共查询到20条相似文献,搜索用时 9 毫秒
1.
Malcolm L. Kennard Danika L. Goosney Diane Monteith Susanna Roe David Fischer John Mott 《Biotechnology and bioengineering》2009,104(3):526-539
In order to maximize recombinant protein expression in mammalian cells many factors need to be considered such as transfection method, vector construction, screening techniques and culture conditions. In addition, the host cell line can have a profound effect on the protein expression. However, auditioning or directly comparing host cell lines for optimal protein expression may be difficult since most transfection methods are based on random integration of the gene of interest into the host cell genome. Thus it is not possible to determine whether differences in expression between various host cell lines are due to the phenotype of the host cell itself or genetic factors such as gene copy number or gene location. To improve cell line generation, the ACE System was developed based on pre‐engineered artificial chromosomes with multiple recombination acceptor sites. This system allows for targeted transfection and has been effectively used to rapidly generate stable CHO cell lines expressing high levels of monoclonal antibody. A key feature of the ACE System is the ability to isolate and purify ACEs containing the gene(s) of interest and transfect the same ACEs into different host cell lines. This feature allows the direct auditioning of host cells since the host cells have been transfected with ACEs that contain the same number of gene copies in the same genetic environment. To investigate this audition feature, three CHO host cell lines (CHOK1SV, CHO‐S and DG44) were transfected with the same ACE containing gene copies of a human monoclonal IgG1 antibody. Clonal cell lines were generated allowing a direct comparison of antibody expression and stability between the CHO host cells. Results showed that the CHOK1SV host cell line expressed antibody at levels of more than two to five times that for DG44 and CHO‐S host cell lines, respectively. To confirm that the ACE itself was not responsible for the low antibody expression seen in the CHO‐S based clones, the ACE was isolated and purified from these cells and transfected back into fresh CHOK1SV cells. The resulting expression of the antibody from the ACE newly transfected into CHOK1SV increased fivefold compared to its expression in CHO‐S and confirmed that the differences in expression between the different CHO host cells was due to the cell phenotype rather than differences in gene copy number and/or location. These results demonstrate the utility of the ACE System in providing a rapid and direct technique for auditioning host cell lines for optimal recombinant protein expression. Biotechnol. Bioeng. 2009; 104: 526–539 © 2009 Wiley Periodicals, Inc. 相似文献
2.
Closed loop control of lactate concentration in mammalian cell culture by Raman spectroscopy leads to improved cell density,viability, and biopharmaceutical protein production 下载免费PDF全文
Thomas E. Matthews Brandon N. Berry John Smelko Justin Moretto Brandon Moore Kelly Wiltberger 《Biotechnology and bioengineering》2016,113(11):2416-2424
3.
Malcolm L. Kennard Danika L. Goosney Diane Monteith Lin Zhang Mark Moffat David Fischer John Mott 《Biotechnology and bioengineering》2009,104(3):540-553
The manufacture of recombinant proteins at industrially relevant levels requires technologies that can engineer stable, high expressing cell lines rapidly, reproducibly and with relative ease. Commonly used methods incorporate transfection of mammalian cell lines with plasmid DNA containing the gene of interest. Identifying stable high expressing transfectants is normally laborious and time consuming. To improve this process, the ACE System has been developed based on pre‐engineered artificial chromosomes with multiple recombination acceptor sites. This system allows for the targeted transfection of single or multiple genes and eliminates the need for random integration into native host chromosomes. To illustrate the utility of the ACE System in generating stable, high expressing cell lines, CHO based candidate cell lines were generated to express a human monoclonal IgG1 antibody. Candidate cell lines were generated in under 6 months and expressed over 1 g/L and with specific productivities of up to 45 pg/cell/day under non‐fed, non‐optimized shake flask conditions. These candidate cell lines were shown to have stable expression of the monoclonal antibody for up to 70 days of continuous culture. The results of this study demonstrate that clonal, stable monoclonal antibody expressing CHO based cell lines can be generated by the ACE System rapidly and perform competitively with those cell lines generated by existing technologies. The ACE System, therefore, provides an attractive and practical alternative to conventional methods of cell line generation. Biotechnol. Bioeng. 2009; 104: 540–553 © 2009 Wiley Periodicals, Inc. 相似文献
4.
A cell engineering strategy to enhance supercoiled plasmid DNA production for gene therapy 下载免费PDF全文
With the recent revival of the promise of plasmid DNA vectors in gene therapy, a novel synthetic biology approach was used to enhance the quantity, (yield), and quality of the plasmid DNA. Quality was measured by percentage supercoiling and supercoiling density, as well as improving segregational stability in fermentation. We examined the hypothesis that adding a Strong Gyrase binding Site (SGS) would increase DNA gyrase‐mediated plasmid supercoiling. SGS from three different replicons, (the Mu bacteriophage and two plasmids, pSC101 and pBR322) were inserted into the plasmid, pUC57. Different sizes of these variants were transformed into E. coli DH5α, and their supercoiling properties and segregational stability measured. A 36% increase in supercoiling density was found in pUC57‐SGS, but only when SGS was derived from the Mu phage and was the larger sized version of this fragment. These results were also confirmed at fermentation scale. Total percentage supercoiled monomer was maintained to 85–90%. A twofold increase in plasmid yield was also observed for pUC57‐SGS in comparison to pUC57. pUC57‐SGS displayed greater segregational stability than pUC57‐cer and pUC57, demonstrating a further potential advantage of the SGS site. These findings should augment the potential of plasmid DNA vectors in plasmid DNA manufacture. Biotechnol. Bioeng. 2016;113: 2064–2071. © 2016 The Authors. Biotechnology and Bioengineering Published by Wiley Periodicals, Inc. 相似文献
5.
P. P. Gupta 《Plant Systematics and Evolution》1981,138(1-2):23-27
The effects of chromosome doubling on macromolecular composition, i.e. DNA, RNA and protein, were examined in diploidCochlearia pyrenaica DC., its established natural autotetraploidC. officinalis L., and their newly colchicine-induced autotetraploid and autooctoploid derivatives. DNA, RNA and protein contents increase from lower to higher ploidy levels (2x > 4x > 8x). The established natural autotetraploids and newly induced autotetraploids also differ, as DNA, RNA and protein have been reduced during the course of establishment. Net synthesis of RNA and protein per unit DNA does not change significantly neither from lower to higher ploidy levels nor between the autotetraploids of newly induced and established natural origins. 相似文献
6.
Mycobacterial mammalian cell entry protein 1A (Mce1A) is involved in the uptake of bacteria in non-phagocytic cells and also possibly in granuloma formation. However, it has not been clarified whether the interaction between mycobacterial Mce1A and epithelial cell induces chemokine and cytokine production which is required for granuloma formation. To this end, we infected A549 alveolar epithelial cells in vitro with E. coli expressing Mce1A on the cell surface and examined the resultant chemokine/cytokine production. Mce1A promoted bacterial adherence and internalization of E. coli into A549 cells, and these recombinant bacteria induced high levels of MCP-1 and IL-8 production, compared to E. coli harboring the plasmid vector alone. Chemokine production was enhanced by the internalization of recombinant E. coli expressing Mce1A because cytochalasin D treatment partially inhibited MCP-1 and IL-8 production. However, Mce1A-coated latex beads did not induce the chemokine production. These results suggest that although Mce1A does not induce production of chemokines, it may promote chemokine induction by augmenting the interaction between bacteria and epithelial cells. 相似文献
7.
Demand is increasing for therapeutic biopharmaceuticals such as monoclonal antibodies. Achieving maximum production of these recombinant proteins under developmental time constraints has been a recent focus of study. The majority of these drugs are currently produced in altered Chinese hamster ovary (CHO) cells due to the high viability and the high densities achieved by these cells in suspension cultures. However, shortening the process of developing and isolating high-producing cell lines remains a challenge. This article focuses on current expression systems used to produce biopharmaceuticals in CHO cells and current methods being investigated to produce biopharmaceuticals more efficiently. The methods discussed include modified gene amplification methods, modifying vectors to improve expression of the therapeutic gene and improving the method of selecting for high-producing cells. Recent developments that use gene targeting as a method for increasing production are discussed. 相似文献
8.
O. S. Alekseeva I. P. Grigor’ev D. E. Korzhevskii 《Journal of Evolutionary Biochemistry and Physiology》2017,53(4):249-258
The review summarizes current data on neuroglobin, the heme-containing protein discovered in mammalian nerve cells in 2000. It presents general characteristics of neuroglobin as well as data on its evolutionary changes and expression across different taxa. Neuroglobin distribution in specific brain structures and outside the brain is described. The issue of the occurrence of neuroglobin not only in neurons but also in astroglial cells is discussed. Subcellular localization of neuroglobin is characterized with a special focus on its detection in the nucleus of nerve cells, suggesting its involvement in nuclear functions. Current ideas on the probable functional significance of neuroglobin are reported. Neuroglobin is presumed to be involved in metabolism of reactive nitrogen and oxygen species as well as in intracellular signaling pathways. Besides, neuroglobin has neuroprotective and antiapoptotic functions. Since its expression changes during ontogenesis, its neuroprotective role in ageing is specifically highlighted. Changes in expression and localization of neuroglobin are suggested to influence the adaptive potential of an organism. 相似文献
9.
A glutaminase (gis) gene maps to mouse chromosome 1, rat chromosome 9, and human chromosome 2 总被引:2,自引:0,他引:2
B Mock C Kozak M F Seldin N Ruff L D'Hoostelaere C Szpirer G Levan H Seuanez S O'Brien C Banner 《Genomics》1989,5(2):291-297
A rat cDNA clone encoding a portion of phosphate-activated glutaminase was used to identify DNA restriction fragment length polymorphisms (RFLPs) in sets of somatic cell hybrids and between wild-derived and inbred strains of mice. Segregation of rat and mouse chromosomes among somatic cell hybrids indicated assignment to rat chromosome 9 and mouse chromosome 1. Analysis of chromosome 1 alleles for several genes in an interspecific cross between Mus spretus and C3H/HeJ-gld/gld mice indicates that glutaminase can be positioned within 5.5 +/- 2.0 cM proximal to Ctla-4. Similarly, human-hamster somatic cell hybrids were examined for RFLPs, and four human EcoRI restriction fragments were found to hybridize with the rat glutaminase probe. Two of these restriction fragments cosegregated and mapped to human chromosome 2 in a region that is syntenic with mouse chromosome 1 and rat chromosome 9. 相似文献
10.
11.
Haoyu Liu Wanqing Wei Zixuan Pang Simin Gu Wei Song Cong Gao Xiulai Chen Jia Liu Liang Guo Jing Wu Liming Liu 《Biotechnology and bioengineering》2023,120(7):1784-1796
Chondroitin sulfate A (CSA) is a valuable glycosaminoglycan that has great market demand. However, current synthetic methods are limited by requiring the expensive sulfate group donor 3′-phosphoadenosine-5′-phosphosulfate (PAPS) and inefficient enzyme carbohydrate sulfotransferase 11 (CHST11). Herein, we report the design and integration of the PAPS synthesis and sulfotransferase pathways to realize whole-cell catalytic production of CSA. Using mechanism-based protein engineering, we improved the thermostability and catalytic efficiency of CHST11; its Tm and half-life increased by 6.9°C and 3.5 h, respectively, and its specific activity increased 2.1-fold. Via cofactor engineering, we designed a dual-cycle strategy of regenerating ATP and PAPS to increase the supply of PAPS. Through surface display engineering, we realized the outer membrane expression of CHST11 and constructed a whole-cell catalytic system of CSA production with an 89.5% conversion rate. This whole-cell catalytic process provides a promising method for the industrial production of CSA. 相似文献
12.
E. G. Varlamova M. V. Goltyaev V. I. Novoselov E. E. Fesenko 《Doklady. Biochemistry and biophysics》2017,476(1):320-322
The intracellular localization of human selenoprotein SelI and the degree of expression of its gene in different human tumor cell lines were determined. It was found that the SelI protein is present in the nucleus, cytoplasm, and endoplasmic reticulum and is absent in the nucleolus. Since the oxidative stress caused by a sharp increase in the content of free radicals in the body is one of the causes of malignant transformation, the study of the role of the trace element selenium and selenocysteine-containing proteins as antioxidants in carcinogenesis is of great scientific interest. 相似文献
13.
The sex pheromone protoplast release-inducing protein (PR-IP) inducer and a sexual cell division-inducing pheromone-minus (SCD-IP-minus) that mediates the sexual reproduction of the heterothallic Closterium peracerosum-strigosum-littorale (C. psl) complex were investigated in this study. Recombinant PR-IP inducer produced by yeast cells was prepared and assayed for production of PR-IP and induction of SCD. Both biological activities were observed after treating mating-type plus (mt+) cells with the recombinant pheromone. SCD was induced by exposure to a lower concentration of the same pheromone and by a shorter treatment period with the pheromone than was production of PR-IP. This indicates that the previously characterized PR-IP inducer has both PR-IP-inducing and SCD-inducing activities with mt+ cells, although the inducing mechanisms of the two pheromones differ. 相似文献
14.
Assignment of adenosine deaminase complexing protein (ADCP) gene(s) to human chromosome 2 in rodent-human somatic cell hybrids 总被引:4,自引:0,他引:4
Elly Herbschleb-Voogt Karl-Heinz Grzeschik Peter L. Pearson P. Meera Khan 《Human genetics》1981,59(4):317-323
Summary The experiments reported in this paper indicate that the expression of human adenosine deaminase complexing protein (ADCP) in the human-rodent somatic cell hybrids is influenced by the state of confluency of the cells and the background rodent genome. Thus, the complement of the L-cell derived A9 or B82 mouse parent apparently prevents the expression of human ADCP in the interspecific somatic cell hybrids. In the a3, E36, or RAG hybrids the human ADCP expression was not prevented by the rodent genome and was found to be proportional to the degree of confluency of the cell in the culture as in the case of primary human fibroblasts.An analysis of human chromosomes, chromosome specific enzyme markers, and ADCP in a panel of rodent-human somatic cell hybrids optimally maintained and harvested at full confluency has shown that the expression of human ADCP in the mouse (RAG)-human as well as in the hamster (E36 or a3)-human hybrids is determined by a gene(s) in human chromosome 2 and that neither chromosome 6 nor any other of the chromosomes of man carry any gene(s) involved in the formation of human ADCP at least in the Chinese hamster-human hybrids. A series of rodent-human hybrid clones exhibiting a mitotic separation of IDH1 and MDH1 indicated that ADCP is most probably situated between corresponding loci in human chromosome 2.A part of the results was presented at the Fifth International Conference on Human Gene Mapping, Edinburgh, July 1979 and reported as an abstract in the proceedings of this conference [Cytogenet Cell Genet 25:164 (1979)] 相似文献
15.
Efficacy and tolerability are the key criteria for a successful medication in the clinic. Therefore, a new test method to obtain selective and active lead molecules has been developed. Recently, this novel screening strategy enabled a breakthrough in drug discovery in the field of herpes viruses. Here the authors report that this assay is a generally applicable screening test, which allows not only for identifying tolerable and potent antimicrobial agents in compound libraries, but also covers all potential in vitro targets of both the pathogen and the host simultaneously. The test system mimics the smallest unit of a natural infection. Host cells are incubated in the presence of the test sample and are infected with microbes, such as viruses, bacteria, or fungi. Analogous to (lethal challenge) animal models, cell survival is determined. This assay maximizes the chances of success of anti-infective drug discovery, is sensitive, robust, time- and cost-efficient, and especially effective in optimizing screening hits to lead structures and development candidates. In addition to the minimal inhibitory concentration or dose, this test system simultaneously provides the selectivity index, a measure of tolerability in vitro. The authors propose the activity selectivity assay format as a new standard in anti-infective drug discovery and clinical development. 相似文献
16.
Popowski M Ferguson HA Sion AM Koller E Knudsen E Van Den Berg CL 《The Journal of biological chemistry》2008,283(42):28265-28273
Significant discoveries have recently contributed to our knowledge of intracellular growth factor and nutrient signaling via mTOR (mammalian target of rapamycin). This signaling pathway is essential in cellular metabolism and cell survival by enhancing protein translation through phosphorylation of 4EBP-1 and p70S6K. Growth factors like insulin-like growth factor-I induce mTOR to prevent cell death during cellular stress. Agents targeting mTOR are of major interest as anticancer agents. We show here, using human breast cancer cells, that certain types of stress activate mTOR leading to 4E-BP1 and p70S6K phosphorylation. UV treatment increased phosphorylation of the translation inhibitor eIF2alpha, suggesting a potential mechanism for UV activation of Akt and mTOR. c-Myc, a survival protein regulated by cap-dependent protein translation, increased with IGF-I treatment, but this response was not inhibited by rapamycin. Additionally, UV treatment potently increased c-Myc degradation, which was reduced by co-treatment with the proteasomal inhibitor, MG-132. Together, these data suggest that protein translation does not strongly mediate cell survival in these models. In contrast, the phosphorylation status of retinoblastoma protein (pRB) was mediated by mTOR through its inhibitory effects on phosphatase activity. This effect was most notable during DNA damage and rapamycin treatment. Hypophosphorylated pRB was susceptible to inactivation by caspase-mediated cleavage, resulting in cell death. Reduction of pRB expression inhibited IGF-I survival effects. Our data support an important role of phosphatases and pRB in IGF-I/mTOR-mediated cell survival. These studies provide new directions in optimizing anticancer efficacy of mTOR inhibitors when used in combination with DNA-damaging agents. 相似文献
17.
A double-strand break within a yeast artificial chromosome (YAC) containing human DNA can result in YAC loss, deletion or cell lethality. 总被引:4,自引:2,他引:2 下载免费PDF全文
C B Bennett T J Westmoreland J R Snipe M A Resnick 《Molecular and cellular biology》1996,16(8):4414-4425
Human chromosomal DNA contains many repeats which might provide opportunities for DNA repair. We have examined the consequences of a single double-strand break (DSB) within a 360-kb dispensable yeast artificial chromosome (YAC) containing human DNA (YAC12). An Alu-URA3-YZ sequence was targeted to several Alu sites within the YAC in strains of the yeast Saccharomyces cerevisiae; the strains contained a galactose-inducible HO endonuclease that cut the YAC at the YZ site. The presence of a DSB in most YACs led to deletion of the URA3 cassette, with retention of the telomeric markers, through recombination between surrounding Alus. For two YACs, the DSBs were not repaired and there was a G2 delay associated with the persistent DSBs. The presence of persistent DSBs resulted in cell death even though the YACs were dispensable. Among the survivors of the persistent DSBs, most had lost the YAC. By a pullback procedure, cell death was observed to begin at least 6 h after induction of a break. For YACs in which the DSB was rapidly repaired, the breaks did not cause cell cycle delay or lead to cell death. These results are consistent with our previous conclusion that a persistent DSB in a plasmid (YZ-CEN) also caused lethality (C. B. Bennett, A. L. Lewis, K. K. Baldwin, and M. A. Resnick, Proc. Natl. Acad. Sci. USA 90:5613-5617, 1993). However, a break in the YZ-CEN plasmid did not induce lethality in the strain (CBY) background used in the present study. The differences in survival levels appear to be due to the rapid degradation of the plasmid in the CBY strain. We, therefore, propose that for a DSB to cause cell cycle delay and death by means other than the loss of essential genetic material, it must remain unrepaired and be long-lived. 相似文献
18.
Luke JM Carnes AE Sun P Hodgson CP Waugh DS Williams JA 《Journal of biotechnology》2011,151(3):242-250
Methods to increase temperature stability of vaccines and adjuvants are needed to reduce dependence on cold chain storage. We report herein creation and application of pVEX expression vectors to improve vaccine and adjuvant manufacture and thermostability. Defined media fermentation yields of 6 g/L thermostable toll-like receptor 5 agonist flagellin were obtained using an IPTG inducible pVEX-flagellin expression vector. Alternative pVEX vectors encoding Pyrococcus furiosus maltodextrin-binding protein (pfMBP) as a fusion partner improved Influenza hemagglutinin antigen vaccine solubility and thermostability. A pfMBP hemagglutinin HA2 domain fusion protein was a potent immunogen. Manufacturing processes that combined up to 5 g/L defined media fermentation yields with rapid, selective, thermostable pfMBP fusion protein purification were developed. The pVEX pfMBP-based thermostable tag (TST) platform is a generic protein engineering approach to enable high yield manufacture of thermostable recombinant protein vaccine components. 相似文献
19.
Zeghouf M Li J Butland G Borkowska A Canadien V Richards D Beattie B Emili A Greenblatt JF 《Journal of proteome research》2004,3(3):463-468
A vector system is described that combines reliable, very low level, regulated protein expression in human cells with two affinity purification tags (Sequential Peptide Affinity, or SPA, system). By avoiding overproduction of the target protein, this system allows for the efficient purification of natural protein complexes and their identification by mass spectrometry. We also present an adaptation of the SPA system for the efficient purification and identification of protein complexes in E. coli and, potentially, other bacteria. 相似文献
20.
Sikora-Borgula A Słomińska M Trzonkowski P Zielke R Myśliwski A Wegrzyn G Czyz A 《Biochemical and biophysical research communications》2002,292(2):333-338
Homologues of CgtA, the common GTP-binding protein of Vibrio harveyi, are present in diverse organisms ranging from bacteria to humans. In bacteria, proteins homologous to CgtA form a subfamily of small GTP-binding proteins, called Obg/Gtp1. Similarity between bacterial members of this subfamily and their eukaryotic homologues is as high as about 50%. Nevertheless, specific functions of these proteins remain largely unknown. Genes coding for CgtA-like proteins are essential in almost all species of bacteria. The only known exception is V. harveyi, whose cells survive disruption of the cgtA gene. Therefore, the V. harveyi cgtA insertional mutant is a very useful tool for studies on functions of CgtA. Here we demonstrate that under normal growth conditions, cells of the cgtA mutant are slightly larger than wild-type cells, whereas indirect inhibition of DNA replication initiation by addition of rifampicin results in significantly higher differences in average cell size between these two strains as measured by flow cytometry. These differences decreased when cell division was inhibited by cephalexin. DNA synthesis per cell mass was found to be increased in the cgtA mutant relative to wild-type V. harveyi strain, whereas the mutant cells grew slower than bacteria with functional cgtA gene. Kinetics of DNA replication after inhibition of cell division was also considerably different in wild-type and cgtA mutant strains. These results suggest that the cgtA gene product plays a role in coupling of DNA replication to cell growth and cell division. 相似文献