首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A mathematical model of insulin sensitive glucose transporter regulation is developed. Model structure is based on experimental evidence from adipocytes and myocytes. Model parameters correspond with known cellular processes. As an example, computer simulation results are compared with data from rat adipocytes. Cellular processes explicitly represented in the model include state-dependent glucose transporter synthesis and degradation rates, insulin sensitive glucose transporter translocation rates, and a glucose transporter endocytosis rate. Most of these processes are represented as first-order events. Using more complex representations of the model structure (e.g. higher order rate constants or saturable pathways) or alternative structures did not result in qualitatively better results. The model is able to accurately simulate the insulin sensitive, insulin concentration dependent, reversible translocation of glucose transporters observed in normal adipocytes. The model is also able to accurately simulate the changes in regulation of glucose transporter translocation observed with increases in cell surface area. Finally, the model can simulate pathogenic states which induce impairment of glucose transporter regulation (e.g. altered glucose transporter regulation in adipocytes from rats on high fat diets, rats with streptozotocin induced diabetes, and fasted rats). Since the structure of our model is sufficient to explain glucose transporter regulation in both normal and pathological states, it may aid in understanding the post-receptor components of insulin resistance (decreased sensitivity or responsiveness to insulin) seen in pathological states such as obesity and diabetes mellitus.  相似文献   

2.
An earlier graph theoretical model of metabolic and gene-expression networks has been modified and extended to include the effect of electrical potentials on binding constants, representation of uncatalyzed processes, and treatment of parallel reactions catalyzed by a single enzyme. Formal operations on the graph, which are facilitated by a set of standardized guidelines, identify the feedback signals in the network and rank them according to their influence. The technique was applied to a model of glycolysis in ascites tumor cells in the absence and presence of 12.5 mM exogenous glucose. Feedback regulation was widely distributed and mostly due to binding of adenine nucleotide cofactors to the enzymes of the network. The major changes in feedback regulation on adding glucose is the relief of inhibition of hexokinase and phosphofructokinase and the activation of pyruvate kinase. We conclude that regulation of tumor cell glycolysis is not restricted to hexokinase or to (Na+,K+)-ATPase as was previously suggested by others.  相似文献   

3.
Carbohydrates are dietary nutrients that have an influence on cells physiology, cell reproductive capacity and, consequently, the lifespan of organisms. They are used in cellular processes after conversion to glucose, which is the primary source of energy and carbon skeleton for biosynthetic processes. Studies of the influence of glucose on cellular parameters and lifespan of organisms are primarily concerned with the effect of low glucose concentration defined as calorie restriction conditions. However, the effect of high glucose concentration on cell physiology is also very important. Thus, a comparative analysis of the effects of low and high glucose concentration conditions on cell efficiency was proposed with regard to reproductive capacity and total lifespan of the cell. Glucose concentration determines the type of metabolism and biosynthetic capabilities, which in turn, through the regulation on the cell size, may affect the reproductive capacity of cells. This study was conducted on yeast cells of wild-type and mutant strains Δgpa2 and Δgpr1 with glucose signalling pathway impairment. Such an experimental model enabled testing both the role of glucose concentration in the regulation of metabolic changes and the extent to which these changes depend on the extracellular or intracellular glucose concentrations. It has been shown here that calorie/glucose excess connected with changes in cell metabolic fluxes increases biosynthetic capabilities of yeast cells. This leads to an increase in cell dry weight accompanied by the increase in cell size and a simultaneous decrease in the reproductive potential and the overall length of cell life.  相似文献   

4.
c-myc gene expression in human cells is controlled by glucose   总被引:1,自引:0,他引:1  
The c-myc oncogene is implicated in normal growth and differentiation processes. Human cell lines IM9 and HepG2 stably cultured at "low" glucose concentrations (5.5 mM) show c-myc mRNA levels 3-4 times higher than cells cultured at "high" glucose concentrations (25 nM). D-fructose (a metabolizable exose) substitutes for D-glucose in reducing c-myc expression while 3-ortho-methylglucose (a non metabolizable exose) is uneffective. c-myc expression is up-regulated (by PMA) or down-regulated (by dexamethasone and long-term exposure to FCS) in human cells cultured at "low" glucose but not in cells cultured at "high" glucose. We previously demonstrated that insulin receptor gene expression in human cell lines in enhanced by glucose. Therefore, glucose controls in an opposite way the expression of two genes important in the regulation of eukaryotic cell growth and differentiation.  相似文献   

5.
In metabolic diseases such as Type 2 Diabetes and Non-Alcoholic Fatty Liver Disease, the systemic regulation of postprandial metabolite concentrations is disturbed. To understand this dysregulation, a quantitative and temporal understanding of systemic postprandial metabolite handling is needed. Of particular interest is the intertwined regulation of glucose and non-esterified fatty acids (NEFA), due to the association between disturbed NEFA metabolism and insulin resistance. However, postprandial glucose metabolism is characterized by a dynamic interplay of simultaneously responding regulatory mechanisms, which have proven difficult to measure directly. Therefore, we propose a mathematical modelling approach to untangle the systemic interplay between glucose and NEFA in the postprandial period. The developed model integrates data of both the perturbation of glucose metabolism by NEFA as measured under clamp conditions, and postprandial time-series of glucose, insulin, and NEFA. The model can describe independent data not used for fitting, and perturbations of NEFA metabolism result in an increased insulin, but not glucose, response, demonstrating that glucose homeostasis is maintained. Finally, the model is used to show that NEFA may mediate up to 30–45% of the postprandial increase in insulin-dependent glucose uptake at two hours after a glucose meal. In conclusion, the presented model can quantify the systemic interactions of glucose and NEFA in the postprandial state, and may therefore provide a new method to evaluate the disturbance of this interplay in metabolic disease.  相似文献   

6.
A two-stage deterministic model of the growth of Saccharomyces cerevisiae is presented. The cell cycle of this organism was used to suggest the basic model structure. The model represents the preparatory processes of substrate uptake and conversion separately from replication and division. The regulation of the fraction of the culture devoted to each of these broad areas of metabolism, and the overall growth rate, is related to the nature and availability of the energy substrate. The simulation of respiration and glycolysis is achieved by including two alternative energy producing pathways. The regulation of these pathways is described in terms of the postulated primary regulation of the proportion of the culture required for substrate uptake and conversion, and the overall kinetic constants for each pathway. This regulation is dictated primarily by the growth rate rather than the nature or concentration of the energy substrate. The model successfully describes both batch and continuous growth of S. cerevisiae under conditons of glucose limitation and oxygen excess. A preliminary assessment indicates that adjustment of the relevant parameters will allow the model to describe the growth of S. cerevisiae on other sugars and under oxygen limitation. Similarly the model could be expected to describe the growth characteristics of other yeast species.  相似文献   

7.
Insulin is an important regulator of hepatic carbohydrate, lipid, and protein metabolism, and the regulation of these processes by insulin is disturbed under conditions of insulin resistance and type 2 diabetes. Despite these alterations, the impact of insulin resistance on insulin signalling in the liver is not well defined. Variations in time and dose of insulin stimulation as well as plasma glucose levels may underlie this. The present study aimed at determining the dynamics of activation of hepatic insulin signalling in vivo at insulin concentrations resembling those achieved after a meal, and addressing the effects of high-fat feeding. An unexpected finding of this study was the biphasic activation pattern of the IRS-PI3K-PKB/Akt pathway. Our findings indicate that the first burst of activation contributes to regulation of glucose metabolism. The physiological function of the second peak is still unknown, but may involve regulation of protein synthesis. Finally, high-fat feeding caused hepatic insulin resistance, as illustrated by a reduced suppression of hepatic glucose production. A sustained increased phosphorylation of the serine/threonine kinases p70S6kinase and Jun N-terminal kinase in the absence of insulin may underlie the abrogated phosphorylation of the IRS proteins and their downstream targets.  相似文献   

8.
The last decade witnessed a dramatic increase in knowledge concerning regulation of body weight and obesity. According to recent concepts constancy of body weight is a side product of regulatory events which ensure constant glucose fluxes to the brain. Within these control systems glucocorticoids and melanocortins play a fundamental role at several sites. The melanocortin neurons in the arcuate nucleus are important mediators of the feedback effects of leptin and insulin. Glucocorticoid and mineralocorticoid receptors in hippocampal neurons are crucial as they define the balance between glucose allocation processes and food intake. Thereby, the hippocampal structures determine the setpoint for bodyweight regulation. Novel approaches to treatment of obesity must aim at manipulating these brain structures.  相似文献   

9.
In Saccharomyces cerevisiae cells exhibiting high-affinity glucose transport, the glucose consumption rate at extracellular concentrations above 10 mM was only half of the zero trans-influx rate. To determine if this regulation of glucose transport might be a consequence of intracellular free glucose we developed a new method to measure intracellular glucose concentrations in cells metabolizing glucose, which compares glucose stereoisomers to correct for adhering glucose. The intracellular glucose concentration was 1.5 mM, much higher than in most earlier reports. We show that for the simplest model of a glucose carrier, this concentration is sufficient to reduce the glucose influx by 50%. We conclude that intracellular glucose is the most likely candidate for the observed regulation of glucose import and hence glycolysis. We discuss the possibility that intracellular glucose functions as a primary signal molecule in these cells.  相似文献   

10.
Genome-wide association (GWA) studies have described a large number of new candidate genes that contribute to of Type 2 Diabetes (T2D). In some cases, small clusters of genes are implicated, rather than a single gene, and in all cases, the genetic contribution is not defined through the effects on a specific organ, such as the pancreas or liver. There is a significant need to develop and use human cell-based models to examine the effects these genes may have on glucose regulation. We describe the development of a primary human hepatocyte model that adjusts glucose disposition according to hormonal signals. This model was used to determine whether candidate genes identified in GWA studies regulate hepatic glucose disposition through siRNAs corresponding to the list of identified genes. We find that several genes affect the storage of glucose as glycogen (glycolytic response) and/or affect the utilization of pyruvate, the critical step in gluconeogenesis. Of the genes that affect both of these processes, CAMK1D, TSPAN8 and KIF11 affect the localization of a mediator of both gluconeogenesis and glycolysis regulation, CRTC2, to the nucleus in response to glucagon. In addition, the gene CDKAL1 was observed to affect glycogen storage, and molecular experiments using mutant forms of CDK5, a putative target of CDKAL1, in HepG2 cells show that this is mediated by coordinate regulation of CDK5 and PKA on MEK, which ultimately regulates the phosphorylation of ribosomal protein S6, a critical step in the insulin signaling pathway.  相似文献   

11.
Hepatic glucose-6-phosphatase (G6Pase) plays an important role in glucose metabolism because it catalyzes the release of glucose to the circulatory system in the processes of glycogenolysis and gluconeogenesis. The present study was initiated to analyze the regulation of hepatic G6Pase expression by dietary carbohydrates in rainbow trout. The first step in our study was the identification of a partial G6Pase cDNA in rainbow trout that was highly homologous to that of mammals. Hepatic G6Pase activities and mRNA levels were measured in trout fed one of the experimental diets, with or without carbohydrates. We found no significant effect of intake of dietary carbohydrates on G6Pase expression (mRNA and activity) 6 hours and 24 hours after feeding. These results suggest that there is no control of G6Pase synthesis by dietary carbohydrates in rainbow trout and that the lack of regulation of gluconeogenesis by dietary carbohydrates could at least partially explain the postprandial hyperglycemia and the low dietary glucose utilization observed in this species.  相似文献   

12.
Glucose metabolism in fish: a review   总被引:3,自引:0,他引:3  
Teleost fishes represent a highly diverse group consisting of more than 20,000 species living across all aquatic environments. This group has significant economical, societal and environmental impacts, yet research efforts have concentrated primarily on salmonid and cyprinid species. This review examines carbohydrate/glucose metabolism and its regulation in these model species including the role of hormones and diet. Over the past decade, molecular tools have been used to address some of the downstream components of these processes and these are incorporated to better understand the roles played by carbohydrates and their regulatory paths. Glucose metabolism remains a contentious area as many fish species are traditionally considered glucose intolerant and, therefore, one might expect that the use and storage of glucose would be considered of minor importance. However, the actual picture is not so clear since the apparent intolerance of fish to carbohydrates is not evident in herbivorous and omnivorous species and even in carnivorous species, glucose is important for specific tissues and/or for specific activities. Thus, our aim is to up-date carbohydrate metabolism in fish, placing it to the context of these new experimental tools and its relationship to dietary intake. Finally, we suggest that new research directions ultimately will lead to a better understanding of these processes.  相似文献   

13.
As substantial progress has been achieved in modern poultry production with large-scale and intensive feeding and farming in recent years, stress becomes a vital factor affecting chicken growth, development, and production yield, especially the quality and quantity of skeletal muscle mass. The review was aimed to outline and understand the stress-related genetic regulatory mechanism, which significantly affects glucose metabolism regulation in chicken skeletal muscle tissues. Progress in current studies was summarized relevant to the molecular mechanism and regulatory pathways of glucose metabolism regulation under stress in chicken skeletal muscle tissues. Particularly, the elucidation of those concerned pathways promoted by insulin and insulin receptors would give key clues to the understanding of biological processes of stress response and glucose metabolism regulation under stress, as well as their later effects on chicken muscle development.  相似文献   

14.
In this review, we describe the phosphotransferase system (PTS) of Corynebacterium glutamicum and discuss genes for putative global carbon regulation associated with the PTS. C. glutamicum ATCC 13032 has PTS genes encoding the general phosphotransferases enzyme I, HPr and four enzyme II permeases, specific for glucose, fructose, sucrose and one yet unknown substrate. C. gluamicum has a peculiar sugar transport system involving fructose efflux after hydrolyzing sucrose transported via sucrose EII. Also, in addition to their primary PTS, fructose and glucose are each transported by a second transporter, glucose EII and a non-PTS permease, respectively. Interestingly, C. glutamicum does not show any preference for glucose, and thus co-metabolizes glucose with other sugars or organic acids. Studies on PTS-mediated sugar uptake and its related regulation in C. glutamicum are important because the production yield of lysine and cell growth are dependent on the PTS sugars used as substrates for fermentation. In many bacteria, the PTS is also involved in several regulatory processes. However, the detailed molecular mechanism of global carbon regulation associated with the PTS in this organism has not yet been revealed.  相似文献   

15.
16.
Glycemia is a physiological parameter tightly regulated for an optimal energetic supply to the organism, in spite of variable tissular glucose needs. Physiopathological alteration of glycemic regulation leads to dysfunctions of many cell types. For example, diabetes considerably increases morbidity and mortality linked to cardiovascular pathologies and constitute nowadays a serious public health problem. Many in vivo and in vitro studies have investigated the impact of extracellular glucose concentration on smooth muscle and endothelial cells. Glycemia regulates expression and activity of proteins implicated in various processes, such as vasodilation (eNOS), cellular adherence (ICAM-1, VCAM-1), glucose transport (GLUT-1) or free radical generation. Nuclear receptors of the PPAR (peroxisome proliferator-activated receptors) family which are implicated in glucose and lipid metabolism control, seem to have direct vascular actions, in the regulation of cellular functions by extracellular glucose, reinforcing their status of pharmacological targets for preservation and improvement of vascular function. More general processes, such as cellular proliferation and cell death, are also influenced by glucose concentration. Concerning the contractile function, hypoglycemia and hyperglycemia modulate vascular reactivity while acting on the vasoactive substances level and the cellular response to these molecules. In particular they act on variation of ionic channels (K+, Ca2+) activity or by interfering with some signaling pathways (NO). For example, the age-dependant vasodilation and endothelial calcium influx induced by elastin peptide are modulated by extracellular glucose levels. In conclusion, abnormal chronic variations of circulating glucose levels seem to be directly responsible for endothelial and smooth muscle cell dysfunction in the pathogenesis of cardiovascular abnormalities of patients presenting glycemia dysregulations.  相似文献   

17.
Although the role of cholecystokinin (CCK) on fish appetite regulation has been widely studied, its involvement in the regulation of glucose metabolism had been little explored to date. In the present study we have carried out different experimental approaches to study CCK effects in rainbow trout (a so-called 'glucose intolerant' fish species) glucose homeostasis. We have found that for the first time in a vertebrate species, systemic or central CCK administration causes hyperglycemia, which is at least in part related to the presence of an ancestral gut-brain axis in which CCK is involved. By using capsaicin we have found that part of the action of CCK on glucose homeostasis is mediated by vagal and splanchnic afferents. Changes in hepatic metabolism after systemic CCK administration suggest that the effects are not directly taking place on the liver, but probably in other tissues, while after the central CCK administration, the glycogenolytic response observed in liver could be mediated by the activation of the sympathetic system. In hypothalamus and hindbrain changes elicited by CCK-8 treatment are likely related to the glucosensor response to the increased glycemia and/or vagal/splanchnic afferences whereas in hindbrain a possible action through specific CCK-1 receptors cannot be excluded. All these processes result in changes in metabolic parameters related with glucose homeostasis control. Further studies are needed to fully understand the role of this peptide on glucose homeostasis control in fish.  相似文献   

18.
The early steps of glucose signalling in yeast   总被引:1,自引:0,他引:1  
  相似文献   

19.
The inability to coordinate cellular metabolic processes with the cellular and organismal nutrient environment leads to a variety of disorders, including diabetes and obesity. Nutrient-sensing protein kinases, such as AMPK and mTOR, play a pivotal role in metabolic regulation and are promising therapeutic targets for the treatment of disease. In this Extra View, we describe another member of the nutrient-sensing protein kinase group, PAS kinase, which plays a role in the regulation of glucose utilization in both mammals and yeast. PAS kinase deficient mice are resistant to high fat diet-induced weight gain, insulin resistance, and hepatic triglyceride hyperaccumulation, suggesting a role for PAS kinase in the regulation of glucose and lipid metabolism in mammals. Likewise, PAS kinase deficient yeast display altered glucose partitioning, favoring glycogen biosynthesis at the expense of cell wall biosynthesis. As a result, PAS kinase deficient yeast are sensitive to cell wall perturbing agents. This partitioning of glucose in response to PAS kinase activation is due to phosphorylation of Ugp1, the enzyme primarily responsible for UDP-glucose production. The two yeast PAS kinase homologs, Psk1 and Psk2, are activated by two stimuli, cell integrity stress and nonfermentative carbon sources. We review what is known about yeast PAS kinase and describe a genetic screen that may help elucidate pathways involved in PAS kinase activation and function.  相似文献   

20.
A BDI-based continuous-time modelling approach for intracellular dynamics is presented. It is shown how temporalised BDI-models make it possible to model intracellular biochemical processes as decision processes. By abstracting from some of the details of the biochemical pathways, the model achieves understanding in nearly intuitive terms, without losing veracity: classical intentional state properties such as beliefs, desires and intentions are founded in reality through precise biochemical relations. In an extensive example, the complex regulation of Escherichia coli vis-à-vis lactose, glucose and oxygen is simulated as a discrete-state, continuous-time temporal decision manager. Thus a bridge is introduced between two different scientific areas: the area of BDI-modelling and the area of intracellular dynamics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号