首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Native Bacillus subtilis glutamine phosphoribosylpyrophosphate amidotransferase contains a [4Fe-4S] cluster in the diamagnetic (+2) state. The cluster is essential for catalytic function, even though amidotransferase does not catalyze a redox reaction. The ability of the Fe-S cluster to undergo oxidation and reduction reactions and the consequences of changes in the redox state of the cluster for enzyme activity were studied. Treatment of the enzyme with oxidants resulted in either no reaction or complete dissolution of the Fe-S cluster and loss of activity. A stable +3 oxidation state was not detected. A small amount of paramagnetic species, probably an oxidized 3Fe cluster, was formed transiently during oxidation. The native cluster was poorly reduced by dithionite, but it could be readily reduced to the +1 state by photoreduction with 5-deazaflavin and oxalate. The reduced enzyme did not display an EPR spectrum typical of [4Fe-4S] ferredoxins in the +1 state, unless it was prepared under denaturing conditions. M?ssbauer spectroscopy of reduced 57Fe-enriched amidotransferase confirmed that the cluster was in the +1 state, but the magnetic properties of the reduced cluster observed at 4.2 K indicated that it is characterized by a ground state spin S greater than or equal to 3/2. The midpoint potential of the +1/+2 couple was too low to measure accurately by conventional techniques, but it was below -600 mV, which is 100 mV more negative than reported for [4Fe-4S] clusters in bacterial ferredoxins. Fully reduced amidotransferase had about 40% of the activity of the native enzyme in glutamine-dependent phosphoribosylamine formation. The fact that both the +1 and +2 forms of the enzyme are active indicates that the cluster does not function as a site of reversible electron transfer during catalysis.  相似文献   

2.
The phenomenon of kinetic advantage of nucleoside formation from cyclic AMP, via the intermediate 5'AMP has been observed in the microsomal fraction after subcellular fractionation of beef adrenal cortex tissue. It was explained by the existence of a multienzyme sequence previously evidenced [H. Wombacher, 1982, Arch. Biochem. Biophys. 201, 8-19]. In the present study a similar enzyme cluster was prepared from the soluble fraction of the cell homogenate after two steps of gel-chromatography. An elusive channeling of cyclic AMP degradation could be disclosed. The time course reaction of cyclic AMP degradation to the nucleosides, adenosine and inosine, via 5'AMP as an intermediate compared with the time course reaction of 5'AMP hydrolysis to the nucleosides, adenosine and inosine, under otherwise identical conditions showed that the nucleoside formation from cyclic AMP was faster after the lag phase of the reaction sequence. This kinetic advantage effect, however, was much less pronounced than to be seen in the membrane-bound multienzyme sequence. For an analysis of the influence of the environmental conditions on the activity of both enzyme cluster forms they were treated by chaotropic agents, detergents and ultrasonic power. Common to all results was: the activity of the membrane-bound enzyme cluster is highly stable in comparison with the soluble form. On basis of these and previous findings a hypothesis is suggested explaining the similarities between the membrane-bound enzyme cluster and the soluble form. Thus, the soluble enzyme cluster form is considered a partially preserved form of the membrane-bound form arisen from the cell homogenization process and/or vice versa the soluble form might present a pro-form of the membrane-bound enzyme cluster, and the most stable and active assembly has to be yet first membrane-triggered.  相似文献   

3.
4.
APS reductase catalyzes the first committed step of reductive sulfate assimilation in pathogenic bacteria, including Mycobacterium tuberculosis, and is a promising target for drug development. We report the 2.7 A resolution crystal structure of Pseudomonas aeruginosa APS reductase in the thiosulfonate intermediate form of the catalytic cycle and with substrate bound. The structure, high-resolution Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometry, and quantitative kinetic analysis, establish that the two chemically discrete steps of the overall reaction take place at distinct sites on the enzyme, mediated via conformational flexibility of the C-terminal 18 residues. The results address the mechanism by which sulfonucleotide reductases protect the covalent but labile enzyme-intermediate before release of sulfite by the protein cofactor thioredoxin. P. aeruginosa APS reductase contains an [4Fe-4S] cluster that is essential for catalysis. The structure reveals an unusual mode of cluster coordination by tandem cysteine residues and suggests how this arrangement might facilitate conformational change and cluster interaction with the substrate. Assimilatory 3'-phosphoadenosine 5'-phosphosulfate (PAPS) reductases are evolutionarily related, homologous enzymes that catalyze the same overall reaction, but do so in the absence of an [Fe-S] cluster. The APS reductase structure reveals adaptive use of a phosphate-binding loop for recognition of the APS O3' hydroxyl group, or the PAPS 3'-phosphate group.  相似文献   

5.
Biotin synthase, a member of the "radical SAM" family, catalyzes the final step of the biotin biosynthetic pathway, namely, the insertion of a sulfur atom into dethiobiotin. The as-isolated enzyme contains a [2Fe-2S](2+) cluster, but the active enzyme requires an additional [4Fe-4S](2+) cluster, which is formed in the presence of Fe(NH(4))(2)(SO(4))(2) and Na(2)S in the in vitro assay. The role of the [4Fe-4S](2+) cluster is to mediate the electron transfer to SAM, while the [2Fe-2S](2+) cluster is involved in the sulfur insertion step. To investigate the selenium version of the reaction, we have depleted the enzyme of its iron and sulfur and reconstituted the resulting apoprotein with FeCl(3) and Na(2)Se to yield a [2Fe-2Se](2+) cluster. This enzyme was assayed in vitro with Na(2)Se in place of Na(2)S to enable the formation of a [4Fe-4Se](2+) cluster. Selenobiotin was produced, but the activity was lower than that of the as-isolated [2Fe-2S](2+) enzyme in the presence of Na(2)S. The [2Fe-2Se](2+) enzyme was additionally assayed with Na(2)S, to reconstitute a [4Fe-4S](2+) cluster, in case the latter was more efficient than a [4Fe-4Se](2+) cluster for the electron transfer. Indeed, the activity was improved, but in that case, a mixture of biotin and selenobiotin was produced. This was unexpected if one considers the [2Fe-2S](2+) center as the sulfur source (either as the ultimate donor or via another intermediate), unless some exchange of the chalcogenide has taken place in the cluster. This latter point was seen in the resonance Raman spectrum of the reacted enzyme which clearly indicated the presence of both the [2Fe-2Se](2+) and [2Fe-2S](2+) clusters. No exchange was observed in the absence of reaction. These observations bring supplementary proof that the [2Fe-2S](2+) cluster is implicated in the sulfur insertion step.  相似文献   

6.
The gene cluster in Thermococcus litoralis encoding a multicomponent and binding protein-dependent ABC transporter for trehalose and maltose contains an open reading frame of unknown function. We cloned this gene (now called treT), expressed it in Escherichia coli, purified the encoded protein, and identified it as an enzyme forming trehalose and ADP from ADP-glucose and glucose. The enzyme can also use UDP- and GDP-glucose but with less efficiency. The reaction is reversible, and ADP-glucose plus glucose can also be formed from trehalose and ADP. The rate of reaction and the equilibrium favor the formation of trehalose. At 90 degrees C, the optimal temperature for the enzymatic reaction, the half-maximal concentration of ADP-glucose at saturating glucose concentrations is 1.14 mm and the V(max) is 160 units/mg protein. In the reverse reaction, the half-maximal concentration of trehalose at saturating ADP concentrations is 11.5 mm and the V(max) was estimated to be 17 units/mg protein. Under non-denaturating in vitro conditions the enzyme behaves as a dimer of identical subunits of 48 kDa. As the transporter encoded in the same gene cluster, TreT is induced by trehalose and maltose in the growth medium.  相似文献   

7.
Pyruvate formate-lyase-activating enzyme (PFL-AE) from Escherichia coli (E. coli) catalyzes the stereospecific abstraction of a hydrogen atom from Gly734 of pyruvate formate-lyase (PFL) in a reaction that is strictly dependent on the cosubstrate S-adenosyl-l-methionine (AdoMet). Although PFL-AE is an iron-dependent enzyme, isolation of the enzyme with its metal center intact has proven difficult due to the oxygen sensitivity and lability of the metal center. We report here the first isolation of PFL-AE under nondenaturing, strictly anaerobic conditions. Iron and sulfide analysis as well as UV-visible, EPR, and resonance Raman data support the presence of a [3Fe-4S](+) cluster in the purified enzyme. The isolated native enzyme, but not apo-enzyme, exhibits a high specific activity (31 U/mg) in the absence of added iron, indicating that the native cluster is necessary and sufficient for enzymatic activity.  相似文献   

8.
Ulva pertusa Kjellm alkaline phosphatase (EC 3.3.3.1) is a metalloenzyme, the active site of which contains a tight cluster of two zinc ions and one magnesium ion. The kinetic theory described by Tsou of the substrate reaction during irreversible inhibition of enzyme activity has been employed to study the kinetics of the course of inactivation of the enzyme by EDTA. The kinetics of the substrate reaction at different concentrations of the substrate p-nitrophenyl phosphate (PNPP) and inactivator EDTA indicated a complexing mechanism for inactivation by, and substrate competition with, EDTA at the active site. The inactivation kinetics are single phasic, showing that the initial formation of an enzyme-EDTA complex is a relative rapid reaction, following by a slow inactivation step that probably involves a conformational change of the enzyme. The presence of Zn2+ apparently stabilizes an active-site conformation required for enzyme activity.  相似文献   

9.
Green crab (Scylla Serrata) alkaline phosphatase (EC 3.1.3.1.) is a metalloenzyme, the each active site in which contains a tight cluster of two zinc ions and one magnesium ion. The kinetic theory of the substrate reaction during irreversible inhibition of enzyme activity previously described by Tsou has been applied to a study on the kinetics of the course of inactivation of the enzyme by ethylenediaminetetraacetic acid disodium (EDTA). The kinetics of the substrate reaction with different concentrations of the substrate p-nitrophenyl phosphate (PNPP) and inactivator EDTA suggested a complexing mechanism for inactivation by, and substrate competition with, EDTA at the active site. The inactivation kinetics are single phasic, showing the initial formation of an enzyme-EDTA complex is a relatively rapid reaction, followed a slow inactivation step that probably involves a conformational change of the enzyme. Zinc ions are finally removed from the enzyme. The presence of metal ions apparently stabilizes an active-site conformation required for enzyme activity.  相似文献   

10.
Escherichia coli 2,4-dienoyl-CoA reductase is an iron-sulfur flavoenzyme required for the metabolism of unsaturated fatty acids with double bonds at even carbon positions. The enzyme contains FMN, FAD, and a 4Fe-4S cluster and exhibits sequence homology to another iron-sulfur flavoprotein, trimethylamine dehydrogenase. It also requires NADPH as an electron source, resulting in reduction of the C4-C5 double bond of the acyl chain of the CoA thioester substrate. The structure presented here of a ternary complex of E. coli 2,4-dienoyl-CoA reductase with NADP+ and a fatty acyl-CoA substrate reveals a possible mechanism for substrate reduction and provides details of a plausible electron transfer mechanism involving both flavins and the iron-sulfur cluster. The reaction is initiated by hydride transfer from NADPH to FAD, which in turn transfers electrons, one at a time, to FMN via the 4Fe-4S cluster. In the final stages of the reaction, the fully reduced FMN provides a hydride ion to the C5 atom of substrate, and Tyr-166 and His-252 are proposed to form a catalytic dyad that protonates the C4 atom of the substrate and complete the reaction. Inspection of the substrate binding pocket explains the relative promiscuity of the enzyme, catalyzing reduction of both 2-trans,4-cis- and 2-trans,4-trans-dienoyl-CoA thioesters.  相似文献   

11.
Bacterial spores possess an enormous resistance to ultraviolet (UV) radiation. This is largely due to a unique DNA repair enzyme, Spore Photoproduct Lyase (SP lyase) that repairs a specific UV-induced DNA lesion, the spore photoproduct (SP), through an unprecedented radical-based mechanism. Unlike DNA photolyases, SP lyase belongs to the emerging superfamily of radical S-adenosyl-l-methionine (SAM) enzymes and uses a [4Fe–4S]1+ cluster and SAM to initiate the repair reaction. We report here the first crystal structure of this enigmatic enzyme in complex with its [4Fe–4S] cluster and its SAM cofactor, in the absence and presence of a DNA lesion, the dinucleoside SP. The high resolution structures provide fundamental insights into the active site, the DNA lesion recognition and binding which involve a β-hairpin structure. We show that SAM and a conserved cysteine residue are perfectly positioned in the active site for hydrogen atom abstraction from the dihydrothymine residue of the lesion and donation to the α-thyminyl radical moiety, respectively. Based on structural and biochemical characterizations of mutant proteins, we substantiate the role of this cysteine in the enzymatic mechanism. Our structure reveals how SP lyase combines specific features of radical SAM and DNA repair enzymes to enable a complex radical-based repair reaction to take place.  相似文献   

12.
Ribonucleotide reductase (class I) contains two components: protein R1 binds the substrate, and protein R2 normally has a diferric site and a tyrosyl free radical needed for catalysis. In Chlamydia trachomatis RNR, protein R2 functions without radical. Enzyme activity studies show that in addition to a diiron cluster, a mixed manganese-iron cluster provides the oxidation equivalent needed to initiate catalysis. An EPR signal was observed from an antiferromagnetically coupled high-spin Mn(III)-Fe(III) cluster in a catalytic reaction mixture with added inhibitor hydroxyurea. The manganese-iron cluster in protein R2 confers much higher specific activity than the diiron cluster does to the enzyme.  相似文献   

13.
The Ni-Fe carbon monoxide (CO) dehydrogenase II (CODHII(Ch)) from the anaerobic CO-utilizing hydrogenogenic bacterium Carboxydothermus hydrogenoformans catalyzes the oxidation of CO, presumably at the Ni-(micro(2)S)-Fe1 subsite of the [Ni-4S-5S] cluster in the active site. The CO oxidation mechanism proposed on the basis of several CODHII(Ch) crystal structures involved the apical binding of CO at the nickel ion and the activation of water at the Fe1 ion of the cluster. To understand how CO interacts with the active site, we have studied the reactivity of the cluster with potassium cyanide and analyzed the resulting type of nickel coordination by x-ray absorption spectroscopy. Cyanide acts as a competitive inhibitor of reduced CODHII(Ch) with respect to the substrate CO and is therefore expected to mimic the substrate. It inhibits the enzyme reversibly, forming a nickel cyanide. In this reaction, one of the four square-planar sulfur ligands of nickel is replaced by the carbon atom of cyanide, suggesting removal of the micro(2)S from the Ni-(micro(2)S)-Fe1 subsite. Upon reactivation of the inhibited enzyme, cyanide is released, and the square-planar coordination of nickel by 4S ligands is recovered, which includes the reformation of the Ni-(micro(2)S)-Fe1 bridge. The results are summarized in a model of the CO oxidation mechanism at the [Ni-4Fe-5S] active site cluster of CODHII(Ch) from C. hydrogenoformans.  相似文献   

14.
Li L 《Biochimica et biophysica acta》2012,1824(11):1264-1277
Spore photoproduct lyase (SPL) repairs a special thymine dimer 5-thyminyl-5,6-dihydrothymine, which is commonly called spore photoproduct or SP at the bacterial early germination phase. SP is the exclusive DNA photo-damage product in bacterial endospores; its generation and swift repair by SPL are responsible for the spores' extremely high UV resistance. The early in vivo studies suggested that SPL utilizes a direct reversal strategy to repair the SP in the absence of light. The research in the past decade further established SPL as a radical SAM enzyme, which utilizes a tri-cysteine CXXXCXXC motif to harbor a [4Fe-4S] cluster. At the 1+ oxidation state, the cluster provides an electron to the S-adenosylmethionine (SAM), which binds to the cluster in a bidentate manner as the fourth and fifth ligands, to reductively cleave the CS bond associated with the sulfonium ion in SAM, generating a reactive 5'-deoxyadenosyl (5'-dA) radical. This 5'-dA radical abstracts the proR hydrogen atom from the C6 carbon of SP to initiate the repair process; the resulting SP radical subsequently fragments to generate a putative thymine methyl radical, which accepts a back-donated H atom to yield the repaired TpT. SAM is suggested to be regenerated at the end of each catalytic cycle; and only a catalytic amount of SAM is needed in the SPL reaction. The H atom source for the back donation step is suggested to be a cysteine residue (C141 in Bacillus subtilis SPL), and the H-atom transfer reaction leaves a thiyl radical behind on the protein. This thiyl radical thus must participate in the SAM regeneration process; however how the thiyl radical abstracts an H atom from the 5'-dA to regenerate SAM is unknown. This paper reviews and discusses the history and the latest progress in the mechanistic elucidation of SPL. Despite some recent breakthroughs, more questions are raised in the mechanistic understanding of this intriguing DNA repair enzyme. This article is part of a Special Issue entitled: Radical SAM enzymes and Radical Enzymology.  相似文献   

15.
Trichothecenes are mycotoxins produced by Trichoderma, Fusarium, and at least four other genera in the fungal order Hypocreales. Fusarium has a trichothecene biosynthetic gene (TRI) cluster that encodes transport and regulatory proteins as well as most enzymes required for the formation of the mycotoxins. However, little is known about trichothecene biosynthesis in the other genera. Here, we identify and characterize TRI gene orthologues (tri) in Trichoderma arundinaceum and Trichoderma brevicompactum. Our results indicate that both Trichoderma species have a tri cluster that consists of orthologues of seven genes present in the Fusarium TRI cluster. Organization of genes in the cluster is the same in the two Trichoderma species but differs from the organization in Fusarium. Sequence and functional analysis revealed that the gene (tri5) responsible for the first committed step in trichothecene biosynthesis is located outside the cluster in both Trichoderma species rather than inside the cluster as it is in Fusarium. Heterologous expression analysis revealed that two T. arundinaceum cluster genes (tri4 and tri11) differ in function from their Fusarium orthologues. The Tatri4-encoded enzyme catalyzes only three of the four oxygenation reactions catalyzed by the orthologous enzyme in Fusarium. The Tatri11-encoded enzyme catalyzes a completely different reaction (trichothecene C-4 hydroxylation) than the Fusarium orthologue (trichothecene C-15 hydroxylation). The results of this study indicate that although some characteristics of the tri/TRI cluster have been conserved during evolution of Trichoderma and Fusarium, the cluster has undergone marked changes, including gene loss and/or gain, gene rearrangement, and divergence of gene function.  相似文献   

16.
4-Hydroxyphenylacetate decarboxylase (4Hpad) is an Fe/S cluster containing glycyl radical enzyme (GRE), which catalyses the last step of tyrosine fermentation in clostridia, generating the bacteriostatic p-cresol. The respective activating enzyme (4Hpad-AE) displays two cysteine-rich motifs in addition to the classical S-adenosylmethionine (SAM) binding cluster (RS cluster) motif. These additional motifs are also present in other glycyl radical activating enzymes (GR-AE) and it has been postulated that these orthologues may use an alternative SAM homolytic cleavage mechanism, generating a putative 3-amino-3-carboxypropyl radical and 5′-deoxy-5′-(methylthio)adenosine but not a 5′-deoxyadenosyl radical and methionine. 4Hpad-AE produced from a codon-optimized synthetic gene binds a maximum of two [4Fe–4S]2+/+ clusters as revealed by EPR and Mössbauer spectroscopy. The enzyme only catalyses the turnover of SAM under reducing conditions, and the reaction products were identified as 5′-deoxyadenosine (quenched form of 5′-deoxyadenosyl radical) and methionine. We demonstrate that the 5′-deoxyadenosyl radical is the activating agent for 4Hpad through p-cresol formation and correlation between the production of 5′-deoxyadenosine and the generation of glycyl radical in 4Hpad. Therefore, we conclude that 4Hpad-AE catalyses a classical SAM-dependent glycyl radical formation as reported for GR-AE without auxiliary clusters. Our observation casts doubt on the suggestion that GR-AE containing auxiliary clusters catalyse the alternative cleavage reaction detected for glycerol dehydratase activating enzyme.  相似文献   

17.
Biotechnological applications of enzymes can involve the use of these molecules under nonphysiological conditions. Thus, it is of interest to understand how environmental variables affect protein structure and dynamics and how this ultimately modulates enzyme function. NADH oxidase (NOX) from Thermus thermophilus exemplifies how enzyme activity can be tuned by reaction conditions, such as temperature, cofactor substitution, and the addition of cosolutes. This enzyme catalyzes the oxidation of reduced NAD(P)H to NAD(P)+ with the concurrent reduction of O2 to H2O2, with relevance to biosensing applications. It is thermophilic, with an optimum temperature of approximately 65°C and sevenfold lower activity at 25°C. Moderate concentrations (≈1M) of urea and other chaotropes increase NOX activity by up to a factor of 2.5 at room temperature. Furthermore, it is a flavoprotein that accepts either FMN or the much larger FAD as cofactor. We have used nuclear magnetic resonance (NMR) titration and 15N spin relaxation experiments together with isothermal titration calorimetry to study how NOX structure and dynamics are affected by changes in temperature, the addition of urea and the substitution of the FMN cofactor with FAD. The majority of signals from NOX are quite insensitive to changes in temperature, cosolute addition, and cofactor substitution. However, a small cluster of residues surrounding the active site shows significant changes. These residues are implicated in coupling changes in the solution conditions of the enzyme to changes in catalytic activity.  相似文献   

18.
Enzymes frequently rely on a broad repertoire of cofactors to perform chemically challenging transformations. The B6 coenzymes, composed of pyridoxal 5'-phosphate (PLP) and pyridoxamine 5'-phosphate (PMP), are used by many transaminases, racemases, decarboxylases, and enzymes catalyzing alpha,beta and beta,gamma-eliminations. Despite the variety of reactions catalyzed by B6-dependent enzymes, the mechanism of almost all such enzymes is based on their ability to stabilize high-energy anionic intermediates in their reaction pathways by the pyridinium moiety of PLP/PMP. However, there are two notable exceptions to this model, which are discussed in this article. The first enzyme, lysine 2,3-aminomutase, is a PLP-dependent enzyme that catalyzes the interconversion of L-lysine to L-beta-lysine using a one-electron-based mechanism utilizing a [4Fe-4S] cluster and S-adenosylmethionine. The second enzyme, CDP-6-deoxy-L-threo-D-glycero-4-hexulose-3-dehydrase, is a PMP-dependent enzyme involved in the formation of 3,6-dideoxysugars in bacteria. This enzyme also contains an iron-sulfur cluster and uses a one-electron based mechanism to catalyze removal of a C-3 hydroxy group from a 4-hexulose. In both cases, the participation of free radicals in the reaction pathway has been established, placing these two B6-dependent enzymes in an exclusive class by themselves.  相似文献   

19.
Heterodisulfide reductase (HDR) from methanogenic archaea is an iron-sulfur protein that catalyzes reversible reduction of the heterodisulfide (CoM-S-S-CoB) of the methanogenic thiol-coenzymes, coenzyme M (CoM-SH) and coenzyme B (CoB-SH). Via the characterization of a paramagnetic reaction intermediate generated upon oxidation of the enzyme in the presence of coenzyme M, the enzyme was shown to contain a [4Fe-4S] cluster in its active site that catalyzes reduction of the disulfide substrate in two one-electron reduction steps. The formal thiyl radical generated by the initial one-electron reduction of the disulfide is stabilized via reduction and coordination of the resultant thiol to the [4Fe-4S] cluster.  相似文献   

20.
We previously showed that biotin synthase in which the (Fe-S) cluster was labelled with 34S by reconstitution donates 34S to biotin [B. Tse Sum Bui, D. Florentin, F. Fournier, O. Ploux, A. Méjean & A. Marquet (1998) FEBS Lett. 440, 226-230]. We therefore proposed that the source of sulfur was very likely the (Fe-S) centre. This depletion of sulfur from the cluster during enzymatic reaction could explain the absence of turnover of the enzyme which means that to restore a catalytic activity, the clusters have to be regenerated. In this report, we show that the NifS protein from Azotobacter vinelandii and C-DES from Synechocystis as well as rhodanese from bovine liver can mobilize the sulfur, respectively, from cysteine and thiosulfate for the formation of a [2Fe-2S] cluster in the apoprotein of Escherichia coli biotin synthase. The reconstituted enzymes were as active as the native enzyme. When [35S]cysteine was used during the reconstitution experiments in the presence of NifS, labelled (Fe35S) biotin synthase was obtained. This enzyme produced [35S]biotin, confirming the results obtained with the 34S-reconstituted enzyme. NifS was also effective in mobilizing selenium from selenocystine to produce an (Fe-Se) cluster. However, though NifS could efficiently reconstitute holobiotin synthase from the apoform, starting from cysteine, these two effectors had no significant effect on the turnover of the enzyme in the in vitro assay.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号