首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The karyotype (2n = 24 + 1B) was detected in 8 trees of Picea glauca (Moench.) Voss. = P. canadensis B.S.P., and the karyotype (2n = 24) was detected in 2 trees of spruce from the same stand in the centre of Voronezh. The majority of seeds, collected from these trees, were empty. From 150 selected seeds, which were full, four plantlets were obtained. One of them died, another one had no mitotic figures, and the third and fourth plantlets had karyotypes (2n = 24 + 1B, and 2n = 24, respectively). A possible mechanism of formation of B-chromosomes and their adaptive role are discussed.  相似文献   

3.
This paper reports chromosome numbers and karyotypes of five species of the genus Fritillaria from south Anhui. The origin of the material used in this work is provided in Table 1, micrographs of mitotic metaphase in Plate 1,2, and the parameters of chromosomes in Table 2. Except F. thunbergii Miq., the karyotypes and chromosome numbers of all the species in this paper were studied for the first time. The results are shown as follows: 1. Fritillaria qimenensis D. C. Zhang et J. Z. Shao Collected from Qimen, Anhui, it has the karyotype formula 2n = 24+4Bs = 3m+lsm+8st (2sc)+12t (2sc)+4Bs (Plate 1:1, 2). The chromosomes range in length 8.72-19.13μm, with the ratio of the longest to the shortest 2.19. Therefore, the karyotype belongs to Stebbins’ (1971) 3B. The secondary constrictions are found on the long arms of 7th and 10th pairs. All the five B-chromosomes are of terminal centromeres. The two chromosomes of the second pair show heteromorphy (Fig. 1, E) with arm ratios 1.86 and 1.56 respectively. 2. Fritillaria monantha Miq. var. tonglingensis S. C. Chen et S. F. Yin Collected from Tongling, Anhui, this species is shown to have three chromosome numbers, 2n =24+5Bs, 2n=24+2Bs and 2n=24. This paper reports 2 cytotypes: Type I: 2n = 24+5Bs = 4m+8st (2sc) +12t (2sc) +5Bs (Plate 1: 3, 4). The chromosomes range in length from 10.40 to 22.19μm, with the ratio of the longest to the shortest 2.13. It belongs to 3B of stebbins’(1971) karyotypic symmetry. The secondary constrictions are found on the short arms of 7th and the long arms of 9th chromosome pairs. The metacentric B-chromosomes and the small satellites located on the short arms are major characters of this cytotype. Type II: 2n=24=2m+2sm+8st(2sc)+12t(2sc) (Plate 1:5, 6). The chromosomes range in length from 13.84 to 29.81μm, with the ratio of the longest to the shortest 2.15. The karyotype belongs to Stebbins’3B. The secondary constrictions are found on the long arms of 5th and 10th pairs. No B-chromosomes are found. 3. Fritillaria xiaobeimu Y. K. Yang, J. Z. Shao et M. M. Fang Collected from Ningguo, Anhui, it has karyotype formula 2n = 24 = 2m+2sm+10st (4sc) + 10t (Plate 2:7, 8). The chromosomes range in length from 13.86 to 26.27μm, with the ratio of the longest to the shortest 1.89. The karyotype belongs to stebbins’3A. The secondary constrictions are found on the long arms of 7th and 9th pairs. 4. Fritillaria ningguoensis S. C. Chen et S. F. Yin Collected from Ningguo, Anhui, it is of karyotype formula 2n = 24 = 2m+2sm+8st (2sc) +12t (Plate 2: 9, 10). The chromosomes range in length from 9.11 to 23.23μm, with the ratio of the longest to the shortest 2.55. The karyotype belongs to Stebbins’3B. The secondary constrictions are only found on the long arms of the 10 th pair. 5. Fritillaria thunbergii Miq. Collected from Ningguo, Anhui, it is of karyotype formula 2n = 24 = 2m+2sm+8st(2sc) +12t(2sc)(Plate 2:11, 12). The chromosomes range in length from 8.83 to 19.85μm, with the ratio of the longest to the shortest 2.25. The karyotype belongs to stebbins’3B. There are secondary constrictions on the long arms of 5th and 7th pairs. The karyotype of the Ningguo material is similar to that of the Huoqiu (Anhui) material reported by Xu Jin-lin et al. (1987), but it is obviously different from 2n=2m(sc)+2sm+4st(2sc)+16t (2sc) reported byZhai et al. (1985) for the material from Xingjiang, Northwest China.  相似文献   

4.
子午岭产4种百合科植物的核型多样性研究   总被引:2,自引:2,他引:0  
对子午岭产百合科黄精属大苞黄精(P.megaphyllum)、玉竹(P.odoratum),百合属的细叶百合(L.pumilum),葱属的糙葶韭(A.anisopodium)4种植物进行了染色体研究。其染色体数目和核型分别为:玉竹2n(2x)=20=12m(2SAT)+8sm,核型为2B型;大苞黄精2n(2x)=22=4m+12sm+6st,核型为3B型;细叶百合2n(2x)=24=4m+10st  相似文献   

5.
The karyotypes of 10 species of the Liliaceae from the Qinling Range are reported as follows. I. Polygonatum Mill. (1) P. odoratum ( Mill. ) Druce was found to have the karyotype 2n=20=12m+8sm ( Plate 3, Fig. I), which belongs to Stebbins’ (1971) karyotype classification 2B. The chromosomes range from 3.88 to 11.26μm in size. Table 2 shows the karyotypes and number fundamentals (N.F.) of 13 materials from 12 different localities. The N. F. of these materials can be classified into two groups: N.F. =36 and N.F.=40, besides one (N.F. =38) from Beijing. N. F. =36 covers all the materials with 2n= 18 which have relatively symmetrical karyotypes ( all consisting of m and sm chromosomes), one with 2n=20 (10m+6sm+4st) and one with 2n=22 (14m+8st). N.F. =40 include four materials with 2n= 20 (all of m and sm chromosomes ) and 3 with 2n= 22 (10m+ 8sm+ 4st). ¥ It is considered that there are two original karyotypes, 2n= 18 with N. F. = 36 and 2n= 20 with N.F. =40, which are relatively symmetrical. All the more asymmetrical karyotypes with some st chromosomes have probably evolved from the symmetrical karyotypes without st chromosomes by centric fission. (2) P. zanlanscianense Pamp. has the karyotype 2n=30=18m(2SAT) + 4sm+ 6st+ 2t (Plate 1, Fig. 1) which belongs to 2C. The chromosomes range from 2.16 to 9.76μm. ¥ II. Asparagus filicinus Buch.-Ham. ex D.Don. The karyotype of this species is 2n = 16= 8m(2SAT )+ 6sm + 2st (Plate 1, Fig. 1 and Table 3 ) , which belongs to 2B. The chromosomes range from 2.33 to 5.30μm. Most species in Asparagus, including A.Filicinus, are reported to have basic number x= 10, and therefore 2n= 16 is a new chromosome number for A.filicinus. EL-Saded et.al.(1972) gave a report of n=8 for A. stipularis from Egypt, while Delay (1947) reported 2n = 24 for A. trichophyllus and A. verticillatus, Sinla(1972 ) gave a report of 2n=48 for A.racemosus. It is certain that there are two basic numbers in the genus Asparagus. III. Cardiocrinum giganteum (Wall.) Makino was found to have the karyotype 2n=24=4m+8st+12t (Plate 1, Fig. 1 ), which belongs to 3B. The chromosomes range from 8.71 to 20.24μm. IV. Smilax discotis Warb. was shown to have the karyotype 2n=32=4m+22sm+4st (2SAT)+2t (Plate 1, Fig. 1 and Table 3), which belongs to 3C. The first pair is much longer than others. The chromosomes range from 1.79 to 9.21μm. The chromosome number and karyotype of S. discotis are both reported for the first time. V. Reineckia carnea (Andr.) Kunth is of the karyotype 2n=38=28m+10sm (Plate 2, Fig. 1 ), which belongs to 2B. The chromosomes range from 5.65 to 12.75μm. VI. Tupistra chinensis Baker was found to have the karyotype 2n=38=25m+ 13sm (Plate 2, Fig. 1), which belongs to 2B. The chromosomes range from 8.11 to 23.82μm. A pair of heterozygous chromosomes is arranged at the end of the idiogram. The eighth pair possesses an intercalary satellite. Huang et al. (1989) reported the karyotype of T. chinensis from Yunnan as 2n = 38 = 24m+ 14sm without any intercalary satellite. Nagamatsu and Noda (1970) gave a report on the karyotype of T. nutans from Bhutan, which consists of 18 pairs of median to submedian chromosomes and one pair of subterminal chromosomes. And one pair of submedian chromosomes possess intercalary satellites on their short arms. VII. Rohdea japonica (Thunb) Roth. was found to have the karyotype 2n=38=30m+6sm+2st ( Plate 2, Fig. 1), which belongs to 2B. The chromosomes range from 7.94 to 18.29μm. Nagamatsu and Noda (1970) reported that the karyotype of R.japonica from Japan was the same as that of Tupistra nutans from Bhutan. But we have not discov ered any chromosome with an intercalary satellite. VIII. Hosta Tratt. (1) H. plantaginea (Lam.) Aschers was shown to have 2n=60. The 60 chromosomes are in 30 pairs,which can be classified into 4 pairs of large chromosomes (7.32- 8.72μm ), 3 pairs of medium-sized ones (4.72-5.60μm), and 23 pairs of small ones (1.40-3.64μm), (Plate 3 ,Table 4 ). The karyotype of H. plantaginea is reported for the first time. (2) H. ventricosa (Salisb.) Stearn was counted to have 2n=120, The 120 chromosomes are in 60 pairs, which can be classified into 8 pairs of large chromosomes (7.00- 8.40μm ), 6 pairs of medium-sized ones(4.40- 6.15um ), 46 pairs of small ones (1.20- 3.85μm), (Plate 3, Table 4). Based on the karyotypes of H. plantaginea and H. ventricosa, the latter is probably a tetraploid in the genus Hosta. Kaneko (1968b) gave a report on the karyotype of H. ventricosa, which is of8 pairs of large chromosomes, 4 pairs of medium-sized and 48 pairs of small ones.  相似文献   

6.
I. Mani    R. Kumar    M. Singh    B. Kushwaha    N. S. Nagpure    P. K. Srivastava    K. Murmu    D. S. K. Rao    W. S. Lakra 《Journal of fish biology》2009,75(5):1079-1091
Mahseer is a group of fish species that are well known as food and game fishes. The taxonomy of the mahseer species is confusing owing to the morphological variations and habitat adaptation. Detailed karyomorphological investigations have been carried out in seven species of mahseer, using karyotyping, Ag-NOR and fluorescent staining techniques. The basic diploid chromosome number (2n), in all mahseer species, was observed to be 100; however, the karyotype formula varied among the species, which were recorded as: 20m + 14sm + 22st + 44t (fundamental arm number, FN = 134) in Tor khudree ; 22m + 24sm + 24st + 30t (FN = 146) in Tor mussullah; 12m + 22sm + 14st + 52t (FN = 134) in Tor putitora ; 20m + 24sm + 24st + 32t (FN = 144) in Tor tor ; 20m + 30sm + 24st + 26t (FN = 150) in Tor chelynoides; 20m + 20sm + 20st + 40t (FN = 140) in Tor progeneius; and 20m + 18sm + 14st + 48t (FN = 138) in Neolissochilus hexagonolepis . Silver staining of the chromosomes revealed the presence of multiple nucleolar organizer regions (NOR) in these mahseer species. The highest number of NORs was observed in T. tor (four pairs of chromosomes), whereas the other six species possessed Ag-NOR signals on only two pairs of chromosomes. Although chromomycin A3 (CMA3) staining induced bright fluorescence signals on same Ag-NORs sites, with CMA3, one additional signal was observed on the p arm of subtelocentric chromosomes in T. tor , T. chelynoides , T. progeneius and N. hexagonolepis , which may indicate the presence of inactive NOR in these species. The information on cytogenetic profile of these mahseer species is discussed in the light of cytotaxonomic implications and understanding the karyoevolution of these fish species.  相似文献   

7.
Results of karyological study of Picea ajanensis (Lindl. et Gord.) Fisch. ex Carr examined from 13 provenances are presented. In addition to the cytotypes with typical chromosome number (2n = 24), P. ajanensis displays cytotypes with one or two B-chromosomes (2n = 24 + 1 - 2B). Among A-chromosomes, there are 8 pairs of long metacentrics and 4 pairs of shorter meta- or submetacentrics. Among B-chromosomes there are two types of chromosomes: metacentric (B1) and submetacentric (B2) ones. There are many nucleolar chromosomes. Several chromosomes have secondary constrictions. Patterns of B-chromosome distribution within P. ajanensis are have been discussed.  相似文献   

8.
The karyotypes of B. alboglabra and B. oleracea var. capitata were analyzed by an improved technique. The diploids of the two species consist of 4 pairs of metacentric and 5 pairs of submetacentric chromosomes (1 pair of satellites). The karyotype formula is summarized as 2n =18=8m+10sm (2 SAT). But the relative positions of some similar chromosomes are different in the genomes. Four kinds of satellites were observed in B. oleracea var. capitata. C-banding patterns were obtained by BSG C-banding. The C-banding formula is: 2n= 18=CITS pattern = 10C+2CI+ +4CT+ +2CS for B. alboglabra, and 2n= 18=CITS pattern = 8C+2CI +6CT+ + 2CS for B. oleracea var. capitata. The relationship between B. alboglabra and B. oleracea was discussed based on the chromosomal characteristics.  相似文献   

9.
Summary This paper examines the transmission of B chromosomes in natural (but controlled) pollination, in order to obtain results which can be applied to natural populations of rye. The frequencies of the female gametes in both 2n= 14+1 and 2n=14+2 rye plants have been estimated with reference to their chromatid constitution. From the results obtained on the offspring, it seems that preferential distribution takes place during female meiosis of 2n= 14+2 plants. It has been demonstrated that pollen carrying B chromosomes formed in plants of 2n=14+2 was more competitive than normal pollen. On the contrary, when it was formed from plants 2n=14+1, B chromosome elimination by pollen was total. This process may be considered as sporophytic determination. The genetic significance of the presence of B chromosomes in natural populations is discussed. It is proposed that B chromosomes may be the cytological expression of a complex evolutionary system which results in conservation of population genetic variability.  相似文献   

10.
The present paper reports the chromosome numbers and karyotypes of five species in Polygonatum from Anhui of China. The materials used in this work are listed in Table 1, Photomicrographs of somatic metaphase and karyograms of the five species of Polygonatum in Plate 1, 2, 3, the idiograms in Fig. 1-11 and a comparison of the karyotype of them is provided in Table 2. The results are shown as follows: 1. Polygonatum odoratum (Mill.)Druce Two materials were examined. One from Mt. Huangshan, Anhui, has 2n= 16 = 10m (3sc)+ 6sm (Plate 1 :A, B). The idiogram is shown in Fig. 1. The chromosomes range in length from 2.85 to 8.85 μm, with the total length 48.63μm and the ratio of the longest to the shortest 3.11, The karyotype belong to Stebbins’(1971) 2B. The two chromosomes of the first pair have arm ratios 1.01 and 1.29 respectively, and The first pair has one chromosome carrying a satellite attached to the short arm, showing heterozyosity .The chromosome num ber of 2n= 16 in P. odoratum and its karyotype are reported for the first time. The other from Langyashan, Chu - xian, Anhui, is found to have 2n = 18 = 10m (Isc)+2sm+6st(2sc) (Plate 1: C, D). The idiogram is shown in Fig. 2. The chromosomes range in length from 2.43 to 8.29μm, with the total length 46.67µm and the ratio of the longest to the shortest 3.41. The karyotype is also of 2B. In a somatic chromosome complement the 2nd pair have one chromosome carrying a satellite attached to the long arm, showing heterozygosity. 2. Polygonatum filipes Merr. Two materials were examined. One from the Huangshan, Anhui is found to have two cytotypes: 2n= 16 and 2n=22. This paper reports one of them. The karyotype formula is 2n=22=8m+8sm(2sc)+6st(Plate 3: Q, R). The idiogram is shown in Fig. 3. The chromosomes range in length from 2.55- 5.85μm, with the total length 45.01 μm and the ratio of the longest to the shortest 2.29. The karyotype belongs to 3B. The other material from the Fangchang, Anhui, is shown to have four cytitypes: 2n= 14, 2n= 16, 2n=20 (Plate 3: W) and 2n=22. This paper reports two of them. Type I: the karytype formula is 2n=14=10m+4sm (Plate 3: S, T). The idiogram is shown in Fig. 5. The chromosomes range in length from 2.59 to 7.61μm, the total length 37.44μm and the ratio of the longest to the shortest is 2.94. the karyotype belongs to 2B. Type II :The karyotype formula is 2n=16=8m+4sm+4st (Plate 3: U, V). The idiogram is shown in Fig. 4. The chromosomes range in length from 2.65 to 8.21 μm, the total length 46.01 μm and the ratio of the longest to the shortest 3.10. The karyotype belongs to 2B. The chromosome numbers of 2n=20, 2n= 14 and 2n=22, and karyotype of 2n= 14 and 2n=22 in P. filipes are reported for the first time. 3. Polygonatum cytonema Hua Two materials were examined. One from the Langyashan, Chuxian, anhui, is found to have 2n = 18 = 8m (2sc)+ 6sm+ 4st (Plate 2: K, L). The idiogram is shown in Fig. 7. The chromosomes range in length from 3.41 to 9.21 μm, the total length 56.34μm and the ratio of the longest to the shortest is 2.70. The karyotype belongs to 2B. The other material from the Huangshan, Anhui, has two cytotypes: 2n=20 and 2n= 22. Type I: The karyotype formula is 2n= 20= 8m+ 6sm+ 6st (Plate 2: M, N). The idiogram is shown in Fig. 8. The chromosomes range in length from 1.75 to 5.03μm, with the total length 32. 91μm and the ratio of the longest to the shortest 2. 87. The karyotype is also of 2B. Type II: The karyotype formula is 2n=22=6m+ 8sm+4st+ 4t (Plate 2: O, P ). The idiogram is Shown in Fig. 10. The chromosomes range in length from 1.75 to 4.95 μm, with total length 35.05μm and the ratio of the longest to the shortest 2.83. The karyotype brlongs to 3B. 4. Polygonatum desoulayi kom. The material from Xuancheng, Anhui, is found to have karyotype 2n = 22 = 10m (2sc) + 6sm (lsc) + 6st ( Plate 2. I, J). The idiogram is shown in Fig. 6. The chromosomes range in length from 1.86 to 5.61μm, with the total length 41.98μm and the ratio of the longest to the shortest 3.02. The karyotype is also of 3B. The first pair has one chromosome carrying a satellite attached to the long arm, showing heterozygosity. The chromosome number and karyotype of Chinese material are reported for the first time. 5. Polygonatum verticillatum (L.) All. The material from the Langyashan, Chuxian, Anhui is found to have two cytotypes. Type 1: the karyotype formula is 2n = 18 = 2m+ 2sm+ 10st+ 2t+ 2T (Plate 1: G, H). The idiogram is shown in Fig.9. The chromosomes range in length from 1.86 to 4.03μm, with total length 28.28μm and the ratio of the longest to the shortest 2.17. The karyotype classification belongs to 3B. Type II: The karyotype formula is 2n=24=6m+4sm+12st+2T (Plate 1: E, F). The idiogram is shown in Fig. II. The chromosomes range in length from 2.01 to 5.03μm, with total length 41.36μm and the ratio of longest to shortest 2.50. The karyotype is also of 3B. The chromosome numbers and karyotypes of Chinese material are reported for the first time.  相似文献   

11.
Twenty-two intergeneric hybrids from a cross between Brassica napus (AACC, 2n = 38) cultivar Oro and the ornamental crucifer Orychophragmus violaceus (OO, 2n = 24) were produced without embryo rescue. The plants were classified into three groups based on morphological and cytological observations and RAPD banding patterns. Plants of Group I had morphological traits of both parents and 2n = 29 chromosomes. In these plants, 62.1% of the pollen mother cells (PMCs) had the pairing configuration 1 III + 9 II + 8 I; the remaining PMCs had 10 II + 9 I. The plants possessed 97.6-98.8% B. napus specific and 9.2-11.7% O. violaceus specific RAPD fragments. Plants of Group II exhibited novel morphological traits and possessed 2n = 35, 36, or 37 chromosomes. Plants of Group III were morphologically similar to B. napus and possessed 2n = 19, 37, 38, or 39 chromosomes. Plants of Group II and Group III had 94.1-99.4% B. napus specific RAPD fragments and no O. violaceus specific RAPD fragments. Chromosome fragments were observed in PMCs of most of the F1 plants in all groups. Based on the cytological results and RAPD analysis, it is suggested that genome doubling and chromosome elimination occurred in the intergeneric hybrids of B. napus x O. violaceus.  相似文献   

12.
Karyotypes of six species of Cypriniformes from the water bodies of Armenia—blackbrow Acanthalburnus microlepis, white bream Blicca bjoerkna transcaucasica, chub Leuciscus cephalus orientalis, stone moroco Pseudorasbora parva, mursa Barbus mursa, and Angora stone loach Barbatula angorae were studied. The karyotype of A. microlepis is represented by 50 chromosomes (2n = 50), 10M + 28SM + 12STA, NF = 88; of B. bjoerkna transcaucasica, by 2n = 50, 12M + 24SM + 14STA, NF = 86; of L. cephalus orientalis, by 2n = 50, 12M + 18SM + 20STA, NF = 80; of P. parva, by 2n = 50, 8M + 16SM + 26STA, NF = 74; of B. mursa, by 2n = 100, 6M + 36SM + 58STA, NF = 142; and of B. angorae, by 2n = 50, 8M + 24SM + 18STA, NF = 86. The intraspecific and interspecific chromosome polymorphism of species of the genera Blicca, Leuciscus and Pseudorasbora is described.  相似文献   

13.
Lycoris radiata (L′Her. ) Herb. containing wild and cultural types, is distributed in China and Japan. The karyotype variation in three populations of the species from Anhui is studied in this paper. (1) Wuhu wild population has a karyotype 2n=21+1B= 1m+12st +8t+1B. The chromosomes range in length from 7.50 to 14.10 µm with the ratio of the longest to the shortest 1.88. The karyotype belongs to Stebbins’(1971) 3A. (2) Huangshan wild population has two cytotypes: 2n=22 and 2n=22+1B. Type Ⅰ: The karyotype formula is 2n=22=12st+10t. The chromosomes range in length from 6.85 to 9.95 µm. with the ratio of the longest to the shortest 1.45. The karyotype belongs to 4A. Type Ⅱ: The karyotype formula is 2n=22+1B=6st+14t+2T+1B (plate 1: 7,8). The chromosomes range in length from 6.50 to 11.02 µm. with the ratio of the longest to the shortest 1.70. The karyotype belongs to 4A. (3) Wuhu cultural type has a karyotype 2n=33=30st +3t. The chromosomes range in length from 7.10 to 9.35 µm with the ratio of the longest to the shortest 1.32. The karyotype belongs to 4A. This result agrees well with the previous reports. The diploid types of Lycoris radiata (L´Her.) Herb. are found in Anhui for the firsttime.  相似文献   

14.
七种药用植物的染色体研究   总被引:4,自引:1,他引:4  
杨德奎  周俊英   《广西植物》1998,18(2):115-118
对山东7种药用植物的染色体进行了研究。结果表明:田旋花(ConvolvulusarvensisL)的染色体数目为2n=78;蜜柑草(PhylanthusmatsumuraeHavata)的染色体数目为n=88;挂红灯(PhysalisalkekengiLvarfrancheti(Mast)Makino)的染色体数目为2n=24,核型公式为K(2n)=24=2m+18sm+2st+2st(sat),核型“2A”型;无剌曼陀罗(DaturastramoniumLvarinermis(Jacq)SchinzetThel)的染色体数目为2n=24,核型公式为K(2n)=24=20m+4sm,核型“1B”型;决明(CasiatoraL)的染色体数目为2n=26,核型公式为K(2n)=26=24m+2sm,核型“1A”型;荔枝草(SalviaplebeiaRBr)的染色体数目为2n=16,核型公式为K(2n)=16=6m+10sm,核型“2A”型;车前(PlantagoasiaticaL)的染色体数目为2n=36,核型公式为K(2n)=36=32m+4sm,核型“1A”型。  相似文献   

15.
In Cephalotascus sinensis (Rehd. et Wils. ) Li the somatic chromosome number was found to be of 2n=24. Eleven pairs of chromosomes possessed their centromeres at median or median-submedian regions. The shortest pair of chromosomes was the SAT chromosome which possessed their centromeres at the submedian regions. The sex chromosomes were demonstrated by the Giemsa C-banding technique. The sexual determination mechanism of female was WZ type (2n=24=22A+WZ), and that of male was ZZ type (2n=24=22A +ZZ).  相似文献   

16.
D. R. Maddison 《Genetica》1985,66(2):93-114
Chromosome numbers and sex chromosome systems of 154 previously unstudied Bembidion species are described. The genus is nearly uniform: males of 176 of 205 species are 2n=22+XY. Karyotypes are presented for 30 species. There is some variation among species in size of Y and size of autosomes. Within most species autosomes are subequal in size, and metacentric or submetacentric. Subterminal secondary constrictions and B chromosomes are reported from several species.The supertribe Trechitae (Zolini + Trechini + Pogonini + Bembidiini) is hypothesized to be primitively male 2n=22+X or 24+X, and the ancestral Bembidion stock 2n=22+XY. Conclusions are based on the most parsimonious hypothesis of ancestral state given an inferred phylogeny of the group, rather than the widespread-is-primitive arguments used previously. Evolution within Bembidion away from the presumably-primitive 2n=22+XY is discussed. Six lineages have lost Y chromosomes; seven have undergone changes in autosome number. It is not known why such changes are so scarce, nor what particular rearrangements led to the observed diversity. Nonetheless, the cytogenetic data can be used to infer a monophyletic origin of groups possessing derived chromosome numbers or sex chromosomes, and to help resolve species limits.  相似文献   

17.
芥蓝和结球甘蓝染色体组型及C-带带型的研究   总被引:4,自引:0,他引:4  
本文用改进的染色体标本制片技术,研究了芥蓝和结球甘蓝的染色体组型和 C-带带型。两种植物的二倍体均由4对中着丝粒、5对亚中着丝粒染色体组成,其中一对为随体染色体。芥蓝和结球甘蓝具有统一的染色体组型公式:2n=18=8m+10sm(2SAT),但两者的某些染色体在编号顺序上有差异。在结球甘蓝中观察,到4种不同形态的随体。用 BSG C-带方法得到 C-带带型,带型公式,芥蓝为2n=18=CITS 型=10C+2CI_++4CT~++2CS;结球甘蓝为2n=18=CITS 型=8c+2CI_++6CT~++2CS。某些带纹具多态性和杂合性。本文从染色体水平上讨论了芥蓝与甘蓝的亲缘关系。  相似文献   

18.
The present paper deals with the karyotypic analysis of Taxodium ascendens Brongn. The somatic chromosomes in root-tip cells of the plant are found to be 2n =22, all with median and submedian constrictions. A character of the karyotype is that the chromosome 10 has a long kinetochore region (Plate 1:1). According to the terminology defined by Levan et al.[18], the karyotype formula is k(2n)=22=20m+2sm, which is different to Huang et Hsu’s[8] K(2n)=24=22m+2B(m). The karyotype belongs to “lA” of Stebbins’[24] karyotypic symmetry and is generally regarded as a relatively primitive one. The species’ chromosome complement is 2n=22=2L+8M2+12M1 according to I.R.L.difined by Kuo et al.[15] based on relative length. The lengths, arm ratios and types of chromosomes of the species are given in Table 1-I. The morphology of the chromosomes and the karyotype, are given in Plate 1:1. In the light of the works of Schlarbaum et al.[21] and Mehra et al.[17], K(2n)=22=20m (2SAT)+2sm and 2n=22=2L+6M2+14M1 are for T. distichum (L.) Rich. (see Table 1-II), K(2n)=20m+2sm and 2n=22=4L+4M2+12M1+2S for T. mucronatum Tenore (see Table 1-III, Plate 1:2), which belong to “lA” and “2A” respectively. The differences between three species in the ratio of the longest to the shortest chromosome, I.R.L. and the proportion of chromosomes with arm ratio >2 show that the karyotype of T. mucronatum is the most advanced and that of T. distichum the most primitive. The present author suggests that the sequence of evolutionary advance be T. distichum, T. ascendens, T. mucronatum. Based on the evidence from the karyotype analyses, ecology and geographical distribution (including fossil), the secondary center of genetic diversity (Fig. 1) and the probable evolu-tionary pattern (Fig. 2) of Taxodium are discussed.  相似文献   

19.
Fifteen species in six genera of the family Liliaceae were karyomorphologically studied. They share the complex chromocenter type of the resting nuclei and the interstitial type of the prophase chromosomes in somatic cells except that Clintonia udensis Trautv. et Mey is of the densely diffuse type and gradient type respectively. Their karyotype formulas are listed as follows: Clintonia udensis Trautv. et Mey, 2n= 14=8m+4sm+2st (2SAT), belongs to 2A type; Smilacina henryi (Baker) Wang et Tang, 2n=36=12m+16sm+6st+2t (2SAT), 2C type; Smilacina fusca Wall., 2n = 36= 14m (2SAT) + 12sm+ 10st(2SAT), 2B type; Smilacinata tsienensis (Franch.) Wang et Tang, 2n= 36=22m +2sm+ 2st(2SAT), 2C type; Smilacina atropurpurea ( Franch.) Wang et Tang, 2n=36=18m+6sm(2SAT) +12st, 2C type: Polygonatum kingianum Coll, et Hesml., 2n=30= 12m(2SAT) +6sm+ lst+2t, 2C type; Polygonatum cirrhifolium (Wall.) Royal, 2n=30= 10m+4sm+ 12st+4t, 3C type; Polygonatum curvistylum Hua, 2n=78=24m (2SAT)+ 14sm (6SAT)+40st, 3C type; Polygonatum cathcartii Baker, 2n = 32 = 12m + 6sm + 10st+ 2t + 2Bs, 2C type; Lilium henricii Franch., 2n = 24 = 2m(2SAT) + 2sm + 10st+ 10t, 3A type; Lilium bakerianum Coll. et Hesml. var. rubrum Stearn, 2n=24=4m ( 2SAT) +10st+ 10t (2SAT), 3A type; Nomocharis bilouensis Liang, 2n= 24= 2m (2SAT) +2sm+ 12st+ 8t, 3A type; Nomocharis pardanthina Franch., 2n= 24=4m (2SAT)+12st (2SAT)+ 8t, 3A type; Nomocharis sauluensis Balf. f., 2n=24=4m(2SAT) +10st (2SAT) + 10t, 3B type; Notholirion campanulatum Cotton et Stearn 2n = 24 = 2m (2SAT) + 2sm + 14st(2SAT ) + 6t, 3A type.  相似文献   

20.
草芍药,野牡丹和黄牡丹的核型研究   总被引:13,自引:3,他引:13  
本文报道了国产芍药属(Paeonia L.)植物草芍药、野牡丹和黄牡丹的染色体数目及核型,均为2n=10=6m 2sm 2st,它们分别具2、3和4对次缢痕,所具次缢痕的数目和位置可以作三种核型的区别特征。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号