首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
The intrinsic population growth rate (r) of the surplus production function used in the biomass dynamic model and the steepness (h) of the stock-recruitment relationship used in age-structured population dynamics models are two key parameters in fish stock assessment. There is generally insufficient information in the data to estimate these parameters that thus have to be constrained. We developed methods to directly estimate the probability distributions of r and h for the Atlantic bluefin tuna (Thunnus thynnus, Scombridae), using all available biological and ecological information. We examined the existing literature to define appropriate probability distributions of key life history parameters associated with intrinsic growth rate and steepness, paying particular attention to the natural mortality for early life history stages. The estimated probability distribution of the population intrinsic growth rate was weakly informative, with an estimated mean r = 0.77 (±0.53) and an interquartile range of (0.34, 1.12). The estimated distribution of h was more informative, but also strongly asymmetric with an estimated mean h = 0.89 (±0.20) and a median of 0.99. We note that these two key demographic parameters strongly depend on the distribution of early life history mortality rate (M0), which is known to exhibit high year-to-year variations. This variability results in a widely spread distribution of M0 that affects the distribution of the intrinsic population growth rate and further makes the spawning stock biomass an inadequate proxy to predict recruitment levels.  相似文献   

2.
A survey‐based assessment of an eastern Mediterranean data‐limited black anglerfish (Lophius budegassa; Spinola, 1807) stock was carried out to elucidate its population and exploitation trends. A catch‐based method was also applied to estimate its maximum sustainable yield (MSY). The effect on the long‐term spawning stock biomass and yield of a wide range of exploitation regimes (combinations of F and selectivity) was investigated using an age‐structured population model parameterised for Mediterranean anglerfish stocks. The analysis indicated an increasing trend of anglerfish fishing mortality (F) in the eastern Mediterranean from the mid‐1990s onwards, and that recent catches were 41% higher than the median MSY estimate. Catching Mediterranean anglerfish at least three years after they mature at an = 0.4–1 year?1 would ensure high yields at sustainable levels of stock depletion. Examination of the empirical exploitation regimes in five anglerfish stocks across the Mediterranean Sea illustrates their unfulfilled potential for higher sustainable yields, mainly due to overexploitation of juveniles.  相似文献   

3.
In order to estimate the population dynamics of the hilsa shad, Tenualosa ilisha, fishery in Sindh, the key population parameters of growth, mortalities, recruitment pattern, exploitation and maximum sustainable yield are discussed. Length frequency data were collected from April to October 2004 from the main commercial (hilsa) landings at Thatta, Sindh. Estimated parameters of the von Bertalanffy (Hum. Biol. 10, 181–213) growth model were L = 31.5 cm, = 1.5 year?1, t0 = ?0.10 year as obtained by the electronic length frequency analysis (ELEFAN I). Estimated natural, fishing, and total mortalities were 2.21, 0.673, 2.89 year?1, respectively. The relative biomass per recruit (B′/R) was 0.95 and yield per recruit (Y′/R) was 0.06 using the knife‐edge selection. The exploitation ratio at the maximum sustainable yield (MSY) was Emax = 1.0 year?1, fishing mortality at MSY was Fmax = 2.89 year?1, average target Fopt = 0.5 year?1 and Flimit = 1.47 year?1. The catch and effort data from 1981 to 2004 (MFD, Karachi) were analyzed using the catch and effort data analysis (CEDA) computer programme. Estimated biological reference point of MSY for the Fox model was 891 tonnes (t), R2 = 0.75; for the Schaefer and Pella‐Tomlinson models MSY = 744 t, R2 = 0.49, the outputs of which appeared to be more conservative than the Fox model which indicated a better fit. The overall situation of hilsa fishery is in severe stress and appears vulnerable to overexploitation. On the basis of the present findings, serious attention is required to provide appropriate access of the fish to the Indus River during the spawning period as well as to impose a ban on fishing during upstream migration and on undersized catch to prevent this traditional fishery in this area.  相似文献   

4.
The concept of an optimum yield at intermediate levels of fishing (the so called maximum sustainable yield or MSY) has been with us since the 1930s and is now enshrined in legislation as a key objective of fisheries management. The concept seems intuitively reasonable and is readily applicable to a single stock treated in isolation and assuming a constant environment. However, translating this concept into a mixed and multispecies fishery, where there are complex trade-offs between fleets and stocks and in general no simple optimum solution, has been problematic. Here I introduce a framework for thinking about multispecies MSY in terms of an integrated risk of stock depletion and expected long-term yield. Within this framework I consider the performance of a set of simple harvest control rules based upon a single-limit fishing mortality rate (F) which is common to all stocks and a target biomass which is a set fraction of a stock's virgin biomass. Using a multispecies management strategy evaluation, I compare expected outcomes for a set of these harvest control rules with alternative scenarios, in which each stock has its own F based on the assessment process. I find that the simple framework can produce outcomes that are similar to those from the more sophisticated estimates of F. I therefore conclude that achieving multispecies MSY may depend more upon setting reasonable biomass targets and faithfully applying a harvest control rule approach rather than determining the best possible Fs for each stock.  相似文献   

5.
Growth of kelee shad, Hilsa kelee, in the coastal waters of Pakistan was estimated from the lengthfrequency samples. The von Bertalanffy growth equation was L t = 23.10 (1 ? exp (?0.94(t + 0.18))). Estimated parameters of total mortality (Z), natural mortality (M) and fishing mortality (F) were 2.08 year?1, 1.78 year?1, and 0.30 year?1 respectively. The length-at-first capture was Lc = 10.88 cm. Biomass per recruitment (B/R) and yield per recruitment (Y′/R) were 0.87 and 0.031 respectively. The annual exploitation rate was U = 0.12. The exploitation ratio for maximum yield per recruit E max = 0.73 and fishing mortality for maximum yield per recruit F max = 1.52; biological reference point F opt = 0.89 year?1 and F limit = 1.18 year?1. Present estimations showed that the natural mortality was higher than fishing mortality in Hilsa kelee, indicating that the state of the stock is sustainable and the fishery of kelee shad should not be increased beyond current levels in the coastal waters of Pakistan.  相似文献   

6.
The focus of this article is to investigate the biological reference points, such as the maximum sustainable yield (MSY), in a common Schaefer (logistic) surplus production model in the presence of a multiplicative environmental noise. This type of model is used in fisheries stock assessment as a first-hand tool for biomass modelling. Under the assumption that catches are proportional to the biomass, we derive new conditions on the environmental noise distribution such that stationarity exists and extinction is avoided. We then get new explicit results about the stationary behavior of the biomass distribution for a particular specification of the noise, namely the biomass distribution itself and a redefinition of the MSY and related quantities that now depend on the value of the variance of the noise. Consequently, we obtain a more precise vision of how less optimistic the stochastic version of the MSY can be than the traditionally used (deterministic) MSY. In addition, we give empirical conditions on the error variance to approximate our specific noise by a lognormal noise, the latter being more natural and leading to easier inference in this context. These conditions are mild enough to make the explicit results of this paper valid in a number of practical applications. The outcomes of two case-studies about northwest Atlantic haddock [Spencer, P.D., Collie, J.S., 1997. Effect of nonlinear predation rates on rebuilding the Georges Bank haddock (Melanogrammus aeglefinus) stock. Can. J. Fish. Aquat. Sci. 54, 2920-2929] and South Atlantic albacore tuna [Millar, R.B., Meyer, R., 2000. Non-linear state space modelling of fisheries biomass dynamics by using Metropolis-Hastings within-Gibbs sampling. Appl. Stat. 49, 327-342] are used to illustrate the impact of our results in bioeconomic terms.  相似文献   

7.
Bothriochloa ischaemum L. and Lespedeza davurica (Laxm.) Schindl. are two co-dominant species of great importance in reducing soil and water loss and maintaining the distinctive natural scenery of the semiarid Loess Plateau of China. Our aim was to determine the growth and interspecific competition between these species under water stress to facilitate the prediction of community succession and guide the selection of appropriate methods of conservation and use in the area. A pot experiment was designed to investigate the effects of water stress and competition on biomass production and allocation, relative competitive ability and water use efficiency of the two species. Bothriochloa ischaemum (a C4 perennial herbaceous grass) was planted in the same pot with L. davurica (a C3 perennial leguminous subshrub) at density ratios of 12:0, 10:2, 8:4, 6:6, 4:8, 2:10, and 0:12. The response of the species to their mutual presence at the different ratios was evaluated at three levels of soil moisture (80%?±?5% field capacity, FC (HW), 60%?±?5% FC (MW) and 40%?±?5% FC (LW)). Indices of aggressivity (A), competitive ratio (CR) and relative yield totals (RYTs) were calculated from the dry shoot, root and total weight data. Water stress decreased the biomass production by both species whether in monoculture or mixture, but B. ischaemum was more sensitive to water deficit. Across moisture levels, the growth of L. davurica was more adversely affected by mixed planting. Bothriochloa ischaemum had significantly (P?<?0.05) smaller root:shoot ratios than L. davurica and the root mass of both species tended to increase relative to shoot mass as soil water deficit increased. The aggressivity (A), competitive ratio (CR) and relative yield totals (RYTs) of B. ischaemum were positive across treatments. Bothriochloa ischaemum had much higher CR under each water treatment, but water stress considerably reduced its relative CR while increasing that of L. davurica. The RYT values of the two species indicated some degree of resource complimentarity under both water sufficient and deficit conditions. Our results suggest that it is advantageous to grow the two species together to maximize biomass production. We recommend a mixture ratio of 8:4 of B. ischaemum to L. davurica because it gave significantly higher RYT and transpiration water use efficiency under deficit water conditions.  相似文献   

8.
应用年龄结构产量模型评估印度洋黄鳍金枪鱼资源   总被引:3,自引:0,他引:3  
冯波  陈新军  西田勤 《生态学报》2010,30(13):3375-3384
利用年龄结构产量模型(Age structured production model,ASPM)评估了印度洋黄鳍金枪鱼资源状况,同时结合亲体量-补充量曲线陡度系数和年龄组自然死亡系数的敏感性分析,描述了黄鳍金枪鱼资源的发展趋势、判断了开发状况。研究认为,陡度系数设在0.6-0.8才可能使亲体量产生出最大可持续产量(Maximum sustainable yield,MSY)的水平。采用美洲热带金枪鱼委员会推荐的自然死亡系数值时,评估结果最接近渔业现状。研究发现,随着捕捞努力量的增加,总资源量和亲体量呈逐年下降趋势,但总资源量自1990年后趋向稳定,维持在195.9-263.2万t,平均为221万t;亲体量在1994年后下降到100万t以下,1997年以后处在维持MSY所需亲体量的水平之下,目前仍呈下降趋势。补充量在渔业初期呈现大幅度波动,1978年后趋于稳定,并维持在3258.36-6583.35×106尾,平均为4687.66×106尾。未成熟鱼的数量总体较为稳定,但成熟鱼的数量出现剧减,从渔业初期的246.51×106尾减少到2005年的19.02×106尾。模型估计的总捕捞死亡系数从渔业初期开始逐渐上升,1991年后出现大幅度上升,处于0.334-0.456间,2003年时超过FMSY,捕捞产量也于2003年超过MSY。分析认为,2003年以来印度洋黄鳍金枪鱼的持续高产量被认为是不可持续,根据ASPM估算,2003-2006年均产量46.4万t,超过了MSY(36.4万t);S/SMSY为0.76;Fall/FMSY为1.39,由此判断现阶段印度洋黄鳍金枪鱼正处于过度捕捞状态。  相似文献   

9.
The kinetics of anaerobic digestion of cane molasses distillery slops was investigated using a continuous-flow bioreactor which contained waste tyre rubber as support, to which the microorganisms became immobilized. Hydraulic retention times (HRT) ranging from 1 to 10 days were investigated at an average influent chemical oxygen demand (COD) concentration of 47.7?g/l. The maximum substrate utilization rate, k, and half saturation coefficient, K L, were determined to be 1.82?kg CODremoved/kg VSS day and 0.33?kg COD/kg VSS day. The yield coefficient, Y, and sludge decay rate coefficient, K d, were also determined to be 0.06?kg VSS/kg CODremoved and 0.05?day-1, respectively. Methane production was maximum (6.75?l/l day) at a 2 day HRT corresponding to a biomass loading rate of 2.578?kg COD/kg VSS day. Biogas yield ranged between 0.51?l/g COD (HRT=2 days) and 0.25?l/g COD (HRT=1?day). In addition, the methane percentage in the biogas varied between 70.5% (HRT=10?days) and 47.5% (HRT=1?day). The close relationship between biomass loading rate and specific substrate utilization rate supported the use of Monod equations. Finally, the experimental values of effluent substrate concentration were reproduced with deviations equal to or less than 10% in every case.  相似文献   

10.
Rose Atoll is an important refuge for giant clams (Tridacna maxima) that have been heavily exploited elsewhere in Samoa. During an extensive survey of six islands in the archipelago (50.5?ha surveyed in 420 transects), 97% of a total of 2853 clams were recorded at the atoll (42% of area surveyed). Clam densities were highest in the atoll lagoon, especially around the bases of the pinnacles (mean density=8870?ha-1). Estimated population size for the small atoll (615?ha) was approximately 27800 clams. Twenty four percent of the population consisted of mature clams (?12?cm), 70% of which occupied the pinnacles and shallow lagoon habitat. Estimated mortality was low (Z=0.3) and primarily due to natural mortality (M=0.3). Maximum recorded size (L max ) and asymptotic mean size (L ) were 25.0?cm and 27.8?cm respectively.  相似文献   

11.
Stochastic variability of biological processes and uncertainty of stock properties compel fisheries managers to look for tools to improve control over the stock. Inspired by animals exploiting hidden prey, we have taken a biomimetic approach combining catch and effort in a concept of Bayesian regulation (BR). The BR provides a real-time Bayesian stock estimate, and can operate without separate stock assessment. We compared the performance of BR with catch-only regulation (CR), alternatively operating with N-target (the stock size giving maximum sustainable yield, MSY) and F-target (the fishing mortality giving MSY) on a stock model of Baltic Sea herring. N-targeted BR gave 3% higher yields than F-targeted BR and CR, and 7% higher yields than N-targeted CR. The BRs reduced coefficient of variance (CV) in fishing mortality compared to CR by 99.6% (from 25.2 to 0.1) when operated with F-target, and by about 80% (from 158.4 to 68.4/70.1 depending on how the prior is set) in stock size when operated with N-target. Even though F-targeted fishery reduced CV in pre-harvest stock size by 19–22%, it increased the dominant period length of population fluctuations from 20 to 60–80 years. In contrast, N-targeted BR made the periodic variation more similar to white noise. We discuss the conditions when BRs can be suitable tools to achieve sustainable yields while minimizing undesirable fluctuations in stock size or fishing effort.  相似文献   

12.
Water stress and nutrient deficiency are considered to be the main environmental factors limiting plant growth and species interaction in semiarid regions. However, less is known about the interactive effects of soil water, nitrogen and phosphorus on native species growth and relative competitive ability. A replacement series design method was used with 12 mixed plants of Bothriochloa ischaemum and Lespedeza davurica grown in a pot experiment under three water regimes and four fertility treatments. Intercropping systems were assessed on the basis of indices such as biomass production and allocation, relative competitive ability, aggressivity, relative yield total and water use efficiency (WUE). Water stress decreased significantly the total biomass production for each species, either in monoculture or in mixtures. N, P, or NP application can significantly improve biomass production of the two species in their mixtures. There was no obvious change trend in root/shoot ratio of B. ischaemum or L. davurica in different mixture proportions. Relative yield total (RYT) values ranged from 0.98 to 1.39. Aggressivity values of B. ischaemum to L. davurica were positive in all water regimes and fertilizations, implying that B. ischaemum was the dominant species. Relative competition intensity values of B. ischaemum (i.e., RCIB) were less than zero, while greater than zero for L. davurica (i.e., RCIL), indicating that the effects of intraspecific competition with L. davurica were stronger for B. ischaemum, and the opposite for L. davurica. WUE increased gradually as the proportion of B. ischaemum increased in mixtures, and a 10:2 B. ischaemum:L. davurica mixture proportion had significantly higher WUE. Results suggest that it is advantageous to grow the two species together to maximize biomass production and the recommended mixture ratio was 10:2 of B. ischaemum to L. davurica because it gave higher RYT and significantly higher WUE under conditions of water deficit.  相似文献   

13.
The regular sea urchin, Strongylocentrotus pallidus (G.O. Sars, 1871), is a widespread epibenthic species in high-Arctic waters. However, little is known about its distribution, standing stock, population dynamics and production. In the northern Barents Sea, S. pallidus was recorded on seabed still photographs at 10 out of 11 stations in water depths of 80–360?m. Mean abundances along photographic transects of 150–300 m length ranged between <0.1 and 14.7?ind. m?2 yielding a grand average of 3.6?ind.?m?2. The small-scale distribution along the transects was patchy, with densities varying from nil to an overall maximum of 25.5 ind. m?2, and exhibited a significant relation to the number of stones present. Sea urchin test diameters, measured on scaled photographs, extended from 7 to 90?mm. Median values at single stations varied from 14 to 46?mm, showing a significant inverse relationship to water depth. Biomass, estimated by combining photographic abundances, size frequencies and a size-mass function established with trawled specimens, ranged between <0.1 and 3.0?g ash-free dry mass m?2, averaging about 1.0?g ash free dry mass m?2. An analysis of skeletal growth bands in genital plates was carried out with 143 trawled individuals ranging in test diameter (D) from 4 to 48?mm. Assuming these bands to represent annual growth marks, the ages of the specimens analysed ranged between 3 and 42 years. A von Bertalanffy function was fitted to size-at-age data to model individual growth pattern (D?=?102.3?mm, k?=?0.011 year?1, t0?=?0.633?year). The annual mortality rate Z of the population in the northern Barents Sea was estimated from a size-converted catch curve to be 0.08 year?1. Applying the weight-specific growth rate method, the average P/B ratio and the mean annual production of this population were estimated as 0.07 year?1 and 0.076?g AFDM m?2 year?1, respectively. In conclusion, S. pallidus is characterized by slow growth, low mortality, high longevity and low productivity. Because of its relatively high biomass, it is considered to contribute significantly to total benthic standing stock and carbon flux in the study area.  相似文献   

14.
There has been considerable interest in cultivation of green microalgae (Chlorophyta) as a source of lipid that can alternatively be converted to biodiesel. However, almost all mass cultures of algae are carbon-limited. Therefore, to reach a high biomass and oil productivities, the ideal selected microalgae will most likely need a source of inorganic carbon. Here, growth and lipid productivities of Tetraselmis suecica CS-187 and Chlorella sp were tested under various ranges of pH and different sources of inorganic carbon (untreated flue gas from coal-fired power plant, pure industrial CO2, pH-adjusted using HCl and sodium bicarbonate). Biomass and lipid productivities were highest at pH 7.5 (320?±?29.9 mg biomass L?1 day?1and 92?±?13.1 mg lipid L?1 day?1) and pH 7 (407?±?5.5 mg biomass L?1 day?1 and 99?±?17.2 mg lipid L?1 day?1) for T. suecica CS-187 and Chlorella sp, respectively. In general, biomass and lipid productivities were pH 7.5?>?pH 7?>?pH 8?>?pH 6.5 and pH 7?>?pH 7.5?=?pH 8?>?pH 6.5?>?pH 6?>?pH 5.5 for T. suecica CS-187 and Chlorella sp, respectively. The effect of various inorganic carbon on growth and productivities of T. suecica (regulated at pH?=?7.5) and Chlorella sp (regulated at pH?=?7) grown in bag photobioreactors was also examined outdoor at the International Power Hazelwood, Gippsland, Victoria, Australia. The highest biomass and lipid productivities of T. suecica (51.45?±?2.67 mg biomass L?1 day?1 and 14.8?±?2.46 mg lipid L?1 day?1) and Chlorella sp (60.00?±?2.4 mg biomass L?1 day?1 and 13.70?±?1.35 mg lipid L?1 day?1) were achieved when grown using CO2 as inorganic carbon source. No significant differences were found between CO2 and flue gas biomass and lipid productivities. While grown using CO2 and flue gas, biomass productivities were 10, 13 and 18 %, and 7, 14 and 19 % higher than NaHCO3, HCl and unregulated pH for T. suecica and Chlorella sp, respectively. Addition of inorganic carbon increased specific growth rate and lipid content but reduced biomass yield and cell weight of T. suecica. Addition of inorganic carbon increased yield but did not change specific growth rate, cell weight or content of the cell weight of Chlorella sp. Both strains showed significantly higher maximum quantum yield (Fv/Fm) when grown under optimum pH.  相似文献   

15.
Reproductive allocation is critically important for population maintenance and usually varies with not only environmental factors but also biotic ones. As a typical rhizome clonal plant in China''s northern grasslands, Leymus chinensis usually dominates the steppe communities and grows in clonal patches. In order to clarify the sexual reproductive allocation of L. chinensis in the process of the growth and expansion, we selected L. chinensis clonal patches of a range of sizes to examine the reproductive allocation and allometric growth of the plants. Moreover, the effects of position of L. chinensis ramets within the patch on their reproductive allocation were also examined. Clonal patch size and position both significantly affected spike biomass, reproductive tiller biomass and SPIKE/TILLER biomass ratio. From the central to the marginal zone, both the spike biomass and reproductive tiller biomass displayed an increasing trend in all the five patch size categories except for reproductive tiller biomass in 15–40m2 category. L. chinensis had significantly larger SPIKE/TILLER biomass ratio in marginal zone than in central zone of clonal patches that are larger than 15 m2 in area. Regression analysis showed that the spike biomass and SPIKE/TILLER biomass ratio were negatively correlated with clonal patch size while patch size showed significantly positive effect on SEED/SPIKE biomass ratio, but the reproductive tiller biomass and SEED/TILLER biomass ratio were not dependent on clonal patch size. The relationships between biomass of spike and reproductive tiller, between mature seed biomass and spike biomass and between mature seed biomass and reproductive tiller biomass were significant allometric for all or some of patch size categories, respectively. The slopes of all these allometric relationships were significantly different from 1. The allometric growth of L. chinensis is patch size-dependent. This finding will be helpful for developing appropriate practices for the management of L. chinensis-dominant grasslands.  相似文献   

16.
采用皆伐法对南岭小坑750m2天然藜蒴栲群落的生物量进行了实测,该群落有43个树种,其中藜蒴栲为优势种,获得了胸径2.0 cm以上的267株树的树干、枝、叶烘干重数据以及实测的胸径(D)、树高(H)数据。揭示了该森林群落地上部分总生物量(AGB)在森林各层次、各树种及乔木层各器官中的分配规律,并建立了该群落的生物量模型。结果表明,南岭小坑流域藜蒴栲群落地上部分总生物量是131.149 t.hm-2,其中乔木层是129.895 t.hm-2,下木层是1.563 t.hm-2,层间植物是0.267 t.hm-2,凋落物层是2.424 t.hm-2。树干、树枝、树叶生物量分别是乔木层地上部分总生物量的85.0%、10.6%和4.4%。优势树种藜蒴栲和小红栲生物量是乔木层地上部分总生物量的46.3%和9.8%,这说明在早期演替的森林群落中生物量主要集中分布在少数的几个优势种。乔木各径阶(DBH<5,5~10,10~15,15~20,20~25,≥25cm)的生物量占乔木层地上部分总生物量的百分比分别是1.0%, 13.1%,52.2%,26.4%,4.6%和2.7%。天然次生藜蒴栲群落以D为自变量的模型是Wtagb=0.116D2.384,R2=0.934,模型估算值比皆伐实测值低5.0%;以D2H为自变量的总生物量模型是Wtagb=184.274(D2H)0.881,R2=0.952,模型估算值比皆伐实测值低6.9%;这说明针对天然藜蒴栲群落,采用以D为自变量的总生物量模型更为实用。  相似文献   

17.
Mass collection of germlings and growth of fouling algae are two main constraints for the seedling production of Sargassum thunbergii. In this study, 65% and 40% of reproductive output (allocation of biomass to sexual reproductive tissue) for farmed and natural populations respectively, were recorded during peak reproduction. In terms of germlings per kilogram wet weight of plants, the farmed population gave a higher yield than the natural population (3.2?×?105 and 1.2?×?105 germlings kg-1, respectively). These results indicate that farmed populations could be used as parental plants for germling collection in seedling production. During the experiment, fouling was controlled by jet washing and high-density seeding. A germling detachment of less than 10% was observed when, after 48?h of attachment, collectors were jet-washed with an intensity of 1?kg cm-2. High-density seeding had adverse effects on length mean, size equality, and occurrence of branches of germlings. However, 30–50 individuals cm-2 are thought to be usable in the seedling production of S. thunbergii because of less density effects. Seedlings of?>?0.5?cm length could be achieved after 1?month of tank culture.  相似文献   

18.
The somatic and gonad productions of the cirolanid isopod Excirolana armata were analyzed by taking monthly samples from December 2003 to November 2005 on Una beach, S?o Paulo state (24°S), southeastern Brazil. Sampling was performed along three fixed transects established from the base of the foredunes to the waterline. Weight-specific growth rate was used to estimate the E. armata somatic production for 2004 and 2005, separately. The gonad production was estimated based on the monthly reproductive potential (mean number of eggs/embryos per female × monthly abundance of ovigerous females with near-release broods) for 2004. The annual somatic production of E. armata population varied from 15.57 to 17.25?g AFDW m?1?year?1 and the somatic production/biomass ratio (P s/B) from 3.55 to 3.14?year?1 for 2004 and 2005, respectively. The P s/B ratios were higher for males (4.02 and 3.19?year?1 for 2004 and 2005) than for females (3.10?year?1 for both years). The annual gonad production (P g?=?1.07?g AFDW m?1?year?1) contributed about 15 and 6% to the total production (P s?+?P g) of females and the population, respectively. The proportion of gonad to somatic production of females (P g/P s) increased with individual size (ca 90% in the 7.5?mm size class), and the annual weight-specific gonad production (P g/B ratio) was estimated to 0.24?year?1. The high P s/B ratios estimated for E. armata derive from the fast growth of individuals and show the importance of this population to the energy flow on Una beach ecosystem. However, the low percentage of juveniles verified in this population and in other studies of populations of the genus Excirolana is discussed as an important source of underestimation of P s/B ratio.  相似文献   

19.
Algae biofuel has the potential to replace fossil fuels. However, cultivation and productivity of target algae need improvement, while controlling undesired organisms that can lower the efficiency of production systems. A central composite design and response surface model were utilized to predict cultivation optima of marine microalga, Nannochloropsis salina, under a suite of environmental parameters. The effects of salinity, pH, and temperature and their interactions were studied on maximum sustainable yield (MSY, a measure for biomass productivity), lipid content of N. salina, and invading organisms. Five different levels of each environmental predictor variable were tested. The environmental factors were kept within ranges that had previously been determined to allow positive N. salina growth (14.5–45.5 PSU; pH 6.3–9.7; 11–29 °C). The models created for this experiment showed that N. salina’s MSY and lipid content are not strongly affected over the broad range of salinity and temperature values. Calculated optima levels were 28 PSU/20 °C for MSY and 14.5 PSU/20 °C for lipid accumulation, but neither value significantly influenced the model. However, pH was the most important factor to influence algae productivity, and pH optimum was estimated around 8. Both MSY and lipid content were strongly reduced when pH deviated from the optimum. Occurrence of invading organisms seemed stochastic, and none of the environmental factors studied significantly influenced abundance. In conclusion, pH should be kept around 8 for maximum productivity of N. salina. Temperature and salinity should be kept around 20 °C and 28 PSU; however, moderate variations are not too much of a concern and might enhance lipid content of N. salina.  相似文献   

20.
Microbial activity is the driving force of the carbon cycle, including the digestion of biomass in the soil, oceans, and oil deposits. This natural diversity of microbial carbon sources poses challenges for humans. Contamination monitoring can be difficult in oil tanks and similar settings. To assess microbial activity in such industrial settings, off‐gas analysis can be employed by considering growth and non‐growth‐associated metabolic activity. In this work, we describe the monitoring of CO2 as a method for measuring microbial activity. We revealed that the CO2 signal corresponds to classical growth curves, exemplified by Pseudomonas fluorescens, Yarrowia lipolytica, and Penicillium chrysogenum. Deviations of the CO2 signal from the growth curves occurred when the yield of biomass on the substrate changed (i.e., the non‐growth‐associated metabolic activities). We monitored CO2 to track the onset of microbial contamination in an oil tank. This experimental setup was applied to determine the susceptibility of heating oil and biodiesel to microbial contamination long before the formation of problematic biofilms. In summary, the measurement of CO2 production by bacteria, yeasts, and molds allowed the permanent monitoring of microbial activity under oil storage conditions without invasive sampling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号