首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
hDDPI (human dipeptidyl peptidase I) is a lysosomal cysteine protease involved in zymogen activation of granule-associated proteases, including granzymes A and B from cytotoxic T-lymphocytes and natural killer cells, cathepsin G and neutrophil elastase, and mast cell tryptase and chymase. In the present paper, we provide the first crystal structure of an hDPPI-inhibitor complex. The inhibitor Gly-Phe-CHN2 (Gly-Phe-diazomethane) was co-crystallized with hDPPI and the structure was determined at 2.0 A (1 A=0.1 nm) resolution. The structure of the native enzyme was also determined to 2.05 A resolution to resolve apparent discrepancies between the complex structure and the previously published structure of the native enzyme. The new structure of the native enzyme is, within the experimental error, identical with the structure of the enzyme-inhibitor complex presented here. The inhibitor interacts with three subunits of hDPPI, and is covalently bound to Cys234 at the active site. The interaction between the totally conserved Asp1 of hDPPI and the ammonium group of the inhibitor forms an essential interaction that mimics enzyme-substrate interactions. The structure of the inhibitor complex provides an explanation of the substrate specificity of hDPPI, and gives a background for the design of new inhibitors.  相似文献   

2.
Dipeptidyl peptidase IV (DPPIV), which belongs to the prolyl oligopeptidase family of serine proteases, is known to have a variety of regulatory biological functions and has been shown to be implicated in type 2 diabetes. It is therefore important to develop selective human DPPIV (hDPPIV) inhibitors. In this study, we determined the crystal structure of apo hDPPIV at 1.9A resolution. Our high-resolution crystal structure of apo hDPPIV revealed the presence of sodium ion and glycerol molecules at the active site. In order to elucidate the hDPPIV binding mode and substrate specificity, we determined the crystal structure of hDPPIV-diprotin B (Val-Pro-Leu) complex at 2.1A resolution, and clarified the difference in binding mode between diprotin B and diprotin A (Ile-Pro-Ile) into the active site of hDPPIV. Comparison between our crystal structures and the reported apo hDPPIV structures revealed that positively charged functional groups and conserved water molecules contributed to the interaction of ligands with hDPPIV. These results are useful for the design of potent hDPPIV inhibitors.  相似文献   

3.
Beta-casomorphins, opioid peptides present in mother's milk, are a good substrate for DPPIV (EC 3.4.14.5) which is a major factor limiting the half-life of biologically active peptides. Serum DPPIV activity of two groups of infants (healthy and atopic dermatitis) and contents of beta-casomorphin-5 and -7 in their mothers' milk were determined in the study. We have found correlation between those two parameters in the group of children with atopic dermatitis syndromes, while no such a correlation was found in the control group.  相似文献   

4.
Dipeptidyl peptidase IV (DPP-IV/CD26) is a multifunctional type II transmembrane serine peptidase. This enzyme contributes to the regulation of various physiological processes, including blood sugar homeostasis, by cleaving peptide hormones, chemokines and neuropeptides. We have determined the 2.5 A structure of the extracellular region of DPP-IV in complex with the inhibitor valine-pyrrolidide. The catalytic site is located in a large cavity formed between the alpha/beta-hydrolase domain and an eight-bladed beta-propeller domain. Both domains participate in inhibitor binding. The structure indicates how substrate specificity is achieved and reveals a new and unexpected opening to the active site.  相似文献   

5.
Summary The activity of dipeptidyl(amino)peptidase IV (DAP IV, glycylproline naphthylamidase) was discovered in the endothelial cells of the venous part of capillary bed and of small venules of many organs of the rat, mini-pig, rabbit, cock as well as man. In aortae, large arteries and veins only a portion of vase vasorum displays a positive reaction. Glycyl-proline-4-methoxy-2-naphthylamide (Gly-Pro-MNA) is the substrate of choice both from the viewpoint of enzyme kinetics as well as localization. Phenylalanyl-proline-4-methoxy-2-naphthylamide (Phe-Pro-MNA) is cleaved less easily, however, it enables a good localization. 1- and 2-naphthylamine derivatives of glycylproline display better kinetic properties than Phe-Pro-MNA, however they enable a satisfactory localization under special conditions only.The recommended diazonium salt for the routine is Fast Blue B. The enzyme is quite firmly associated with the structure and chloroform-acetone preextraction of cryostat sections does not influence its activity significantly while improving the localization. Block fixation in aldehydes inhibits the enzyme activity (glutaraldehyde more than formaldehyde). The osmificated azo-dye originated of 4-methoxy-2-naphthylamine and Fast Blue B or hexazonium-p-rosaniline is still partially soluble in solvents used for the usual embedding in epoxyresins for electron microscopical examination. This is a drawback for a reliable demonstration of DAP IV in endothelial cells on the electronmicroscopical level using the epoxy-resin technique. DAP IV of the endothelium is inhibited totally by DFP (10–3M), partially by E 600 (10–3); and slightly by phenanthroline (10–3M). It is unaffected by EDTA (10–3M) and N-ethyl maleimide (10–3M).The combined demonstration of alkaline phosphatase and DAP IV in the same section renders a reliable demonstration of the capillary bed in many organs.The contribution of DAP IV activity of the capillary endothelium to the total DAP IV activity in a particular organ is decisive in the myocardium, striated muscle, aorta and lung; it represents about one half of the total activity in spleen and pancreas and is less expressed in the liver, intestine and particularly in the kidney.In the jejunum of patients sufferring coeliac sprue the activity of capillary endothelium in the propria is decreased or not demonstrable in the acute stage. After a gluten-free diet it is restituted. The activity of DAP IV does not change significantly in aortae of the rabbit and man with atherosclerosis. In plaques of human aortae the capillary endothelium reacts at the most. Vasa vasorum in the adventitia overlying large plaques, which penetrate into the media, display a high DAP IV activity and their number can be increased. In plaques of arteries of cocks there is a positive DAP IV reaction in foam cells. DAP IV does not belong to the enzymes indicating early changes in atherogenesis.The function of DAP IV in the endothelium is not known. It may be a part of the machinery influeneing the protein part of the endothelial coat or may participate in the degradation of some vasoactive peptides.  相似文献   

6.
Glucagon is a 29-amino acid polypeptide released from pancreatic islet alpha-cells that acts to maintain euglycemia by stimulating hepatic glycogenolysis and gluconeogenesis. Despite its importance, there remains controversy about the mechanisms responsible for glucagon clearance in the body. In the current study, enzymatic metabolism of glucagon was assessed using sensitive mass spectrometric techniques to identify the molecular products. Incubation of glucagon with purified porcine dipeptidyl peptidase IV (DP IV) yielded sequential production of glucagon(3-29) and glucagon(5-29). In human serum, degradation to glucagon(3-29) was rapidly followed by N-terminal cyclization of glucagon, preventing further DP IV-mediated hydrolysis. Bioassay of glucagon, following incubation with purified DP IV or normal rat serum demonstrated a significant loss of hyperglycemic activity, while a similar incubation in DP IV-deficient rat serum did not show any loss of glucagon bioactivity. Degradation, monitored by mass spectrometry and bioassay, was blocked by the specific DP IV inhibitor, isoleucyl thiazolidine. These results identify DP IV as a primary enzyme involved in the degradation and inactivation of glucagon. These findings have important implications for the determination of glucagon levels in human plasma.  相似文献   

7.
In this paper, the synthesis and structure-activity relationships (SAR) of two classes of electrophile-based dipeptidyl peptidase IV (DPP IV) inhibitors, the ketopyrrolidines and ketoazetidines, is discussed. The SAR of these series demonstrate that the 2-thiazole, 2-benzothiazole, and 2-pyridylketones are optimal S1' binding groups for potency against DPP IV. In addition, both cyclohexyl glycine (CHG) and octahydroindole carboxylate (OIC) serve as the most potent S2 binding groups within each series. Stereochemistry at the alpha-position of the central ring is relevant to potency within the ketopyrrolidines series, but not in the ketoazetidine series. Finally, the ketoazetidines display enhanced stability over the corresponding ketopyrrolidines, while maintaining their potency. In fact, certain stabilized ketoazetidines can maintain their in vitro potency and inhibit DPP IV in the plasma for up to 6h.  相似文献   

8.
Dipeptidyl peptidase IV (DPPIV) is a serine protease, a member of the prolyl oligopeptidase (POP) family, and has been implicated in several diseases. Therefore, the development of DPPIV selective inhibitors, which are able to control the biological function of DPPIV, is important. We determined the crystal structure of human DPPIV at 2.6A resolution. The molecule consists of a unique eight-bladed beta-propeller domain in the N-terminal region and a serine protease domain in the C-terminal region. Also, the large "cave" structure, which is thought to control the access of the substrate, is found on the side of the beta-propeller fold. Comparison of the overall amino acid sequence between human DPPIV and POP shows low homology (12.9%). In this paper, we report the structure of human DPPIV, especially focusing on a unique eight-bladed beta-propeller domain. We also discuss the way for the access of the substrate to this domain.  相似文献   

9.
Purification and properties of dipeptidyl peptidase IV from human urine   总被引:1,自引:0,他引:1  
Dipeptidyl peptidase IV (DPP-IV) (EC 3.4.14.5) has been purified from normal human urine using immunoaffinity chromatography. The purified enzyme was homogeneous as judged by polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate. The molecular mass of urinary DPP-IV was estimated to be 280 kDa by gel filtration. The Km value for the hydrolysis of (Gly-L-Pro)-4-methylcoumaryl-7-amide tosylate was calculated to be 1.25 +/- 0.25 X 10(-4) M; the pH optimum and pI were 8.7 and 6.5, respectively. These properties were the same as those of renal DPP-IV. Both renal and this urinary DPP-IV were inhibited by diisopropylfluorophosphate and activated by phospholipid. From these results we suppose that urinary DPP-IV may be derived from the kidney rather than from the blood  相似文献   

10.
The sole application of an inhibitor of the dipeptidyl peptidase DP IV (also DP 4, CD26, DPP-IV or DPP-4) to a mammal subsequently leading to improved glucose tolerance marks a major breakthrough in metabolic research bearing the potential of a new revolutionary diabetes therapy. This was demonstrated in rat applying the specific DP IV inhibitor isoleucyl thiazolidine. It was published in 1996 for the first time that a specific DP IV inhibitor in a given dose was able to completely block glucagon-like peptide-1 (GLP-1) degradation in vivo resulting in improved insulin response accompanied, by accelerated peripheral glucose disposal. Later on, these results were confirmed by several research teams applying DP IV inhibitors intravenously or orally. Today, the DP IV inhibition for the treatment of metabolic disorders is a validated principle. Now, more than 10 years after the initial animal experiments, first DP IV inhibitors as investigational drugs are tested in phase 3 clinical trials.  相似文献   

11.
We investigated ultrastructural localization of dipeptidyl peptidase IV (DPP IV) [EC3.4.14 5] in rat liver cells quantitatively by post embedding protein A-gold technique. In the hepatocyte, DPP IV was mainly localized on the bile canalicular surface and the lysosomal membranes, but were scarcely detectable on the sinusoid-lateral surface. A small number of DPP IV was also detected in the trans region of the Golgi apparatus, suggesting that this part may play important roles in intracellular transport or recycling of this enzyme. In the endothelial cell, DPP IV existed on the whole surface of the plasma membrane and the lysosomes. In the Kupffer cell DPP IV was mainly localized in lysosomes and a few were detected on the plasma membrane.  相似文献   

12.
Dipeptidyl-Peptidase IV was purified from pig kidney by ammonium sulfate fractionation, gel filtration, QAE-cellulose chromatography and affinity columns with Gly-Pro- and Concanavalin A-Sepharose. The specific activity of the purified enzyme is 41.8 units/mg. Polyacrylamide gel electrophoresis and silver staining show a single band. The enzyme preparation is free of aminopeptidase and dipeptidase activity, proved fluorimetrically and by gas chromatography/mass spectrometry. The most important procedure for removal of contaminating enzyme activities is a stepwise NaCl-gradient on a QAE-ZetaPrep ion exchange disk.  相似文献   

13.
Details of structure-activity relationships (SAR) for P2 moiety of a P1 2-cyanopyrrolidine dipeptidyl peptidase IV (DPP-IV) inhibitor 4a including stereochemistry are presented. Based on this information, a series of P1 (N-alkyl)aminoacetonitrile analogs 9-20 possessing optimal P2 structure were synthesized and evaluated as inhibitors of DPP-IV. Among them, a representative compound 11, N-(cyanomethyl)-N-ethyl-L-prolinamide, was further evaluated to determine its effect on the plasma glucose level. Also 4a, 10, and 11 were evaluated for their isozyme selectivity to predict their safety problems.  相似文献   

14.
Dipeptidyl peptidase IV (DPIV) is an alpha,beta-hydrolase-like serine exopeptidase, which removes dipeptides, preferentially with a C-terminal l-Pro residue, from the N terminus of longer peptide substrates. Previously, we determined the tetrameric 1.8A crystal structure of native porcine DPIV. Each monomer is composed of a beta-propeller and a catalytic domain, which together embrace an internal cavity housing the active centre. This cavity is connected to the bulk solvent by a "propeller opening" and a "side opening". Here, we analyse DPIV complexes with a t-butyl-Gly-Pro-Ile tripeptide, Pro-boroPro, a piperazine purine compound, and aminoethyl phenyl sulfonylfluoride. The latter two compounds bind to the active-site groove in a compact and a quite bulky manner, respectively, causing considerable shifts of the catalytic Ser630 side-chain and of the Tyr547 phenolic group, which forms the oxyanion hole. The tripeptide, mimicking a peptide substrate, is clamped to the active site through tight interactions via its N-terminal alpha-ammonium group, the P2 carbonyl group, the P1-l-Pro side-chain, the C-terminal carboxylate group, and the stable orthoacid ester amide formed between the scissile peptide carbonyl group and Ser630 O(gamma). This stable trapping of the tripeptide could be due to stabilization of the protonated His740 imidazolium cation by the adjacent negatively charged C-terminal carboxylate group, preventing proton transfer to the leaving group nitrogen atom. Docking experiments with the compact rigid 58 residue protein aprotinin, which had been shown to be processed by DPIV, indicate that the Arg1-Pro2 N terminus can access the DPIV active site only upon widening of its side openings, probably by separation of the first and the last propeller blades, and/or of the catalytic and the propeller domain.  相似文献   

15.
Activated T lymphocytes express high levels of dipeptidyl peptidase IV (DP IV)/CD26. Recent studies support the notion that DP IV may play an important role in the regulation of differentiation and growth of T lymphocytes. This article gives a short overview on DP IV/CD26 expression and effects on immune cells in vitro and in vivo. A major focus of this review are clinical aspects of the function of CD26 on hematopoietic cells and the potential usage of synthetic DP IV inhibitors as therapeutics in inflammatory disorders.  相似文献   

16.
A Sedo  E Krepela  E Kasafírek 《Biochimie》1989,71(6):757-761
A continuous-rate fluorometric assay of dipeptidyl peptidase IV (DP-IV) in viable human blood mononuclear cells using 7-(L-glycyl-L-prolylamido)-4-methylcoumarin as the substrate is described. The assay method is accurate, rapid, and highly sensitive for measuring the level of cell-surface bound DP-IV activity in suspension of blood mononuclear cells, as well as of other viable cells bearing this enzyme. We believe that the kinetic assay is suitable for studying the regulation of expression and the role of plasma membrane-bound DP-IV on the cellular level.  相似文献   

17.
Human dipeptidyl peptidase I (hDPPI, cathepsin C, EC 3.4.14.1) is a novel putative drug target for the treatment of inflammatory diseases. Using 1 as a starting point (IC50>10 microM), we have improved potency by more than 500-fold and successfully identified novel inhibitors of DPPI via screening of a one-bead-two-compounds library of semicarbazide derivatives. Selected compounds were shown to inhibit intracellular DPPI in RBL-2H3 cells. These compounds were further characterized for adverse effects on HepG2 cells (cytotoxicity and viability) and their metabolic stability in rat liver microsomes was estimated. One of the most potent inhibitors, 8 (IC50=31+/-3 nM; Ki=45+/-2 nM, competitive inhibition), is selective for DPPI over other cysteine and serine proteases, has a half-life of 24 min in rat liver microsomes, shows approximately 50% inhibition of intracellular DPPI at 20 microM and is noncytotoxic.  相似文献   

18.
The degradation of several bioactive peptides and proteins by purified human dipeptidyl peptidase IV is reported. It was hitherto unknown that human gastrin-releasing peptide, human chorionic gonadotropin, human pancreatic polypeptide, sheep prolactin, aprotinin, corticotropin-like intermediate lobe peptide and (Tyr-)melanostatin are substrates of this peptidase. Kinetic constants were determined for the degradation of a number of other natural peptides, including substance P, the degradation of which has been described earlier in a qualitative manner. Generally, small peptides are degraded much more rapidly than proteins. However, the Km-values seem to be independent of the peptide chain length. The influence of the action of dipeptidyl peptidase IV on the biological function of peptides and proteins is discussed.  相似文献   

19.
Hsiung HM  Smiley DL  Zhang XY  Zhang L  Yan LZ  Craft L  Heiman ML  Smith DP 《Peptides》2005,26(10):1988-1996
Human beta-MSH(1-22) was first isolated from human pituitary as a 22-amino acid (aa) peptide derived from a precursor protein, pro-opiomelanocortin (POMC). However, Bertagna et al. demonstrated that a shorter human beta-MSH(5-22), (DEGPYRMEHFRWGSPPKD), is a true endogenous peptide produced in human hypothalamus. In this report, we demonstrated that in vitro enzymatic cleavage of native human beta-MSH(5-22) with two ubiquitous dipeptidyl peptidases (DPP), DPP-I and DPP-IV, generated two potent MC3/4R peptide analogues, beta-MSH(7-22) (GPYRMEHFRWGSPPKD) and beta-MSH(9-22) (YRMEHFRWGSPPKD). In fact, the MC4R binding affinity and functional potency of beta-MSH(7-22) (Ki=4.6 nM, EC50=0.6 nM) and beta-MSH(9-22) (Ki=5.7 nM, EC50=0.6 nM) are almost an order of magnitude greater than those of their parent peptide, beta-MSH(5-22) (MC4R, Ki=23 nM, EC50= 3nM). Furthermore, the DPP-I/DPP-IV cleaved peptide, beta-MSH(9-22), when administered intracerebroventricularly (ICV) at a dose of 3 nmol/rat, potently induced an acute negative energy balance in a diet-induced obese rat model, while its parent molecule, beta-MSH(5-22), administered at the same dose did not have any effect. These data suggest that DPP-I and DPP-IV may play a role in converting the endogenous beta-MSH(5-22) to more potent peptides that regulate energy homeostasis in the hypothalamus.  相似文献   

20.
In the present report, we demonstrated that modulation of CD26 from T cell surface induced by antiCD26 (1F7) led to enhanced phosphorylation of CD3 zeta tyrosine residues and increased CD4 associated p56lck tyrosine kinase activity. We further showed that CD26 was comodulated on the T cell surface with CD45, a known membrane-linked protein tyrosine phosphatase and that anti-CD26 was capable of precipitating CD45 from T cell lysates. These findings strongly suggest that CD26 may be closely associated with the CD45 protein tyrosine phosphatase on T cell surface and further support the notion that the interaction of CD26 with CD45 results in enhanced tyrosine kinase activity, zeta chain phosphorylation, and T cell activation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号