-forming rods. In agreement with earlier 16S rRNA cataloguing data, Planococcus citreus and Sporosarcina ureae clustered with Bacillus pasteurii and other bacilli containing lysine in their cell walls. Sporosarcina halophila was shown to be genetically distinct from S. ureae and formed a loose association with the main Bacillus subtilis grouping. Marinococcus halophilus (formerly Planococcus halophilus) exhibited low levels of relatedness to all reference species examined and formed a distinct line of descent.  相似文献   

2.
The phospholipid headgroup composition and fatty acid composition of a gram-positive halotolerant Planococcus sp. (strain A4a) were examined as a function of growth temperature (5 to 35 degrees C) and NaCl content (0 to 1.5 M) of the growth medium. When the growth temperature was decreased, the relative amount of mono-unsaturated branched-chain fatty acids increased. When Planococcus sp. strain A4a was grown in media containing high NaCl concentrations, the relative amount of the major fatty acid, Ca15:0, increased. The relative amount of anionic phospholipid also increased when the NaCl concentration of the growth medium was increased. The increase in anionic phospholipid content resulted from a decrease in the relative mole percent content of phosphatidylethanolamine and an increase in the relative mole percent content of cardiolipin.  相似文献   

3.
Fluorescent derivatives of a phosphatidylglycerol, phosphatidylserine, phosphatidic acid, phosphatidylcholine, phosphatidylethanolamine, and diacylglycerol have been studied to establish the effect of different polar headgroups on the mechanism and kinetics of spontaneous phospholipid transfer between recombinants of human plasma apolipoprotein A-II and dimyristoylphosphatidylcholine. The fluorescent lipids are all 1-myristoyl-2-[9-(1-pyrenyl)nonanoyl] glycerides. The transfer of the lipids is a first order process where the rate is independent of the concentration over a 50 fold range of the acceptor recombinants. These results are consistent with the lipids transferring as monomers being a water-soluble intermediate. The rate of transfer of the different phospholipids are slightly slower than phosphatidylcholine, with that of phosphatidylethanolamine being about 4 times slower. The transfer of phospholipids with a titratable headgroup is pH-dependent. The difference in the rates and pH dependence may be a function of the interactions (hydrogen bonding) between polar headgroups. The rate of transfer of the diacylglycerol is 20 times slower than phosphatidylcholine, but its activation energy (21 kcal/mol) is only 2 to 3 kcal less than most of the phospholipids (23 kcal/mol). These results suggest that the rate and activation energy for the spontaneous transfer of phospholipids can be predicted to a first approximation on the basis of its hydrophobic content, irrespective of the pH or identity of the polar headgroup.  相似文献   

4.
Gloeobacter violaceus sp. PCC 7421 is an unusual cyanobacterium with only one cellular membrane, which lacks the thylakoid membranes found in other oxygenic photosynthetic organisms. The cell membrane lipids in G. violaceus sp. PCC 7421 are monogalactosyl diacylglycerol, digalactosyl diacylglycerol, phosphatidyl glycerol and phosphatidic acid in the molar proportion of 51, 24, 18 and 4% respectively. This lipid composition resembles that of the cell membrane from other cyanobacteria, but completely lacks sulfoquinovosyl diacylglycerol. This lack of sulfoquinovosyl diacylglycerol is exceptional for a photosynthetic membrane. The membrane lipids are esterified to 14:0, 16:0, 16:1, 18:0, 18:1, 18:2 and α18:3 fatty acids. Received: 28 December 1995 / Accepted: 26 April 1996  相似文献   

5.
Cotyledons of conifers have a light-independent pathway for chlorophyll biosynthesis. To investigate whether the prolamellar body of Scots pine ( Pinus sylveslris L.) is similar to the better known prolamellar body of wheat, etioplast membrane fractions were isolated from cotyledons of dark-grown Scots pine. Dark-grown cotyledons contained both chlorophyll and protochlorophyllide, 158 and 10 nmol (g fresh weight)'respectively, and had a chlorophyll a to b ratio of 4.2. The content of glyco- and phospholipids was 7.1 μmol (g fresh weight)1. About 40 mol % of these lipids were the specific plastid lipids – monogalactosyl diacylglycerol. digalactosyl diacylglycerol and sulfoquinovosyl diacylglycerol in the relative amounts 50, 35 and 7 mol %. The mol ratio of monogalactosyl diacylglycerol to digalactosyl diacylglycerol was 1.7. Low temperature fluorescence emission spectra of intact cotyledons and homogenate showed maxima at 633, 657, 686, 696 nm and a broad peak at 725–735 nm. The maxima at 633 and 657 nm represented different forms of protochlorophyllide and the other emission maxima represented chlorophyll protein complexes. The 657 nm form of protochlorophyllide was phototransformable both in vivo and in the isolated membranes. The phototransformable protochlorophyllide was substantially enriched in the prolamellar body fraction.
The specific activity of light dependent protochlorophyllide oxidoreductase in the prolamellar body fraction was found to be 2 nmol chlorophyllide formed [(mg protein)−1 min−1]. The molecular weight of the enzyme polypeptide was determined as 38 000 dalton with sodium dodecylsulphate-polyacrylamide gel electrophoresis.  相似文献   

6.
A chemotaxonomic study was carried out on some moderately halophilic Gram-positive motile cocci, previously isolated from the Salar de Atacama (Chile) and grouped in two phenons (A and B) by numerical taxonomic analysis. Strains included in phenon A had a DNA base composition ranging between 42.0 and 44.0 mol%, while that of phenon B ranged from 48.0 to 48.8 mol%. The results of DNA-DNA hybridization studies on representative strains from phenons A and B, indicated that the strains assigned to phenon A comprise a genomically homogeneous group, with a high degree of homology (80%) to the type strain of Marinococcus albus. Similarly, phenon B constituted a homogeneous group and the representative strain studied showed a DNA-DNA homology of 70% with the type strain of Marinococcus halophilus. Representative strains studied from each phenon had meso-diaminopimelic acid in the cell wall and menaquinone systems with seven isoprene units (MK-7) as a major component. All these results, together with those previously reported, indicate that strains included in phenons A and B constitute additional strains of the species Marinococcus albus and Marinococcus halophilus , respectively.  相似文献   

7.
J D Pilot  J M East  A G Lee 《Biochemistry》2001,40(49):14891-14897
Diacylglycerol kinase (DGK) of Escherichia coli has been reconstituted into a variety of phospholipid bilayers and its activity determined as a function of lipid headgroup structure and phase preference. The anionic phospholipids dioleoylphosphatidic acid, dioleoylphosphatidylserine, and cardiolipin were all found to support activities lower than that supported by dioleoylphosphatidylcholine. In mixtures of dioleoylphosphatidylcholine and 20 mol % anionic phospholipids, the presence of anionic phospholipids all resulted in lower activities than in dioleoylphosphatidylcholine, except for dioleoylphosphatidylglycerol whose presence had little effect on activity. In some cases, the low activity in the presence of anionic phospholipid followed from a decrease in v(max); in some cases, it followed from an increase in the K(m) for diacylglycerol, and in the case of dioleoylphosphatidic acid, it followed from both. Activities in mixtures containing 80 mol % dioleoylphosphatidylethanolamine were lower than in dioleoylphosphatidylcholine at temperatures where both lipids adopted a bilayer phase; at higher temperatures where dioleoylphosphatidylethanolamine preferred a hexagonal H(II) phase, the differences in activity were greater. These experiments suggest that the presence of lipids preferring a hexagonal H(II) phase leads to low activities. Activities of DGK are low in a gel phase lipid.  相似文献   

8.
Glycolipids are mainly found in phototrophic organisms (like plants and cyanobacteria), in Gram-positive bacteria, and a few other bacterial phyla. Besides the function as bulk membrane lipids, they often play a role under phosphate deprivation as surrogates for phospholipids. The Gram-negative Agrobacterium tumefaciens accumulates four different glycolipids under phosphate deficiency, including digalactosyl diacylglycerol and glucosylgalactosyl diacylglycerol synthesized by a processive glycosyltransferase. The other two glycolipids have now been identified by mass spectrometry and nuclear magnetic resonance spectroscopy as monoglucosyl diacylglycerol and glucuronosyl diacylglycerol. These two lipids are synthesized by a single promiscuous glycosyltransferase encoded by the ORF atu2297, with UDP-glucose or UDP-glucuronic acid as sugar donors. The transfer of sugars differing in their chemistry is a novel feature not observed before for lipid glycosyltransferases. Furthermore, this enzyme is the first glucuronosyl diacylglycerol synthase isolated. Deletion mutants of Agrobacterium lacking monoglucosyl diacylglycerol and glucuronosyl diacylglycerol or all glycolipids are not impaired in growth or virulence during infection of tobacco leaf discs. Our data suggest that the four glycolipids and the nonphospholipid diacylglyceryl trimethylhomoserine can mutually replace each other during phosphate deprivation. This redundancy of different nonphospholipids may represent an adaptation mechanism to enhance the competitiveness in nature.  相似文献   

9.
In contrast to what happens in higher plants and eukaryotic algae, a nitrogen deficiency during growth causes a change in pigment composition but no significant changes in whole cell lipid and fatty acid composition of the two Cyanobacteria, Pseudanabaena sp. (strain M2) and Oscillatoria splendida (strain L3). Nitrogen deficiency does not affect the cellular content in chlorophyll a, but it causes a selective loss in phycobiliproteins; carotenoid content increases with phycocyanin depletion. The major cellular lipids in both Cyanobacteria studied are monogalactosyl diacylglycerol, digalactosyl diacylglycerol, sulfoquinovosyl diacylglycerol, and phosphatidylglycerol. The fatty acid composition is particularly interesting as both these filamentous Oscillatoriaceae show important contents in α- and γ-linolenic (18:3) and parinaric (18:4) acids. This seems to be very unusual in Cyanobacteria.  相似文献   

10.
Growth of Synechococcus 6311 in the presence of 0.5 molar NaCl is accompanied by significant changes in membrane lipid composition. Upon transfer of the cells from a `low salt' (0.015 molar NaCl) to `high salt' (0.5 molar NaCl) growth medium at different stages of growth, a rapid decrease in palmitoleic acid (C16:1Δ9) content was accompanied by a concomitant increase in the amount of the two C18:1 acids (C18:1Δ9, C18:1Δ11), with the higher increase in oleic acid C18:1Δ9 content. These changes began to occur within the first hour after the sudden elevation of NaCl and progressed for about 72 hours. The percentage of palmitic acid (C16:0) and stearic acid (C18:0) remained almost unchanged in the same conditions. High salt-dependent changes within ratios of polar lipid classes also occurred within the first 72 hours of growth. The amount of monogalactosyl diacylglycerol (bilayer-destabilizing lipid) decreased and that of the digalactosyl diacylglycerol (bilayer-stabilizing lipid) increased. Consequently, in the three day old cells, the ratio of monogalactosyl diacylglycerol to digalactosyl diacylglycerol in the membranes of high salt-grown cells was about half of that in the membranes of low salt-grown cells. The total content of anionic lipids (phosphatidylglycerol and sulfoquinovosyl diacylglycerol) was always higher in the isolated membranes and the whole cells from high salt-grown cultures compared to that in the cells and membranes from low salt-grown cultures. All the observed rearrangements in the lipid environment occurred in both thylakoid and cytoplasmic membranes. Similar lipid composition changes, however, to a much lesser extent, were also observed in the aging, low salt-grown cultures. The observed changes in membrane fatty acids and lipids composition correlate with the alterations in electron and ion transport activities, and it is concluded that the rearrangement of the membrane lipid environment is an essential part of the process by which cells control membrane function and stability.  相似文献   

11.
Of the polar lipids studied (phospholipids and glycolipids), only phosphatidylcholine and sphingomyelin can disperse in water with up to 2 mol cholesterol/mol polar lipid. However, mixtures of phosphatidylethanolamine with small amounts of phosphatidylcholine and mixed lipids from mitochondria and myelin will also form sterol-rich dispersions. Steroids in which the 3β-OH group is replaced by an oxo function do not form such steroid-rich dispersions. Electron microscopy and optical rotatory dispersion (ORD) show that sterols disperse with cerebrosides and gangliosides to form cylindrical structures with the regions around C atoms 3 and 7 of the sterol in less polar environments than those they occupy in phospholipid liposomes.

It is proposed that choline-containing phospholipids facilitate entry of sterol molecules into the outer leaflet of cell surface membranes but that the phospholipid composition itself will not give rise to an asymmetric distribution of sterol in membranes with a high cholesterol content.  相似文献   


12.
Phospholipid interconversions in Mycoplasma capricolum   总被引:5,自引:0,他引:5  
Mycoplasma capricolum cells increase their phospholipid content by incorporating exogenous phospholipids from the growth medium. Growing the cells in media with increasing serum concentrations resulted in a massive incorporation of phosphatidylcholine and sphingomyelin (up to about 50% of total phospholipids) into the cell membrane. The incorporation of the exogenous phospholipids had essentially no effect on the rate of cell growth and did not decrease the overall phospholipid biosynthesis of the cells. Thus, the ratio of phospholipid to protein in membranes from cells grown with 5% horse serum was 0.5 (mumol/mg) compared to 0.3 (mumol/mg) in cells grown without serum, and the relative content of charged polar lipids was apparently decreased. The consequence of the incorporation of exogenous phosphatidylcholine was an alteration in the relative amount of the major end-products of the de novo phospholipid biosynthesis; a marked increase in the ratio of diphosphatidylglycerol to phosphatidylglycerol was observed. The possibility that the increase in the ratio of diphosphatidylglycerol to phosphatidylglycerol is part of a control mechanism to maintain a mixture of bilayer and non-bilayer lipids is discussed.  相似文献   

13.
Membrane lipids in most bacteria generally consist of the glycerophospholipids phosphatidylglycerol, cardiolipin, and phosphatidylethanolamine (PE). A subset of bacteria also possesses the methylated derivatives of PE, monomethylphosphatidylethanolamine, dimethylphosphatidylethanolamine, and phosphatidylcholine (PC). In Sinorhizobium meliloti, which can form a nitrogen-fixing root nodule symbiosis with Medicago spp., PC can be formed by two entirely different biosynthetic pathways, either the PE methylation pathway or the recently discovered PC synthase pathway. In the latter pathway, one of the building blocks for PC formation, choline, is obtained from the eukaryotic host. Under phosphorus-limiting conditions of growth, S. meliloti replaces its membrane phospholipids by membrane-forming lipids that do not contain phosphorus; namely, the sulfolipid sulfoquinovosyl diacylglycerol, ornithine-derived lipids, and diacylglyceryl-N,N,N-trimethylhomoserine. Although none of these phosphorus-free lipids is essential for growth in culture media rich in phosphorus or for the symbiotic interaction with the legume host, they are expected to have major roles under free-living conditions in environments poor in accessible phosphorus. In contrast, sinorhizobial mutants deficient in PC show severe growth defects and are completely unable to form nodules on their host plants. Even bradyrhizobial mutants with reduced PC biosynthesis can form only root nodules displaying reduced rates of nitrogen fixation. Therefore, in the cases of these microsymbionts, the ability to form sufficient bacterial PC is crucial for a successful interplay with their host plants.  相似文献   

14.
A glucose containing lipid, phosphatidylglucose (probably 3-sn-phosphatidyl-1'-glucose) and a lipid tentatively identified as phosphatidylethanolamine have been characterized in the lipids of Staphylococcus aureus. These lipids together comprise less than 2% of the total phospholipids of exponentially growing S. aureus and accumulate to 14% of the total phospholipid in stationary-phase cells. These lipids lost no (32)P when cells grown with H(3) (32)PO(4) were transferred to nonradioactive medium during the exponential growth phase. This was in marked contrast to the other phospholipids which lost (32)P rapidly. The loss of (32)P from phosphatidic acid and cardiolipin in exponentially growing cells was biphasic, suggesting heterogeneity of phospholipid phosphate metabolism. The mono- and diglucosyl diglycerides showed a rapid loss of (14)C-glucose during growth in nonradioactive medium but no loss of (14)C from the fatty acids of these lipids. The (14)C in the glucose and fatty acids of the glucosyl diglycerides was derived from glucose.  相似文献   

15.
The phospholipid headgroup and fatty acid compositions of a halotolerant Planococcus sp. (strain A4a) were examined when cells were grown in the presence of high concentrations of a variety of salts. The fatty acid composition of Planococcus sp. strain A4a was altered primarily as a function of the osmolality of the growth medium. The phospholipid headgroup composition was influenced by both the osmolality of the growth medium and the nature of the cation species present. An increase in the cardiolipin/phosphatidylglycerol molar ratio was detected when cells were grown in the presence of high concentrations of monovalent cations.  相似文献   

16.
B R Ganong  R M Bell 《Biochemistry》1984,23(21):4977-4983
Transmembrane movement of phospholipids is a fundamental step in the process of biological membrane assembly and intracellular lipid sorting. To facilitate study of transmembrane movement, we have synthesized analogues of phosphatidylglycerol and diacylglycerol in which a sulfhydryl group replaces a hydroxyl group in the polar head group. A rapid, continuous assay for the movement of phospholipids across single-walled lipid vesicles was developed that exploits the reactivity of these analogues toward 5,5'-dithiobis(2-nitrobenzoic acid) (DTNB), a nonpenetrating, colorimetric, sulfhydryl reagent. In the reaction of DTNB with vesicles containing phosphatidylthioglycerol, a phosphatidylglycerol analogue, two kinetic phases were seen, which represent the reaction of DTNB with phosphatidylthioglycerol in the outer and inner leaflets of the bilayer. Analysis of the slow second phase indicated that the half-time for phosphatidylthioglycerol transbilayer movement was in excess of 8 days. In a similar experiment using dioleoylthioglycerol, a diacylglycerol analogue, the reaction was complete within 15 s. The large difference in translocation rates between these two lipids indicates that the primary barrier to transmembrane movement is the polar head group and implies that phospholipid translocation events in biological membranes may not be unlike those for molecules similar to the polar head groups alone.  相似文献   

17.
Salt tolerance of archaeal extremely halophilic lipid membranes   总被引:1,自引:0,他引:1  
The membranes of extremely halophilic Archaea are characterized by the abundance of a diacidic phospholipid, archaetidylglycerol methylphosphate (PGP-Me), which accounts for 50-80 mol% of the polar lipids, and by the absence of phospholipids with choline, ethanolamine, inositol, and serine head groups. These membranes are stable in concentrated 3-5 m NaCl solutions, whereas membranes of non-halophilic Archaea, which do not contain PGP-Me, are unstable and leaky under such conditions. By x-ray diffraction and vesicle permeability measurements, we demonstrate that PGP-Me contributes in an essential way to membrane stability in hypersaline environments. Large unilamellar vesicles (LUV) prepared from the polar lipids of extreme halophiles, Halobacterium halobium and Halobacterium salinarum, retain entrapped carboxyfluorescein and resist aggregation in the whole range 0-4 m NaCl, similarly to LUV prepared from purified PGP-Me. By contrast, LUV made of polar lipid extracts from moderately halophilic and non-halophilic Archaea (Methanococcus jannaschii, Methanosarcina mazei, Methanobrevibacter smithii) are leaky and aggregate at high salt concentrations. However, adding PGP-Me to M. mazei lipids results in gradual enhancement of LUV stability, correlating with the PGP-Me content. The LUV data are substantiated by the x-ray results, which show that H. halobium and M. mazei lipids have dissimilar phase behavior and form different structures at high NaCl concentrations. H. halobium lipids maintain an expanded lamellar structure with spacing of 8.5-9 nm, which is stable up to at least 100 degrees C in 2 m NaCl and up to approximately 60 degrees C in 4 m NaCl. However, M. mazei lipids form non-lamellar structures, represented by the Pn3m cubic phase and the inverted hexagonal H(II) phase. From these data, the forces preventing membrane aggregation in halophilic Archaea appear to be steric repulsion, because of the large head group of PGP-Me, or possibly out-of-plane bilayer undulations, rather than electrostatic repulsion attributed to the doubly charged PGP-Me head group.  相似文献   

18.
The phospholipid headgroup and fatty acid compositions of a halotolerant Planococcus sp. (strain A4a) were examined when cells were grown in the presence of high concentrations of a variety of salts. The fatty acid composition of Planococcus sp. strain A4a was altered primarily as a function of the osmolality of the growth medium. The phospholipid headgroup composition was influenced by both the osmolality of the growth medium and the nature of the cation species present. An increase in the cardiolipin/phosphatidylglycerol molar ratio was detected when cells were grown in the presence of high concentrations of monovalent cations.  相似文献   

19.
Monolayers of seven fractions of natural lipids (phosphatidyl inositol, sulfoquinovosyl diacylglycerol, phosphatidylcholine, digalactosyl diacylglycerol, phosphatidyl glycerol, phosphatidylethanolamine, monogalactosyl diacylglycerol), isolated from the photoautotrophic cell culture of the moss Marchantia polymorpha grown under normal and light-stress conditions, have been prepared for the first time. We have shown that the high-intensity light affects the area occupied by the lipid molecule. In the case of digalactosyl diacylglycerol and phosphatidyl glycerol fractions, after the light stress the area significantly increased from 0.50 to 0.80 nm2 and from 0.47 to 0.63 nm2, respectively, and in the case of the sulfoquinovosyl diacylglycerol fraction, the area decreased from 0.40 to 0.32 nm2. These results are in agreement with our previous data on the redistribution of the double bonds in the aliphatic chains of these lipids and can be used to characterize the state of the lipid bilayer of the thylakoid membranes.  相似文献   

20.
Cyanobacteria desaturate fatty acids in the membrane lipids in response to decrease in temperature. We examined the changes in lipid and fatty acid composition in the thermophilic cyanobacterium Synechococcus vulcanus, which is characterized by an optimum growth temperature of 55°C. During temperature acclimation to 45°C or 35°C, the cells synthesized oleic acid at the expense of stearic acid in the membrane lipids. Unlike mesophilic cyanobacteria, S. vulcanus did not show any significant adaptive desaturation in the galactolipids monogalactosyl diacylglycerol and digalactosyl diacylglycerol, that comprise 50% and 30% of total membrane lipids, respectively. The major changes in fatty acid unsaturation were observed in the sulfolipid sulfoquinovosyl diacylglycerol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号