首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Our data suggest that impaired activity of myeloperoxidase (MPO) may play an important role in the dysfunction of neutrophils from hyperglycemic rats. Neutrophil biochemical pathways include the NADPH oxidase system and the MPO enzyme. They both play important role in the killing function of neutrophils. The effect of hyperglycemia on the activity of these enzymes and the consequences with regard to Candida albicans phagocytosis and the microbicidal property of rat peritoneal neutrophils is evaluated here. The NADPH oxidase system activity was measured using chemiluminescence and cytochrome C reduction assays. MPO activity was measured by monitoring HOCl production, and MPO protein expression was analysed using Western blot and immunofluorescence. C. albicans phagocytosis and death were evaluated by optical microscopy using the May-Grunwald-Giemsa staining method. ROS generation kinetic was slightly delayed in the diabetic group. MPO expression levels were higher in diabetic neutrophils; however, MPO activity was decreased in these same neutrophils compared with the controls. C. albicans phagocytosis and killing were lower in the diabetic neutrophils. Based on our experimental model, the phagocytic and killing functions of neutrophil phagocytosis are impaired in diabetic rats because of the decreased production of HOCl, highlighting the importance of MPO in the microbicidal function of neutrophils. Copyright ? 2012 John Wiley & Sons, Ltd.  相似文献   

2.
Candida albicans is among the most important fungal pathogens in humans. Morphological plasticity has been linked to its pathogenic potential as filamentous forms are associated with tissue invasion and infection. Here we show that human neutrophils discriminate between yeasts and filaments of C. albicans . Whereas filaments induced targeted motility, resulting in the establishment of close contact between neutrophils and fungal cells, yeast forms were largely ignored during coincubation. In transwell assays, C. albicans filaments induced significantly higher migratory activity in neutrophils than yeasts. Neutrophil motility based on actin rearrangement was essential for killing of C. albicans filaments but not involved in killing of yeast forms. Using inhibitors for MAP-kinase cascades, it was shown that recognition of C. albicans filaments by neutrophils is mediated via the MEK/ERK cascade and independent of JNK or p38 activation. Inhibition of the ERK signalling pathway abolished neutrophil migration induced by C. albicans filaments and selectively impaired the ability to kill this morphotype. These data show that invasive filamentous forms of C. albicans trigger a morphotype-specific activation of neutrophils, which is strongly dependent on neutrophil motility. Therefore, human neutrophils are capable of sensing C. albicans invasion and initiating an appropriate early immune response.  相似文献   

3.
Neutrophil granules contain proteins important in host defense against bacterial pathogens. Granule proteins released from activated neutrophils facilitate opsonization, phagocytosis, tissue digestion, and antimicrobial activity. Three similar, if not identical, neutrophil proteins, bactericidal/permeability-increasing protein (BPI), 57,000 m.w. cationic antimicrobial protein, and bactericidal protein have been described that specifically kill gram negative bacteria. Since LPS is a structure common to all gram-negative bacteria, we investigated whether the microbicidal protein BPI affects biologic activity of LPS in vitro. Human neutrophils can be activated both in vitro and in vivo by LPS. Upon stimulation, surface expression of CR1 and CR3 increases markedly. Using flow microfluorimetry, we analyzed surface expression of CR1 and CR3 as a measure of neutrophil stimulation in response to LPS. CR up-regulation on neutrophils was TNF independent, suggesting direct LPS stimulation of neutrophils in this system. Purified BPI completely inhibited CR up-regulation on neutrophils stimulated with both rough and smooth LPS chemotypes at 1.8 to 3.6 nM (100 to 200 ng/ml). By comparison, the polypeptide antibiotic polymyxin B completely inhibited the same dose of LPS at 0.4 nM. The inhibitory activity of BPI appeared to be specific for LPS because neutrophil stimulation by formylated peptide or TNF was unaffected. The specificity of BPI for LPS was further demonstrated by inhibition of LPS activity in the limulus amebocyte lysate assay. Therefore, the role of BPI in infection may not be limited to its microbicidal activity, but it may also regulate the neutrophil response to LPS.  相似文献   

4.
IL-33 is known to play an important role in Th2 immunity. In this study, we investigated the effect of IL-33 pretreatment on anti-fungal response using an acute Candida albicans peritoneal infection model. IL-33 pretreatment induced a rapid fungal clearance and markedly reduced the C. albicans infection-associated mortality. The priming effect of IL-33 occurred during multiple steps of the neutrophil-mediated anti-fungal response. First, the anti-fungal effect occurred due to the rapid and massive recruitment of neutrophils to the site of infection as a result of the release of CXCR2 chemokines by peritoneal macrophages and by reversal of the TLR-induced reduction of CXCR2 expression in neutrophils during IL-33 priming. Second, conditioning of neutrophils by IL-33 activated the TLR and dectin-1 signaling pathways, leading to the upregulation of complement receptor 3 expression induced by C. albicans. Upregulated CR3 in turn increased the phagocytosis of opsonized C. albicans and resulted in the production of high levels of reactive oxygen species and the subsequent enhanced killing activity of neutrophils. Taken together, our results suggest that IL-33 can regulate the anti-fungal activity of neutrophils by collaborative modulation of the signaling pathways of different classes of innate immune receptors.  相似文献   

5.
In the present study we examined human neutrophils for the expression of a receptor capable of binding C3dg and defined the relationship of this receptor to those that have been previously described, namely CR1, CR2, and CR3. C3dg was isolated from serum depleted of plasminogen, supplemented with 20 mM Mg++, and incubated at 37 degrees C for 6 to 8 days. The purified protein was homogeneous when analyzed by polyacrylamide gel electrophoresis and exhibited an apparent m.w. of 41,000. C3dg was polymerized by treatment with dimethyl suberimidate, and the dimer was isolated by gel filtration. Binding of both monomeric and dimeric 125I-labeled C3dg to neutrophils was saturable, and the latter ligand bound to an average of 12,400 sites/cell among nine normal individuals. At 4 degrees C, bound monomeric C3dg dissociated from neutrophils with an average t1/2 of 30 min, whereas dimeric C3dg dissociated with a t1/2 in excess of 120 min. Specific binding of multimeric C3dg was cation independent and was competitively inhibited by molar concentrations of iC3b and C3d that were equivalent to the inhibitory concentrations of unlabeled C3dg; C3b was less able to compete with C3dg for binding to these sites. The capacity of this neutrophil receptor to bind iC3b, C3dg, and C3d suggested its possible identity as CR2 or CR3. However, no specific binding to neutrophils of 125I-labeled HB-5 monoclonal anti-CR2 was detected. Furthermore, uptake of 125I-labeled C3dg was not inhibited by saturating concentrations of rabbit anti-CR1, anti-Mac-1, or OKM10. Thus, a receptor resides on neutrophils that binds the C3d region of iC3b and C3dg and is distinct from CR1, CR2, and CR3.  相似文献   

6.
Candida albicans is an opportunistic fungal pathogen of humans that resides commensally on epithelial surfaces, but can cause inflammation when pathogenic. Resolvins are a class of anti-inflammatory lipids derived from omega-3 polyunsaturated fatty acids (PUFA) that attenuate neutrophil migration during the resolution phase of inflammation. In this report we demonstrate that C. albicans biosynthesizes resolvins that are chemically identical to those produced by human cells. In contrast to the trans-cellular biosynthesis of human Resolvin E1 (RvE1), RvE1 biosynthesis in C. albicans occurs in the absence of other cellular partners. C. albicans biosynthesis of RvE1 is sensitive to lipoxygenase and cytochrome P450 monoxygenase inhibitors. We show that 10nM RvE1 reduces neutrophil chemotaxis in response to IL-8; 1nM RvE1 enhanced phagocytosis of Candida by human neutrophils, as well as intracellular ROS generation and killing, while having no direct affect on neutrophil motility. In a mouse model of systemic candidiasis, RvE1 stimulated clearance of the fungus from circulating blood. These results reveal an inter-species chemical signaling system that modulates host immune functions and may play a role in balancing host carriage of commensal and pathogenic C. albicans.  相似文献   

7.
Neutrophils phagocytose and kill microbes upon phagolysosomal fusion. Recently we found that activated neutrophils form extracellular fibres that consist of granule proteins and chromatin. These neutrophil extracellular traps (NETs) degrade virulence factors and kill Gram positive and negative bacteria. Here we show for the first time that Candida albicans, a eukaryotic pathogen, induces NET-formation and is susceptible to NET-mediated killing. C. albicans is the predominant aetiologic agent of fungal infections in humans, particularly in immunocompromised hosts. One major virulence trait of C. albicans is its ability to reversibly switch from singular budding cells to filamentous hyphae. We demonstrate that NETs kill both yeast-form and hyphal cells, and that granule components mediate fungal killing. Taken together our data indicate that neutrophils trap and kill ascomycetous yeasts by forming NETs.  相似文献   

8.
Macrophages co-incubated with Candida albicans strain CR1 in vitro showed early signs of apoptosis, but evolved to necrosis after 2 h. In this study, we investigated whether strain CR1 caused apoptosis or necrosis of macrophages after its inoculation into mice peritoneal cavity, and whether this correlated with the secretion of IL-10. Peritoneal macrophages from mice that received an inoculum of C. albicans CR1 showed signs of apoptosis and necrosis from 30 min to 2 h afterwards, whereas heat-killed C. albicans did not cause those effects. IL-10 production was low during the first 6 h post-infection, when macrophages predominated in the peritoneal exudate, whereas its higher production after 24 h correlated with an increase of neutrophils in the exudate. Treatment of CR1 with pepstatin (an inhibitor of proteinases) prevented the process of apoptosis and significantly reduced IL-10 production, suggesting that the increased production of IL-10 was caused by processes occurring during the initial phase of infection, such as apoptosis, necrosis and uptake of death cells.  相似文献   

9.
TNF-alpha and lymphotoxin-alpha (LT) are members of the TNF family, and these cytokines play crucial roles in the defense against infection with Candida albicans. The aim of the present study was to investigate the role of endogenous TNF and LT during disseminated candidiasis in TNF-/-LT-/- knockout mice. The TNF- and LT-deficient animals had a significantly increased mortality following C. albicans infection compared with control mice, and this was due to a 10- to 1000-fold increased outgrowth of the yeast in their organs. No differences between TNF-/-LT-/- mice and TNF+/+LT+/+ were observed when mice were rendered neutropenic, suggesting that activation of neutrophils mediates the beneficial effects of endogenous TNF and LT. Histopathology of the organs, combined with neutrophil recruitment experiments, showed a dramatic delay in the neutrophil recruitment at the sites of Candida infection in the TNF-/-LT-/- mice. Moreover, the neutrophils of deficient animals were less potent to phagocytize Candida blastospores than control neutrophils. In contrast, the killing of Candida and the oxygen radical production did not differ between neutrophils of TNF-/-LT-/- and TNF+/+LT+/+ mice. Peak circulating IL-6 was significantly higher in TNF-/-LT-/- mice during infection. Peritoneal macrophages of TNF-/-LT-/- mice did not produce TNF, and synthesized significantly lower amounts of IL-1alpha, IL-1beta, IL-6, and macrophage-inflammatory protein-1alpha than macrophages of TNF+/+LT+/+ animals did. In conclusion, endogenous TNF and/or LT contribute to host resistance to disseminated candidiasis, and their absence in TNF-/-LT-/- mice renders the animals susceptible through impaired recruitment of neutrophils and impaired phagocytosis of C. albicans.  相似文献   

10.
Abstract A range of recombinant cytokines have now been shown to modify aspects of the phenotype and function of human and murine neutrophils. However, few reports describe modification of the bactericidal activity of neutrophils. We therefore examined the recombinant murine cytokines tumor necrosis factor-α (TNF-α, 10–1000 ng ml−1) and granulocyte macrophage-colony stimulating factor (GM-CSF, 10–1000 U ml−1) for their ability to increase the bacterial killing capacity of murine neutrophils. Neutrophils from either bone marrow (fresh or cultured), or peritoneal exudates, or abscesses, were pre-incubated with either cytokine for 30–60 min and the killing of Proteus mirabilis, Escherichia coli , or Bacteriodes fragilis was examined in the presence or absence of serum over a 90 min period. Only for one combination was a small but significantly enhanced level of bacterial killing observed, the phagocytic killing of P. mirabilis by peritoneal exudate neutrophils in the presence of GM-CSF and serum. With this exception there was no enhancement of bacterial killing for the range of combinations of neutrophils and bacterial species tested. In contrast, at the concentrations tested for effect on bactericidal activity, TNF-α and GM-CSF were able to significantly upregulate CR3(but not FcγRII) expression on mouse neutrophils. There results indicate that upregulation of CR3 as an index of neutrophil activation does not necessarily correlate with increased bactericidal activity.  相似文献   

11.
Hyperoxia-induced lung injury is characterized by infiltration of activated neutrophils in conjunction with endothelial and epithelial cell injury, followed by fibrogenesis. Specific mechanisms recruiting neutrophils to the lung during hyperoxia-induced lung injury have not been fully elucidated. Because CXCL1 and CXCL2/3, acting through CXCR2, are potent neutrophil chemoattractants, we investigated their role in mediating hyperoxia-induced lung injury. Under variable concentrations of oxygen, murine survival during hyperoxia-induced lung injury was dose dependent. Eighty percent oxygen was associated with 50% mortality at 6 days, while greater oxygen concentrations were more lethal. Using 80% oxygen, we found that lungs harvested at day 6 demonstrated markedly increased neutrophil sequestration and lung injury. Expression of CXCR2 ligands paralleled neutrophil recruitment to the lung and CXCR2 mRNA expression. Inhibition of CXC chemokine ligands/CXCR2 interaction using CXCR2(-/-) mice exposed to hyperoxia significantly reduced neutrophil sequestration and lung injury, and led to a significant survival advantage as compared with CXCR2(+/+) mice. These findings demonstrate that CXC chemokine ligand/CXCR2 biological axis is critical during the pathogenesis of hyperoxia-induced lung injury.  相似文献   

12.
Neutrophil apoptosis is delayed under trauma and/or sepsis conditions. The mechanism for the delay has remained unclear. We hypothesize that modulation of the mitochondrial pathway of apoptosis contributes to the delay in neutrophil apoptosis with burn injury. Rats were subjected to burn injury (30% of total body surface area, 98°C for 10 s) and euthanatized 24 h postinjury. Blood neutrophils from sham and burn-injured rats were isolated by Ficoll gradient centrifugation and cultured for 2 or 8 h. Neutrophil apoptosis was determined by annexin V and propidium iodide (PI) labeling and flow cytometry. Neutrophil mitochondrial morphology was assessed via histochemical staining (MitoTracker GreenFM) and confocal microscopy. Neutrophils from rats with burn injury showed a decreased level of apoptosis compared with sham rat neutrophils at both 2 and 8 h of incubation. In incubated sham rat neutrophils, mitochondria showed a change from normal "tubular" to an "aggregated" morphology. In contrast, cultured neutrophils from burn rats did not exhibit this mitochondrial morphological transition until 8 h of incubation. Compared with sham rat neutrophils, neutrophils from burn rats showed decreased levels of active caspase-9 and -3. Whereas an upregulation of Bcl-xL and a downregulation of Bax seemed to contribute to decreased apoptosis in burn rat neutrophils at 2 h of incubation, the decreased apoptosis at 8 h appeared to be associated with a decrease in Bax and increased phosphorylated Bad. These data suggest that suppression of the mitochondrial pathway plays an essential role in the delay of polymorphonuclear neutrophil apoptosis with burn injury. burn; rat; polymorphonuclear leukocytes; caspase-3; caspase-9; cytochrome c; Bcl-xL; Bax; Bad; MitoTracker GreenFM; confocal microscopy  相似文献   

13.
Video-intensification fluorescence microscopy has been used to study the cell surface distribution of the complement receptor (CR) for C3bi (CR3) on human neutrophils. Fluorescein- or rhodamine-labeled monoclonal IgG or Fab fragments of antireceptor antibody were used as probes of receptor localization. C3bi receptors are uniformly distributed on untreated cells. Glass coverslips were coated with lipopolysaccharide (LPS) and serum was added; the serum deposits complement components, including C3bi, on the surface. When neutrophils were adherent to these coverslips, receptors were found in large clusters, and a fraction of the fluorescence remained uniform. Double-labeling studies were conducted by first labeling with anti-CR3 followed by attachment to LPS/serum-treated slides. This, in turn, was followed by labeling with the antibody conjugated to a second fluorophore. These studies revealed that the CR3 clusters were predominantly new antigenic sites exposed after attachment to the LPS/serum-treated slides. To determine the contribution of granule-associated CR3, we have studied neutrophils defective in receptor up-regulation, neutrophil cytoplasts, and a stimulator of granule release, A23187. Neutrophils from a patient with specific granule deficiency were found to be defective in granular CR3 and did not form clusters on C3-modified surfaces. The patient's neutrophils were defective in CR3 up-regulation and enzyme release as shown by fluorescence flow cytometry and gelatinase release, respectively. Cytoplasts also failed to show CR3 clusters on LPS/serum-treated coverslips. Furthermore, neutrophils treated with A23187 demonstrated numerous CR3 clusters. We suggest that formation of CR3 membrane domains during immune recognition requires the participation of intracellular granules. We speculate that these domains are formed by fusion of CR3-bearing granules at local sites of adhesion.  相似文献   

14.
Interleukin-10 inhibits neutrophil phagocytic and bactericidal activity   总被引:10,自引:0,他引:10  
Abstract Effective host defense against bacterial invasion is characterized by the vigorous recruitment and activation of inflammatory cells, which is dependent upon the coordinated expression of both pro- and anti-inflammatory cytokines. Interleukin-10 (IL-10) is a recently described cytokine with potent anti-inflammatory properties in vivo and in vitro. In this study we investigated whether IL-10 could directly regulate the ability of neutrophils (PMN) to phagocytose and kill bacteria. Initial studies demonstrated that human recombinant IL-10 (hrIL-10) inhibited the ability of PMN to phagocytose Escherichia coli in vitro. Inhibition of phagocytosis occurred in the absence of changes in CR1 (C3b) or Fc receptor expression, as treatment of PMN with IL-10 failed to induce significant changes in FcγIIR, FcγIIIR or CR1 cell surface expression. However, incubation of PMN with IL-10 resulted in a dose-dependent decrease in CD11b (Mac-1) expression. In addition to effects on PMN phagocytosis, hrIL-10 significantly attenuated PMN microbicidal activity, as bactericidal assays revealed that co-incubation of PMN with hrIL-10 resulted in a marked decrease in killing of phagocytosed bacteria. Furthermore, IL-10 inhibited the production of superoxide from PMA-stimulated PMN, suggesting that the detrimental effects of IL-10 on PMN microbicidal activity were due, in part, to suppression of respiratory burst. In summary, our studies indicate that IL-10 inhibits PMN-dependent phagocytosis and killing of E. coli in vitro, and suggest that this cytokine may impair effective antibacterial host defense in vivo.  相似文献   

15.
As measured by fluorescence microscopy and radioligand binding, C3b/C4b receptors (CR1) became attached to the detergent-insoluble cytoskeleton of human neutrophils when receptors were cross-linked by affinity-purified polyclonal F(ab')2 anti-CR1, dimeric C3b, or Fab monoclonal anti-CR1 followed by F(ab')2 goat anti-mouse F(ab')2. CR1 on neutrophils bearing monovalent anti-CR1 was not attached to the cytoskeleton. In contrast, cross-linked CR1 on erythrocytes and cross-linked MHC Class I on neutrophils were not cytoskeleton associated. A possible role for filamentous actin (F-actin) in the binding of cross-linked CR1 to neutrophil cytoskeleton was suggested by three observations. When neutrophils were differentially extracted with either Low Salt-detergent buffer or High Salt-detergent buffer, stained with FITC-phalloidin, and examined by fluorescent flow cytometry, the residual cytoskeletons generated with the former buffer were shown to contain polymerized F-actin, whereas cytoskeletons generated with the latter buffer were found to be depleted of F-actin. In parallel experiments, High Salt-detergent buffer was also found to release cross-linked CR1 from neutrophils. Second, depolymerization of F-actin by DNAse I released half of the cytoskeletal-associated cross-linked CR1. Third, immunoadsorbed neutrophil CR1, but not MHC Class I or erythrocyte CR1, specifically bound soluble 125I-actin. In addition, Fc receptor and CR3, other phagocytic membrane proteins of neutrophils, specifically bound 125I-actin. These data demonstrate that CR1 cross-linked on neutrophils becomes associated with detergent-insoluble cytoskeleton and that this interaction is mediated either directly or indirectly by actin.  相似文献   

16.
Chloride ion efflux is an early event occurring after exposure of human neutrophils to several soluble agonists. Under these circumstances, a rapid and reversible fall in the high basal intracellular chloride (Cl-i) levels is observed. This event is thought to play a crucial role in the modulation of several critical neutrophil responses including activation and up-regulation of adhesion molecules, cell attachment and spreading, cytoplasmic alkalinization, and activation of the respiratory burst. At present, however, no data are available on chloride ion movements during neutrophil phagocytosis. In this study, we provide evidence that phagocytosis of Candida albicans opsonized with either whole serum, complement-derived opsonins, or purified human IgG elicits an early and long-lasting Cl- efflux accompanied by a marked, irreversible loss of Cl-i. Simultaneous assessment of Cl- efflux and phagocytosis in cytochalasin D-treated neutrophils indicated that Cl- efflux occurs without particle ingestion. These results suggest that engagement of immune receptors is sufficient to promote chloride ion movements. Several structurally unrelated chloride channel blockers inhibited phagocytosis-induced Cl- efflux as well as the release of azurophilic-but not specific-granules. It implicates that different neutrophil secretory compartments display distinct sensitivity to Cl-i modifications. Intriguingly, inhibitors of Cl- exchange inhibited cytosolic Ca2+ elevation, whereas Cl- efflux was not impaired in Ca2+-depleted neutrophils. We also show that FcgammaR(s)- and CR3/CR1-mediated Cl- efflux appears to be dependent on protein tyrosine phosphorylation but independent of PI3K and phospholipase C activation.  相似文献   

17.
To address the question whether leukocyte integrins are able to generate signals activating neutrophil functions, we investigated the capability of mAbs against the common beta chain (CD18), or the distinct alpha chains of CR3, LFA-1, or gp150/95, to activate neutrophil respiratory burst. These investigations were performed with mAbs bound to protein A immobilized to tissue culture polystyrene. Neutrophils plated in wells coated with the anti-CD18 mAbs IB4 and 60.3 released H2O2; H2O2 release did not occur when neutrophils were plated in wells coated with an irrelevant, isotype-matched mAb (OKDR), or with mAbs against other molecules (CD16, beta 2-microglobulin) expressed on the neutrophil surface at the same density of CD18. Four different mAbs, OKM1, OKM9, OKM10, 60.1, which recognize distinct epitopes of CR3 were unable to trigger H2O2 or O2- release from neutrophils. However, mAbs against LFA-1 or gp150/95 triggered both H2O2 and O2- release from neutrophils. Stimulation of neutrophils respiratory burst by both anti-CD18, and anti-LFA-1 or gp150/95 mAbs was totally inhibited by the microfilaments disrupting agent, cytochalasin B, and by a permeable cAMP analogue. While the capability to activate neutrophil respiratory burst was restricted to anti-LFA-1 and gp150/95 mAbs, we observed that mAbs against all members of leukocyte integrins, including CR3, were able to trigger neutrophil spreading. These findings indicate that, in neutrophils, all three leukocyte integrins can generate signals activating spreading, but only LFA-1 and gp150/95 can generate signals involved in activation of the respiratory burst. This observation can be relevant to understand the mechanisms responsible for the activation of neutrophil respiratory burst by tumor necrosis factor-alpha, which has been shown to be strictly dependent on expression of leukocyte integrins (Nathan, C., S. Srimal, C. Farber, E. Sanchez, L. Kabbash, A. Asch, J. Gailit, and S. Wright. 1989. J. Cell Biol. 109:13411349.  相似文献   

18.
19.
Candida albicans, the most common facultative human pathogenic fungus is of major medical importance, whereas the closely related species Candida dubliniensis is less virulent and rarely causes life-threatening, systemic infections. Little is known, however, about the reasons for this difference in pathogenicity, and especially on the interactions of C. dubliniensis with the human immune system. Because innate immunity and, in particular, neutrophil granulocytes play a major role in host antifungal defense, we studied the responses of human neutrophils to clinical isolates of both C. albicans and C. dubliniensis. C. dubliniensis was found to support neutrophil migration and fungal cell uptake to a greater extent in comparison with C. albicans, whereas inducing less neutrophil damage and extracellular trap formation. The production of antimicrobial reactive oxygen species, myeloperoxidase, and lactoferrin, as well as the inflammatory chemokine IL-8 by neutrophils was increased when stimulated with C. dubliniensis as compared with C. albicans. However, most of the analyzed macrophage-derived inflammatory and regulatory cytokines and chemokines, such as IL-1α, IL-1β, IL-1ra, TNF-α, IL-10, G-CSF, and GM-CSF, were less induced by C. dubliniensis. Similarly, the amounts of the antifungal immunity-related IL-17A produced by PBMCs was significantly lower when challenged with C. dubliniensis than with C. albicans. These data indicate that C. dubliniensis triggers stronger early neutrophil responses than C. albicans, thus providing insight into the differential virulence of these two closely related fungal species, and suggest that this is, in part, due to their differential capacity to form hyphae.  相似文献   

20.
Activated phagocytes oxidize the hormone melatonin to N1-acethyl-N2-formyl-5-methoxykynuramine (AFMK) in a superoxide anion- and myeloperoxidase-dependent reaction. We examined the effect of melatonin, AFMK and its deformylated-product N-acetyl-5-methoxykynuramine (AMK) on the phagocytosis, the microbicidal activity and the production of hypochlorous acid by neutrophils. Neither neutrophil and bacteria viability nor phagocytosis were affected by melatonin, AFMK or AMK. However these compounds affected the killing of Staphylococcus aureus. After 60 min of incubation, the percentage of viable bacteria inside the neutrophil increased to 76% in the presence of 1 mM of melatonin, 34% in the presence of AFMK and 73% in the presence of AMK. The sole inhibition of HOCl formation, expected in the presence of myeloperoxidase substrates, was not sufficient to explain the inhibition of the killing activity. Melatonin caused an almost complete inhibition of HOCl formation at concentrations of up to 0.05 mM. Although less effective, AMK also inhibited the formation of HOCl. However, AFMK had no effect on the production of HOCl. These findings corroborate the present view that the killing activity of neutrophils is a complex phenomenon, which involves more than just the production of reactive oxygen species. Furthermore, the action of melatonin and its oxidation products include additional activities beyond their antioxidant property. The impairment of the neutrophils' microbicidal activity caused by melatonin and its oxidation products may have important clinical implications, especially in those cases in which melatonin is pharmacologically administered in patients with infections.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号