首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This work is concerned with the growth of age-structured populations whose vital rates vary stochastically in time and with the provision of confidence intervals. In this paper a model Yt + 1(ω) = Xt + 1(ω)Yt(ω) is considered, where Yt is the (column) vector of the numbers of individuals in each age class at time t, X is a matrix of vital rates, and ω refers to a particular realization of the process that produces the vital rates. It is assumed that {Xi} is a stationary sequence of random matrices with nonnegative elements and that there is an integer n0 such that any product Xj + n0 ··· Xj + 1Xj has all its elements positive with probability one. Then, under mild additional conditions, strong laws of large numbers and central limit results are obtained for the logarithms of the components of Yt. Large-sample estimators of the parameters in these limit results are derived. From these, confidence intervals on population growth and growth rates can be constructed. Various finite-sample estimators are studied numerically. The estimators are then used to study the growth of the striped bass population breeding in the Potomac River of the eastern United States.  相似文献   

2.
3.
When the number of tumors is small, a significance level for the Cox-Mantel (log-rank) test Z is often computed using a discrete approximation to the permutation distribution. For j = 0,…, J let Nj(t) be the number of animals in group j alive and tumor-free at the start of time t. Make a 2 × (1+J) table for each time t of the number of animals Rj(t) with newly palpated tumor out of the total Nj(t) at risk. There are a total of say K tables, one for each distinct time t with observed death or newly palpated tumor. The usual discrete approximation to the permutation distribution of Z is defined by taking tables to be independent with fixed margins Nj(t) and ΣRj(t) for all t. However, the Nj(t) are random variables for the actual permutation distribution of Z, resulting in dependence among the tables. Calculations for the exact permutation distribution are explained, and examples are given where the exact significance level differs substantially from the usual discrete approximation. The discrepancy arisis primarily because permutations with different Z-scores under the exact distribution can be equal for the discrete approximation, inflating the approximate P-value.  相似文献   

4.
While data-based modeling is possible in various ways, data-based optimization has not been previously described. Here we present such an optimization technique. It is based on dynamic programming principles and uses data directly from exploratory experiments where the influence of the adjustable variables u were tested at various values. Instead of formulating the performance index J as a function of time t within a cultivation process it is formulated as a function of the biomass x. The advantage of this representation is that in most biochemical production processes J(x) only depends of the vector u of the adjustable variables. This given, mathematical programming techniques allow determining the desired optimal paths u opt (x) from the x-derivatives of J(x). The resulting u opt (x) can easily be transformed back to the u(t) profiles that can then be used in an improved fermentation run. The optimization technique can easily be explained graphically. With numerical experiments the feasibility of the method is demonstrated. Then, two optimization runs for recombinant protein formations in E. coli are discussed and experimental validation results are presented.  相似文献   

5.
A population, reproducing wholly by selfing, is assumed to be observed at times . Individuals between x–1 and x units of age at time t are said to be in age class x at that time. The rate of increase in the long run of individuals of type AiAj is denoted by mij+1=mji+1. For each genotype there is also a set of reproductive values, corresponding to all age classes and genotypes of individuals having descendants of that genotype. Then, if the number of individuals of each sort of ancestor is multiplied by its reproductive value and the products are summed, the result is the total value, which is Vij(t) for genotype AiAj. Then Vij(t+1)–Vij(t) is equal to mijVij(t), where mij is the Malthusian parameter for AiAj. Furthermore, if the mean and variance at time t of the mijs, weighted by their corresponding reproductive values, are respectively (t) and m2(t), then m¯(t+1)–m¯(t)=m2(t)/(1+m¯(t)).  相似文献   

6.
This paper considers a class of deterministic models of three interacting populations with a view towards determining when all of the populations persist. In analytical terms persistence means that liminft→∞x(t)> 0 for each population x(t); in geometric terms, that each trajectory of the modeling system of differential equations is eventually bounded away from the coordinate planes. The class of systems considered allows three level food webs, two competing predators feeding on a single prey, or a single predator feeding on two competing prey populations. As a corollary to the last case it is shown that the addition of a predator can lead to persistence of a three population system where, without a predator, the two competing populations on the lower trophic level would have only one survivor. The basic models are of Kolmogorov type, and the results improve several previous theorems on persistence.  相似文献   

7.
The evolution rate v(t) varies among diverse biosystems, but a general theory can be formulated when the dynamics of the biosystem stater x = x(t) = (x1, x2, x m ) T is considered in the m-dimensional space of states. A mathematical approach is proposed for evaluating such processes and describes the processes in terms of particular chaos of the statistical distribution functions f(x). In the case of complex multicomponent systems with a high dimension number m (m ?1) of the phase space of states, we propose using pairwise comparison matrices of samples x(t) when homeostasis is constant and calculating the parameters of quasiattractors. The Glensdorff–Prigogine thermodynamic approach to estimating evolution is inefficient in assessing the third-type systems, while it is applicable and the Prigogine theorem works at the level of molecular systems. Alterations in the state of the human neuromuscular system were found to lead to chaotic changes in the statistical functions f(x) in tremor recording samples, while quasiattractor parameters demonstrate a certain regularity.  相似文献   

8.
Two classes of tests for the hypothesis of bivariate symmetry are studied. For paired exponential survival times (t1j, t2j), the classes of tests are those based on t1j-t2j and those based on log t1j–log t2j. For each class the sign, signed ranks, t and likelihood ratio tests are compared via Pitman's criterion of asymptotic relative efficiency (ARE). For tests based on t1jt2j, it is found that: (1) the efficacy of the paired t depends on the coefficient of variation (CV) of the pair means, (2) the signed rank test has the same ARE to the sign test as for the usual location problem. For tests based on log t1j — log t2j, the ARE comparisons reduce to the well-known results for the one-sample location problem for samples from a logistic density. Hence, the signed rank test is asymptotically efficient. Furthermore, analyses based on log t1j — log t2j are not complicated by the underlying pairing mechanism.  相似文献   

9.
To maintain biodiversity conservation areas, we need to invest in activities, such as monitoring the condition of the ecosystem, preventing illegal exploitation, and removing harmful alien species. These require a constant supply of resources, the level of which is determined by the concern of the society about biodiversity conservation. In this paper, we study the optimal fraction of the resources to invest in activities for enhancing the social concern y(t) by environmental education, museum displays, publications, and media exposure. We search for the strategy that maximizes the time-integral of the quality of the conservation area x(t) with temporal discounting. Analyses based on dynamic programming and Pontryagin’s maximum principle show that the optimal control consists of two phases: (1) in the first phase, the social concern level approaches to the final optimal value y, (2) in the second phase, resources are allocated to both activities, and the social concern level is kept constant y(t)=y. If the social concern starts from a low initial level, the optimal path includes a period in which the quality of the conservation area declines temporarily, because all the resources are invested to enhance the social concern. When the support rate increases with the quality of the conservation area itself x(t) as well as with the level of social concern y(t), both variables may increase simultaneously in the second phase. We discuss the implication of the results to good management of biodiversity conservation areas.  相似文献   

10.
11.
It is shown that if x(t) is the solution of a second order differential equation, with real negative characteristic roots (not necessarily distinct), which exhibits an extremum at t = T, then T|x(T)|/|A| [UNK] 1/e where A is the area under the x(t) curve. This result is compared to a special case previously derived by M. Morales and applications of the theorem to formal kinetic problems are discussed.  相似文献   

12.
Analysis based on the integration of differential inequalities is employed to derive upper and lower bounds on the total populationN(t) = ∫ R θ(x 1,x 2,t) dx 1 dx 2 of a biological species with an area-density distribution function θ=θ(x 1,x 2,t) (≥0) governed by a reaction-diffusion equation of the form ∂θ/∂t =D2θ +fθ −gθ n+1 whereD (>0),n (>0),f andg are constant parameters, θ=0 at all points on the boundary ∂R of an (arbitrary) two-dimensional regionR, and the initial distribution (θ(x 1,x 2, 0) is such thatN(0) is finite. Forg≥0 withR the entire two-dimensional Euclidean space, a lower bound onN(t) is obtained, showing in particular thatN(∞) is bounded below by a finite positive quantity forf≥0 andn>1. An upper bound onN(t) is obtained for arbitrary bounded or unbounded)R withn=1,f andg negative, and ∫ R θ(x 1,x 2, 0)2 dx 1 dx 2 sufficiently small in magnitude, implying that the population goes to extinction with increasing values of the time,N(∞)=0. Forg≥0 andR of finite area, the analysis yields upper bounds onN(t), predicting eventual extinction of the population if eitherf≤0 or if the area ofR is less than a certain grouping of the parameters in cases for whichf is positive. These results are directly applicable to biological species with distributions satisfying the Fisher equation in two spatial dimensions and to species governed by certain specialized population models.  相似文献   

13.
Generalized stable population theory   总被引:1,自引:0,他引:1  
In generalizing stable population theory we give sufficient, then necessary conditions under which a population subject to time dependent vital rates reaches an asymptotic stable exponential equilibrium (as if mortality and fertility were constant). If x 0(t) is the positive solution of the characteristic equation associated with the linear birth process at time t, then rapid convergence of x 0(t) to x 0 and convergence of mortality rates produce a stable exponential equilibrium with asymptotic growth rate x 0–1. Convergence of x 0(t) to x 0 and convergence of mortality rates are necessary. Therefore the two sets of conditions are very close. Various implications of these results are discussed and a conjecture is made in the continuous case.  相似文献   

14.
The ultimate rate of approach to equilibrium in the infinite stepping-stone model is calculated. The analysis is restricted to a single locus in the absence of selection, and every mutant is assumed to be new to the population. Let f(t, x) be the probability that two homologous genes separated by the vector x in generation t are the same allele. It is supposed that f(0, x) = O(x?2?η), η > 0, as x ≡ ¦ x ¦ → ∞. In the absence of mutation, f(t, x) tends to unity at the rate t?12 in one dimension and (ln t)?1 in two dimensions. Thus, the loss of genetic variability in two dimensions is so slow that evolutionary forces not considered in this model would supervene long before a two-dimensional natural population became completely homogeneous. If the mutation rate, u, is not zero f(t, x) asymptotically approaches equilibrium at the rate (1 ? u)2tt?32 in one dimension and (1 ? u)2tt?1(lnt)?2 in two dimensions. Integral formulas are presented for the spatial dependence of the deviation of f(t, x) from its stationary value as t → ∞, and for large separations this dependence is shown to be (const + x) in one dimension and (const + ln x) in two dimensions. All the results are the same for the Malécot model of a continuously distributed population provided the number of individuals per colony is replaced by the population density. The relatively slow algebraic and logarithmic rates of convergence for the infinite habitat contrast sharply with the exponential one for a finite habitat.  相似文献   

15.
It is widely accepted that β-lactam antimicrobials cause cell death through a mechanism that interferes with cell wall synthesis. Later studies have also revealed that β-lactams modify the autolysis function (the natural process of self-exfoliation of the cell wall) of cells. The dynamic equilibrium between growth and autolysis is perturbed by the presence of the antimicrobial. Studies with Staphylococcus aureus to determine the minimum inhibitory concentration (MIC) have revealed complex responses to methicillin exposure. The organism exhibits four qualitatively different responses: homogeneous sensitivity, homogeneous resistance, heterogeneous resistance and the so-called ‘Eagle-effect’. A mathematical model is presented that links antimicrobial action on the molecular level with the overall response of the cell population to antimicrobial exposure. The cell population is modeled as a probability density function F(x,t) that depends on cell wall thickness x and time t. The function F(x,t) is the solution to a Fokker-Planck equation. The fixed point solutions are perturbed by the antimicrobial load and the advection of F(x,t) depends on the rates of cell wall synthesis, autolysis and the antimicrobial concentration. Solutions of the Fokker-Planck model are presented for all four qualitative responses of S. aureus to methicillin exposure.  相似文献   

16.
17.
Yokoyama S 《Genetics》1979,93(1):245-262
The expected rate of allelism, E[I(x)], of lethal genes between two colonies with distance x in a structured population is studied by using one- and two-dimensional stepping-stone models. It is shown that E[I(x)] depends on the magnitude of selection in heterozygous condition (h), the rate of migration among adjacent colonies (m), the number of loci which produce lethal mutations (n) and the effective population size of each colony (N).——E[I(x)] always decreases with distance x. The rate of decrease is affected strongly by the magnitude of m. The rate of decrease is faster when m is small. E[I(x)] also decreases with increasing N and n. The effect of h on E[I(x)] is somewhat complicated. However, E[I(0)] is always smaller when h is small than when it is large.——For large x, the following approximate formulae may be obtained: (see PDF) where q and Var (q) are the mean and the variance of gene frequencies in each colony, t is approximated as t=h, (see PDF), -h for the partially recessive, completely recessive, and overdominant lethals, respectively, and C0 is a function of m and t. It is clear that E[I(x)] declines exponentially with x in a one-dimensional habitat. The decrease E[I(x)] is faster in a two-dimensional habitat than in a one-dimensional habitat. The present result is applied to some of the existing data and the estimation of population parameters is also discussed.  相似文献   

18.
19.
Cross-Correlation Functions for a Neuronal Model   总被引:5,自引:1,他引:4       下载免费PDF全文
Cross-correlation functions, RXY(t,τ), are obtained for a neuron model which is characterized by constant threshold θ, by resetting to resting level after an output, and by membrane potential U(t) which results from linear summation of excitatory postsynaptic potentials h(t). The results show that: (1) Near time lag τ = 0, RXY(t,τ) = fU [θ-h(τ), t + τ] {h′(τ) + EU [u′(t + τ)]} for positive values of this quantity, where fU(u,t) is the probability density function of U(t) and EU [u′(t + τ)] is the mean value function of U′(t + τ). (2) Minima may appear in RXY(t,τ) for a neuron subjected only to excitation. (3) For large τ, RXY(t,τ) is given approximately by the convolution of the input autocorrelation function with the functional of point (1). (4) RXY(t,τ) is a biased estimator of the shape of h(t), generally over-estimating both its time to peak and its rise time.  相似文献   

20.
S. Mitra 《Genetics》1976,82(3):543-545
The inequality relationship between the expected values of ( jx-g)2 and (ĝ-g) 2, where jx is a biased and ĝ is an unbiased estimate of population homozygosity g, were examined earlier by Nei and Roychoudhury (1974) and later by Mitra (1975). The improvement in the inequality still left much to be desired. In this paper a lower boundary of g has been obtained which may be regarded as ultimate for ensuring a smaller expected value of ( jx-g)2 than the corresponding value of ( ĝ-g)2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号