首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The variability of the cocoa (Theobroma cacao) nuclear genome was investigated. A total of 203 cocoa clones was surveyed for restriction fragment length polymorphisms (RFLPs) using four restriction endonuclease and 31 seed cDNA probes. A high level of polymorphism has been found. This study points to a structuring of the species that fits with the distinction between the Criollo and Forastero populations. These results combined with previously obtained nuclear rDNA and mtDNA data allow us to propose new hypotheses on the origin and evolution of the different cocoa populations.  相似文献   

2.
Quantitative trait loci (QTL) mapping for bean traits and the number of ovules per ovary was carried out in cocoa (Theobroma cacao L.) using three test-cross progenies derived from crosses between a lower Amazon Forastero male parent (Catongo) and three female parents: one upper Amazon Forastero (IMC78) and two Trinitario (DR1 and S52). RFLP (restriction fragment length polymorphism), microsatellite, and AFLP (amplified fragment lengthpolymorphism) markers were used for mapping. Between one and six QTL for bean traits (length, weight, and shape index) and one and four QTL for the number of ovules per ovary were detected using composite interval mapping (CIM). Individual QTL explained between 5 and 24% of the phenotypic variation. QTL clusters were identified on several chromosomes, but particularly on chromosome 4. QTL related to bean traits were detected in the same region in both Trinitario parents and in a close region in the upper Amazon Forastero parent. In reference to a previous diversity study where alleles specific to Criollo and Forastero genotypes were identified, it was possible to speculate on the putative origin (Criollo or Forastero) of favorable QTL alleles segregating in both Trinitario studied.  相似文献   

3.
Cacao (Theobroma cacao L.) has been cultivated in Central America since pre-Columbian times. The type of cacao cultivated in this region was called Criollo; cacao populations from the Amazon basin were called Forastero. The type of Forastero most commonly cultivated until 1950 was named Amelonado. Historical data show Trinitario cacao to have originated in Trinidad, resulting from natural hybridisation between Criollo and Amelonado Forastero. Doubts persist on the source of the Amelonado Forastero involved in the origin of Trinitario; the Amelonado parent may have come from the Lower Amazon, the Orinoco or the Guyanas. Most of the cacao cultivated worldwide until 1950 consisted of Criollo, Trinitario and Amelonado. From the early 1950s, Forastero material collected in the Upper Amazon region during the 1930s and 1940s began to be employed in breeding programmes. To gain a better understanding of the origin and the genetic basis of the cacao cultivars exploited before the utilisation of germplasm collected in the Upper Amazon, a study was carried out using restriction fragment length polymorphism and microsatellite markers. Trinitario samples from 17 countries were analysed. With molecular markers, it was possible to clearly identify three main genotypes (represented by clones SP1, MAT1-6 and SIAL70) implicated in the origin of most Trinitario clones.  相似文献   

4.
 Random amplified polymorphic DNA (RAPD) and restriction fragment length polymorphism (RFLP) markers were used to evaluate genetic relationships within the Theobroma cacao species and to assess the organization of its genetic diversity. Genetic variability was estimated with 18 primers and 43 RFLP probes on 155 cocoa trees belonging to different morphological groups and coming from various geographic origins. The majority of the RFLP probes issued from low-copy DNA sequences. On the basis of on the genetic distance matrices, the two molecular methods gave related estimates of the genetic relationship between genotypes. Although an influence of cocoa morphological groups and geographical origins of trees was observed, a lack of gene differentiation characterized the T. cacao accessions studied. The continuous RFLP variability observed within the species may reflect the hybridization and introgressions between trees of different origins. Nevertheless, the Nacional type was detected to be genetically specific and different from well-known types such as Forastero, Criollo and Trinitario. Some of those genotypes were characterized by a low heterozygosity rate and may constitute the original Nacional pool. These results also provide information for the constitution of a cocoa tree core collection. Received: 10 June 1996/Accepted: 11 October 1996  相似文献   

5.
Cacao domestication I: the origin of the cacao cultivated by the Mayas   总被引:1,自引:0,他引:1  
Criollo cacao (Theobroma cacao ssp. cacao) was cultivated by the Mayas over 1500 years ago. It has been suggested that Criollo cacao originated in Central America and that it evolved independently from the cacao populations in the Amazon basin. Cacao populations from the Amazon basin are included in the second morphogeographic group: Forastero, and assigned to T. cacao ssp. sphaerocarpum. To gain further insight into the origin and genetic basis of Criollo cacao from Central America, RFLP and microsatellite analyses were performed on a sample that avoided mixing pure Criollo individuals with individuals classified as Criollo but which might have been introgressed with Forastero genes. We distinguished these two types of individuals as Ancient and Modern Criollo. In contrast to previous studies, Ancient Criollo individuals formerly classified as 'wild', were found to form a closely related group together with Ancient Criollo individuals from South America. The Ancient Criollo trees were also closer to Colombian-Ecuadorian Forastero individuals than these Colombian-Ecuadorian trees were to other South American Forastero individuals. RFLP and microsatellite analyses revealed a high level of homozygosity and significantly low genetic diversity within the Ancient Criollo group. The results suggest that the Ancient Criollo individuals represent the original Criollo group. The results also implies that this group does not represent a separate subspecies and that it probably originated from a few individuals in South America that may have been spread by man within Central America.  相似文献   

6.
Using fourteen random mitochondrial DNA probes, we have examined restriction fragment length polymorphism (RFLP) in wild and cultivatedHevea brasiliensis. A total of 395 accessions, including 345 from various prospectings collected in Brazil, Colombia and Peru and 50 cultivated clones, were analyzed. Two other species (H. benthamiana andH. pauciflora) were also included in the study for comparison. The high level of mitochondrial polymorphism allowed us to divide all the accessions analyzed into 212 distinct genotypes. The genetic variability of cultivated clones was limited to four genotypes forming two clusters. In contrast, considerable genetic variation was found in the wild collections. In almost all cases, accessions displaying the same RFLP profile were restricted to the same geographical area (same or neighbor administrative districts). In addition, accessions whose genetic closeness was predicted by RFLP profiles were also clustered according to geographical origin. In a few cases, however, similar RFLP profiles were found for accessions originating from geographically distant districts. This discrepancy can be explained either by seed dispersion (by river) or possibly by similar genetic events occurring independently in different geographical locations. Chloroplast DNA RFLP was also analyzed in 217 accessions, representative of 126 distinct mitochondrial genotypes. Very few differences were found, indicating that the chloroplast genome is more highly conserved than the mitochondrial genome.  相似文献   

7.
Summary Plants of two natural populations of Beta maritima, characterized by high percentages of male-sterile plants, have been investigated for organelle DNA polymorphism. We confirm the two classes of mitochondrial DNA variation previously described: (i) mitochondrial DNA (mtDNA) type N is associated with male fertility, whereas mtDNA type S can cause cytoplasmic male sterility (CMS); (ii) the 10.4-kb linear plasmid is observed in both types of mitochondria and is not correlated with the cytoplasmic male sterility occurring in this plant material. A third polymorphism is now described for chloroplast DNA (ctDNA). This polymorphism occurs within single populations of Beta maritima. Three different ctDNA types have been identified by HindIII restriction analysis. Among the plants studied, ctDNA type 1 is associated with N mitochondria and type 2 with S mitochondria. Chloroplast DNA type 3 has been found both in a fertile N plant and in a sterile S plant. This finding suggests that the chloroplast DNA polymorphism reported is not involved in the expression of male sterility. A comparison with Beta vulgaris indicates that ctDNA type 3 of Beta maritima corresponds to the ctDNA of fertile sugar beet maintainer lines. The three types of Beta maritima ctDNA described in this study differ from the ctDNA of male-sterile sugar beet.  相似文献   

8.
In a previous study we proposed that cytoplasmic genomes have played an important role in the evolution of Brassica amphidiploid species. Based on this and other studies, we hypothesized that interactions between the maternal cytoplasmic genomes and the paternal nuclear genome may cause alterations in genome structure and/or gene expression of a newly synthesized amphidiploid, which may play an important role in the evolution of natural amphidiploid species. To test this hypothesis, a series of synthetic amphidiploids, including all three analogs of the natural amphidiploids B. napus, B. juncea, and B. Carinata and their reciprocal forms, were developed. These synthetic amphidiploids were characterized for morphological traits, chromosome number, and RFLPs revealed by chloroplast, mitochondrial, and nuclear DNA clones. The maternal transmission of chloroplast and mitochondrial genomes was observed in all of the F1 hybrids examined except one hybrid plant derived from the B. rapa x B. oleracea combination, which showed a biparental transmission of organelles. However, the paternal chloroplast and mitochondrial genomes were not observed in the F2 progeny. Nuclear genomes of synthetic amphidiploids had combined RFLP patterns of their parental species for all of the nuclear DNA clones examined. A variation in fertility was observed among self-pollinated progenies of single amphidiploids that had completely homozygous genome constitutions. Comparisons between natural and synthetic amphidiploids based on restriction fragment length polymorphism (RFLP) patterns indicated that natural amphidiploids are considerably more distant from the progenitor diploid species than the synthetic amphidiploids. The utility of these synthetic amphidiploids for investigating the evolution of amphidiploidy is discussed.  相似文献   

9.
Summary The feasibility of creating a restriction fragment length polymorphism (RFLP) linkage map in Brassica species was assessed by screening EcoRI-, HindIII-, or EcoRV-digested total genomic DNA from several accessions of B. campestris, B. oleracea, and B. napus using random genomic DNA clones from three Brassica libraries as hybridization probes. Differences in restriction fragment hybridization patterns occurred at frequencies of 95% for comparisons of accessions among species, 79% for comparisons of accessions among subspecies within species, and 70% for comparisons among accessions within subspecies. In addition, species differences in the level of hybridization were noted for some clones. The high degree of polymorphism found even among closely related Brassica accessions indicates that RFLP analysis will be a very useful tool in genetic, taxonomic, and evolutionary studies of the Brassica genus. Development of RFLP linkage maps is now in progress.  相似文献   

10.
 The most important commercial species of coffee, Coffea arabica, which produces 73% of the world's coffee crop and almost all of the coffee in Latin America, is the only tetraploid (allotetraploid, 2n=4x=44) species known in the genus. High-frequency somatic embryogenesis, plant regeneration and plant recovery were achieved from leaf explants of a mature, elite plant of C. arabica cv. Cauvery (S-4347) using a two-step culture method. To assess the genetic integrity of the nuclear, mitochondrial and chloroplast genomes among the hardened regenerants, we employed multiple DNA markers (RFLP, RAPD, ISSR) for sampling various regions of the genome. Although the nuclear and mitochondrial genomes of the mother plant and five ramets derived from the mother ortet were similar in organization, this was not so in the somatic embryo-derived plants where both nuclear and mitochondrial genomes changed in different, characteristic ways and produced novel genome organizations. A total of 480 genetic loci, based on the data obtained from a total of 16 nuclear, mitochondrial and chloroplast gene probes, in combination with nine restriction enzyme digests, 38 RAPD and 17 SSR primers, were scored in 27 somatic embryo-derived plants and the single control. Among these, 44 loci were observed to be polymorphic. A relatively low level of polymorphism (4.36%) was found in the nuclear genome, while polymorphism in the mitochondrial genome (41%) was much higher. No polymorphism was detected in the chloroplast genome. The polymorphism in the mitochondrial genome was found in only 4 plants. Such selective polymorphism was not true for the nuclear genome. Thus, this in-depth and comprehensive study demonstrates, for the first time, the presence of subtle genetic variability and novel genome organizations in the commercially well-established somatic embryogenesis-derived plants of this important coffee species. Received: 2 July 1999 / Revision received: 1 February 2000 / Accepted: 17 February 2000  相似文献   

11.
The selection of productive varieties of modern Criollo cocoa, showing fine aromatic qualities in their beans, is of major interest for some producing countries, such as Venezuela. Cultivated populations of Modern Criollo or Trinitario varieties may be suitable for admixture mapping analysis, as large blocks of alleles derived from two identified divergent ancestors, recently admixed, are still preserved, after a few generations of recombination, similar to experimental mapping progenies. Two hundred and fifty-seven individuals from a cultivated population of Modern Criollo were selected and analysed with 92 microsatellite markers distributed along the genome. This population exhibited a wide range of variability for yield factors and morphological features. Population structure analysis identified two main subgroups corresponding to the admixture from the two ancestors Criollo and Forastero. Several significant associations between markers and phenotypic data (yield factors and morphological traits) were identified by a least squares general linear model (GLM) taking into account the population structure and the percentage of admixture of each individual. Results were compared with classical QTL analyses previously reported for other cacao populations. Most markers associated to quantitative traits were very close to QTLs detected formerly for the same traits. Associations were also identified between markers and several qualitative traits including the red pigmentation observed in different organs, mainly associated to common markers in linkage group 4.  相似文献   

12.
Mitochondrial genome organization and cytoplasmic male sterility in plants   总被引:2,自引:0,他引:2  
Plant mitochondrial genomes are much larger and more complex than those of other eukaryotic organisms. They contain a very active recombination system and have a multipartite genome organization with a master circle resolving into two or more subgenomic circles by recombination through repeated sequences. Their protein coding capacity is very low and is comparable to that of animal and fungal systems. Several subunits of mitochondrial functional complexes, a complete set of tRNAs and 26S, 18S and 5S rRNAs are coded by the plant mitochondrial genome. The protein coding genes contain group II introns. The organelle genome contains stretches of DNA sequences homologous to chloroplast DNA. It also contains actively transcribed DNA sequences having open reading frames. Plasmid like DNA molecules are found in mitochondria of some plants Cytoplasmic male sterility in plants, characterized by failure to produce functional pollen grains, is a maternally inherited trait. This phenomenon has been found in many species of plants and is conveniently used for hybrid plant production. The genetic determinants for cytoplasmic male sterility reside in the mitochondrial genome. Some species of plants exhibit more than one type of cytoplasmic male sterility. Several nuclear genes are known to control expression of cytoplasmic male sterility. Different cytoplasmic male sterility types are distinguished by their specific nuclear genes(rfs) which restore pollen fertility. Cytoplasmic male sterility types are also characterized by mitochondrial DNA restriction fragment length polymorphism patterns, variations in mitochondrial RNAs, differences in protein synthetic profiles, differences in sensitivity to fungal toxins and insecticides, presence of plasmid DNAs or RNAs and also presence of certain unique sequences in the genome. Recently nuclear male sterility systems based on (i) over expression of agrobacterialrol C gene and (ii) anther specific expression of an RNase gene have been developed in tobacco andBrassica by genetic engineering methods.  相似文献   

13.
Cai Y  Xiang F  Zhi D  Liu H  Xia G 《Plant cell reports》2007,26(10):1809-1819
In order to genotype hybrid genomes of distant asymmetric somatic hybrids, we synthesized hybrid calli and plants via PEG-mediated protoplast fusion between recipient tall fescue (Festuca. arundinacea Schreb.) and donor wheat (Triticum aestivum L.). Seventeen and 25 putative hybrid clones were produced from the fusion combinations I and II, each with the donor wheat protoplast treated by UV light for 30 s and 1 min, respectively. Isozyme and RAPD profiles confirmed that ten hybrid clones were obtained from combination I and 19 from combination II. Out of the 29 hybrids, 12 regenerated hybrid plants with tall fescue phenotype. Composition and methylation-variation of the nuclear and cytoplasmic genomes of some hybrids, either with or without regenerative ability, were compared by genomic in situ hybridization, restriction fragment length polymorphism, and DNA methylation-sensitive amplification polymorphism. Our results indicated that these selected hybrids all contained introgressed nuclear and cytoplasmic DNA as well as obvious methylation variations compared to both parents. However, there were no differences either in nuclear/cytoplasmic DNA or methylation degree between the regenerable and non-regenerable hybrid clones. We conclude that both regeneration complementation and genetic material balance are crucial for hybrid plant regeneration.  相似文献   

14.
Summary A circular supercoiled mitochondrial DNA plasmid P1 (1.45 kb) is shown in both normal fertile plants of Helianthus annuus, and some cytoplasmic male sterile lines (CMS A and CMS P). In contrast, no plasmid is found in some other types of CMS C, I, B and K. A circular supercoiled DNA (P2) of higher molecular weight (1.8 kb) is observed in CMS F. The mitochondrial plasmid P1 was cloned, nick-translated and hybridized with native mitochondrial DNA from different lines of male fertile, CMS or wild Helianthus. No sequence homology has been detected between plasmid DNA P1 and high molecular weight mitochondrial DNA in any line examined. A slight hybridization occurs between plasmids P1 and P2. Thus, there is no apparent relationship between mitochondrial plasmid DNA and CMS or Helianthus species. On the contrary, each Helianthus CMS and male fertile strain can be characterized by digestion fragment patterns (Sal I and Bgl I). Analysis of mitochondrial DNA from wild Helianthus strains indicated a relation between some CMS and the strain from which they were maternally derived, as for example CMS I and H. annuus ssp lenticularis and CMS F and H. petiolaris fallax. On the basis of restriction endonuclease patterns, a CMS phylogenic tree is proposed which illustrates a molecular polymorphism in the mitochondrial genome of Helianthus.  相似文献   

15.
Summary By using restriction endonuclease digestion patterns, the degree of intraspecific polymorphism of mitochondrial DNA in four diploid species of wheat and Aegilops, Ae. speltoides, Ae. longissima, Ae. squarrosa, and Triticum monococcum, was assessed. The outbreeding Ae. speltoides was found to possess the highest degree of variability, the mean number of nucleotide substitutions among conspecific individuals being 0.027 substitutions per nucleotide site. A very low degree of mtDNA variation was detected among Ae. longissima accessions, with most of the enzyme-probe combinations exhibiting uniform hybridization patterns. The mean number of substitutions among Ae. longissima individuals was 0.001 substitutions per nucleotide site. The domesticated diploid wheat T. monococcum var. monococcum and its conspecific variant T. monococcum var. boeoticum seem to lack mitochondrial DNA variability altogether. Thus, the restriction fragment pattern can be used as a characteristic identifier of the T. monococcum cytoplasmic genome. Similarly, Ae. squarrosa accessions were found to be genetically uniform. A higher degree of variation among accessions is observed when noncoding sequences are used as probes then when adjacent coding regions are used. Thus, while noncoding regions may contain regulatory functions, they are subject to less stringent functional constraints than protein-coding regions. Intraspecific variation in mitochondrial DNA correlates perfectly with the nuclear variability detected by using protein electrophoretic characters. This correlation indicates that both types of variation are selectively neutral and are affected only by the effective population size.  相似文献   

16.
We have constructed and validated the first cocoa (Theobroma cacao L.) BAC library, with the aim of developing molecular resources to study the structure and evolution of the genome of this perennial crop. This library contains 36,864 clones with an average insert size of 120 kb, representing approximately ten haploid genome equivalents. It was constructed from the genotype Scavina-6 (Sca-6), a Forastero clone highly resistant to cocoa pathogens and a parent of existing mapping populations. Validation of the BAC library was carried out with a set of 13 genetically-anchored single copy and one duplicated markers. An average of nine BAC clones per probe was identified, giving an initial experimental estimation of the genome coverage represented in the library. Screening of the library with a set of resistance gene analogues (RGAs), previously mapped in cocoa and co-localizing with QTL for resistance to Phytophthora traits, confirmed at the physical level the tight clustering of RGAs in the cocoa genome and provided the first insights into the relationships between genetic and physical distances in the cocoa genome. This library represents an available BAC resource for structural genomic studies or map-based cloning of genes corresponding to important QTLs for agronomic traits such as resistance genes to major cocoa pathogens like Phytophthora spp (palmivora and megakarya), Crinipellis perniciosa and Moniliophthora roreri.Communicated by J.W. Snape  相似文献   

17.
Summary Among the fertile sugar beet lines with nuclear sterility maintenance genes, rf, in a homozygous recessive state, sublines capable of reverting spontaneously at a high rate to sterility were identified. Of 24 related fertile sublines studied, 6 were found to spontaneously revert to sterility with a frequency of about 19%. Genetic analysis confirmed the cytoplasmic nature of spontaneously arising sterility. Reversion to sterility in these sublines was accompanied by alterations in the mitochondrial genome structure: loss of the autonomously replicating minicircle c (1.3 kb) and changes in the restriction patterns of high-molecular-weight mitochondrial DNA (mtDNA). Southern hybridixation analysis with cloned minicircle c as a probe revealed no integration of this DNA molecule into the main mitochondrial and nuclear genomes of the revertants. Comparative BamHI and EcoRI restriction analysis of the mtDNA from the sterile revertants and fertile parental subline showed that the spontaneous reversion is accompanied by extensive genomic rearrangement. Southern blot analysis with cloned -subunit of F1-ATPase (atpA) and cytochrome c oxidase subunit II (COX II) genes as probes indicated that the changes in mtDNA accompanying spontaneous reversion to sterility involved these regions. The mitochondrial genomes of the spontaneous revertants and the sterile analogue were shown to be identical.  相似文献   

18.
Summary The mitochondrial genomes of five rapeseed somatic hybrid plants, which combine in a first experimentBrassica napus chloroplasts and a cytoplasmic male sterility trait coming fromRaphanus sativus, and in a second experiment chloroplasts of a triazine resistantB. compestris and a cytoplasmic male sterility trait fromR. sativus, were analyzed by restriction endonucleases. Restriction fragment patterns indicate that these genomes differ from each other and from both parents. The presence of new bands in the somatic hybrid mitochondrial DNA restriction patterns is evidence of mitochondrial recombination in somatic hybrid cells. In both parental and somatic hybrid plants large quantitative variations in a mitochondrial plasmid-like DNA have been observed. Our results suggest that the cytoplasmic support for male sterility is located in the chromosomal mitochondrial DNA instead of the plasmid-like DNA.  相似文献   

19.
The phylogenetic relationships among the three species of Tinospora found in India are poorly understood. Morphology does not fully help to resolve the phylogeny and therefore a fast approach using molecular analysis was explored. Two molecular approaches viz Random Amplified Polymorphic DNA (RAPD) assay and restriction digestion of ITS1-5.8S-ITS2 rDNA (PCR-RFLP) were used to evaluate the genetic similarities between 40 different accessions belonging to three species. Of the 38 random primers used only six generated the polymorphism, while as three out of 11 restriction enzymes used gave polymorphic restriction patterns. The average proportion of polymorphic markers across primers was 95%, however restriction endonucleases showed 92% polymorphism. RAPD alone was found suitable for the species diversions. In contrast PCR- RFLP showed bias in detecting exact species variation. The correlation between the two markers was performed by Jaccard's coefficient of similarity. A significant (r= 0.574) but not very high correlation was obtained. Further to authenticate the results obtained by two markers, sequence analysis of ITS region of ribosomal DNA (ITS1 and ITS2, including 5.8S rDNA) was performed. Three independent clones of each species T. cordifolia, T. malabarica and T. crispa were sequenced. Phylogenetic relationship inferred from ITS sequences is in agreement with RAPD data.  相似文献   

20.
To elucidate the phylogenetic relationships and cytoplasmic types, restriction endonuclease fragment patterns of chloroplast (cp) and mitochondrial (mt) DNAs isolated from two different accessions of Dasypyrum villosum (L.) candargy were compared with those of tetraploid wheat (Triticum durum Desf., PI265007), hexaploid wheat (Triticum aestivum L., cv Chinese Spring), Aegilops longissimum (S. and M., in Muschli) Bowden and Hordeum vulgare L. T. aestivum and T. durum had identical restriction patterns for their cp and mtDNAs in digestions with four different enzymes. Likewise, no differences were found between the restriction fragment patterns of two accessions of D. villosum. But, there were distinct differences in chloroplast and mitochondrial DNA restriction fragment patterns between D. villosum and tetraploid and hexaploid wheats. A. longissimum (G609) showed a similar pattern to those wheats for PstI digestion of cpDNA. Organellar DNA from Hordeum vulgare (cv Himalaya) showed a distinctly different restriction pattern from those of wheat and D. villosum. These results suggest that D. villosum is unlikely to be the donor of cytoplasm to wheats, and its cytoplasmic organelles were also different from those of A. longissimum.Contribution No. 92-522-J from the Kansas Agricultural Experiment Station; Kansas State University, Manhattan, Kansas, USA  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号