首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
There are 16 classes of unconventional myosins. Class V myosins have been shown to be involved in transporting cargo to and from the cell periphery. Class VI myosins have also been shown to transport cargo from the cell periphery, although it seems that these proteins have many roles which include the mediation of cell migration and stereocillia stabilisation. With the requirement of myosin VI for Drosophila oogenesis, the localised expression of Myosin V in the developing egg chamber and recent mounting evidence which links myosin VI to the migration of human ovarian cancer cell lines, we wanted to investigate the expression pattern of these two myosin classes in the normal mouse ovary. Here we show that these myosins are expressed, localised and regulated within the oocyte and granulosa cells of the developing mouse follicle.  相似文献   

2.
Myosins constitute a large superfamily of actin-dependent molecular motors. Phylogenetic analysis currently places myosins into 15 classes. The conventional myosins which form filaments in muscle and non-muscle cells form class II. There has been extensive characterization of these myosins and much is known about their function. With the exception of class I and class V myosins, little is known about the structure, enzymatic properties, intracellular localization and physiology of most unconventional myosin classes. This review will focus on myosins from class IV, VI, VII, VIII, X, XI, XII, XIII, XIV and XV. In addition, the function of myosin II in non-muscle cells will also be discussed.  相似文献   

3.
Neuronal migration and growth cone motility are essential aspects of the development and maturation of the nervous system. These cellular events result from dynamic changes in the organization and function of the cytoskeleton, in part due to the activity of cytoskeletal motor proteins such as myosins. Although specific myosins such as Myo2 (conventional or muscle myosin), Myo1, and Myo5 have been well characterized for roles in cell motility, the roles of the majority of unconventional (other than Myo2) myosins in cell motility events have not been investigated. To address this issue, we have undertaken an analysis of unconventional myosins in zebrafish, a premier model for studying cellular and growth cone motility in the vertebrate nervous system. We describe the characterization and expression patterns of several members of the unconventional myosin gene family. Based on available genomic sequence data, we identified 18 unconventional myosin- and 4 Myo2-related genes in the zebrafish genome in addition to previously characterized myosin (1, 2, 3, 5, 6, 7) genes. Phylogenetic analyses indicate that these genes can be grouped into existing classifications for unconventional myosins from mouse and man. In situ hybridization analyses using EST probes for 18 of the 22 identified genes indicate that 11/18 genes are expressed in a restricted fashion in the zebrafish embryo. Specific myosins are expressed in particular neuronal or neuroepithelial cell types in the developing zebrafish nervous system, spanning the periods of neuronal differentiation and migration, and of growth cone guidance and motility.  相似文献   

4.
Bardet-Biedl Syndrome (BBS) is a heterogeneous, autosomal recessive disorder characterized by mental retardation, obesity, retinitis pigmentosa, syndactyly and/or polydactyly, short stature, and hypogenitalism and is caused by mutations at a number of distinct loci. Using a positional cloning approach for identifying the BBS4 (chromosome 15) gene, we identified and cloned an unconventional myosin gene, myosin IXA (HGMW-approved symbol MYO9A). Since mutations in unconventional myosins are known to cause several human diseases, and since mutations of unconventional myosin VIIa cause retinal degeneration, we evaluated myosin IXA as a candidate for BBS. We exploited PCR-based techniques to clone a 8473-nt cDNA for myosin IXA. A 7644-bp open reading frame predicts a protein with all the hallmarks of class IX unconventional myosins. Human Northern blot analysis and in situ hybridization of mouse embryos reveal that myosin IXA is expressed in many tissues consistent with BBS. Intron/exon boundaries were identified, and myosin IXA DNA and RNA from BBS4 patients were evaluated for mutation.  相似文献   

5.
Myosins constitute a superfamily of motor proteins that convert energy from ATP hydrolysis into mechanical movement along the actin filaments. Phylogenetic analysis currently places myosins into 17 classes based on class-specific features of their conserved motor domain. Traditionally, the myosins have been divided into two classes depending on whether they form monomers or dimers. The conventional myosin of muscle and nonmuscle cells forms class II myosins. They are complex molecules of four light chains bound to two heavy chains that form bipolar filaments via interactions between their coiled-coil tails (type II). Class I myosins are smaller monomeric myosins referred to as unconventional myosins. Now, at least 15 other classes of unconventional myosins are known. How many myosins are needed to ensure the proper development and function of eukaryotic organisms? Thus far, three types of myosins were found in budding yeast, six in the nematode Caenorhabditis elegans, and at least 12 in human. Here, we report on the identification and classification of Drosophila melanogaster myosins. Analysis of the Drosophila genome sequence identified 13 myosin genes. Phylogenetic analysis based on the sequence comparison of the myosin motor domains, as well as the presence of the class-specific domains, suggests that Drosophila myosins can be divided into nine major classes. Myosins belonging to previously described classes I, II, III, V, VI, and VII are present. Molecular and phylogenetic analysis indicates that the fruitfly genome contains at least five new myosins. Three of them fall into previously described myosin classes I, VII, and XV. Another myosin is a homolog of the mouse and human PDZ-containing myosins, forming the recently defined class XVIII myosins. PDZ domains are named after the postsynaptic density, disc-large, ZO-1 proteins in which they were first described. The fifth myosin shows a unique domain composition and a low homology to any of the existing classes. We propose that this is classified when similar myosins are identified in other species.  相似文献   

6.
Myosin VI, a ubiquitously expressed unconventional myosin, has roles in a broad array of biological processes. Unusual for this motor family, myosin VI moves toward the minus (pointed) end of actin filaments. Myosin VI has two light chain binding sites that can both bind calmodulin (CaM). However unconventional myosins could use tissue-specific light chains to modify their activity. In the Drosophila testis, myosin VI is important for maintenance of moving actin structures, called actin cones, which mediate spermatid individualization. A CaM-related protein, Androcam (Acam), is abundantly expressed in the testis and like myosin VI, accumulates on these cones. We have investigated the possibility that Acam is a testis-specific light chain of Drosophila myosin VI. We find that Acam and myosin VI precisely colocalize at the leading edge of the actin cones and that myosin VI is necessary for this Acam localization. Further, myosin VI and Acam co-immunoprecipitate from the testis and interact in yeast two-hybrid assays. Finally Acam binds with high affinity to peptide versions of both myosin VI light chain binding sites. In contrast, although Drosophila CaM also shows high affinity interactions with these peptides, we cannot detect a CaM/myosin VI interaction in the testis. We conclude that Acam and not CaM acts as a myosin VI light chain in the Drosophila testis and hypothesize that it may alter the regulation of myosin VI in this tissue.  相似文献   

7.
Myosins constitute a diverse superfamily of actin-based mechanoenzymes that are involved in many essential cellular motilities. In addition to conventional muscle myosin II, ten other classes of unconventional myosins are known. Many unconventional myosins bind multiple calmodulin light chains and Ca2+, which can dramatically alter their mechanochemical and enzymatic activity. Calmodulin-binding myosins can also be regulated by phospholipid binding, phosphorylation of the heavy chain and actin-binding proteins. The molecular details linking unconventional-myosin regulation and function are just beginning to emerge.  相似文献   

8.
Mutations in myosin VI (Myo6) cause deafness and vestibular dysfunction in Snell's waltzer mice. Mutations in two other unconventional myosins cause deafness in both humans and mice, making myosin VI an attractive candidate for human deafness. In this report, we refined the map position of human myosin VI (MYO6) by radiation hybrid mapping and characterized the genomic structure of myosin VI. Human myosin VI is composed of 32 coding exons, spanning a genomic region of approximately 70 kb. Exon 30, containing a putative CKII site, was found to be alternatively spliced and appears only in fetal and adult human brain. D6S280 and D6S284 flank the myosin VI gene and were used to screen hearing impaired sib pairs for concordance with the polymorphic markers. No disease-associated mutations were identified in twenty-five families screened for myosin VI mutations by SSCP analysis. Three coding single nucleotide polymorphisms (cSNPs) were identified in myosin VI that did not alter the amino acid sequence. Myosin VI mutations may be rare in the human deaf population or alternatively, may be found in a population not yet examined. The determination of the MYO6 genomic structure will enable screening of individuals with non-syndromic deafness, Usher's syndrome, or retinopathies associated with human chromosome 6q for mutations in this unconventional myosin.  相似文献   

9.
Unconventional myosins interact with the dense cortical actin network during processes such as membrane trafficking, cell migration, and mechanotransduction. Our understanding of unconventional myosin function is derived largely from assays that examine the interaction of a single myosin with a single actin filament. In this study, we have developed a model system to study the interaction between multiple tethered unconventional myosins and a model F-actin cortex, namely the lamellipodium of a migrating fish epidermal keratocyte. Using myosin VI, which moves toward the pointed end of actin filaments, we directly determine the polarity of the extracted keratocyte lamellipodium from the cell periphery to the cell nucleus. We use a combination of experimentation and simulation to demonstrate that multiple myosin VI molecules can coordinate to efficiently transport vesicle-size cargo over 10 µm of the dense interlaced actin network. Furthermore, several molecules of monomeric myosin VI, which are nonprocessive in single molecule assays, can coordinate to transport cargo with similar speeds as dimers.  相似文献   

10.
Myosin VI (MyoVI) is a pointed-end-directed, actin-based motor protein, and mutations in the gene result in disorganization of hair cell stereocilia and cause deafness in mice. MyoVI also localizes to the leading edges of growth-factor-stimulated fibroblast cells and has been suggested to be involved in cell motility. There has been no direct test of this hypothesis, however. Drosophila melanogaster MyoVI is expressed in a small group of migratory follicle cells, known as border cells. Here we show that depletion of MyoVI specifically from border cells severely inhibited their migration. Similar to MyoVI, E-cadherin is required for border cell migration. We found that E-cadherin and Armadillo (Arm, Drosophila beta-catenin) protein levels were specifically reduced in cells lacking MyoVI, whereas other proteins were not. In addition, MyoVI protein levels were reduced in cells lacking DE-cadherin or Arm. MyoVI and Arm co-immunoprecipitated from ovarian protein extracts. These data suggest that MyoVI is required for border cell migration where it stabilizes E-cadherin and Arm. Mutations in MyoVIIA, another unconventional myosin protein, also lead to deafness, and MyoVIIA interacts with E-cadherin through a membrane protein called vezatin. Multiple biochemical mechanisms may exist, therefore, for cadherins to associate with diverse unconventional myosins that are required for normal stereocilium formation or maintenance.  相似文献   

11.
Class V and VI myosins, two of the six known classes of actin-based motor genes expressed in vertebrate brain (Class I, II, V, VI, IX, and XV), have been suggested to be organelle motors. In this report, the neuronal expression and subcellular localization of chicken brain myosin V and myosin VI is examined. Both myosins are expressed in brain during embryogenesis. In cultured dorsal root ganglion (DRG) neurons, immunolocalization of myosin V and myosin VI revealed a similar distribution for these two myosins. Both are present within cell bodies, neurites and growth cones. Both of these myosins exhibit punctate labeling patterns that are found in the same subcellular region as microtubules in growth cone central domains. In peripheral growth cone domains, where individual puncta are more readily resolved, we observe a similar number of myosin V and myosin VI puncta. However, less than 20% of myosin V and myosin VI puncta colocalize with each other in the peripheral domains. After live cell extraction, punctate staining of myosin V and myosin VI is reduced in peripheral domains. However, we do not detect such changes in the central domains, suggesting that these myosins are associated with cytoskeletal/organelle structures. In peripheral growth cone domains myosin VI exhibits a higher extractability than myosin V. This difference between myosin V and VI was also found in a biochemical growth cone particle preparation from brain, suggesting that a significant portion of these two motors has a distinct subcellular distribution.  相似文献   

12.
Myosins are a large superfamily of motor proteins which, in association with actin, are involved in intra- cellular motile processes. In addition to the conventional myosins involved in muscle contractility, there is, in animal cells, a wide range of unconventional myosins implicated in membrane-associated processes, such as vesicle transport and membrane dynamics. In plant cells, however, very little is known about myosins. We have raised an antibody to the recombinant tail region of Arabidopsis thaliana myosin 1 (a class VIII myosin) and used it in immunofluorescence and EM studies on root cells from cress and maize. The plant myosin VIII is found to be concentrated at newly formed cross walls at the stage in which the phragmoplast cytoskeleton has depolymerized and the new cell plate is beginning to mature. These walls are rich in plasmodesmata and we show that they are the regions where the longitudinal actin cables appear to attach. Myosin VIII appears to be localized in these plasmodesmata and we suggest that this protein is involved in maturation of the cell plate and the re-establishment of cytoplasmic actin cables at sites of intercellular communication.  相似文献   

13.
To date, fourteen classes of unconventional myosins have been identified. Recent reports have implicated a number of these myosins in organelle transport, and in the formation, maintenance and/or dynamics of actin-rich structures involved in a variety of cellular processes including endocytosis, cell migration, and sensory transduction. Characterizations of organelle dynamics in pigment cells and neurons have further defined the contributions made by unconventional myosins and microtubule motors to the transport and distribution of organelles. Several studies have provided evidence of complexes through which cooperative organelle transport may be coordinated. Finally, the myosin superfamily has been shown to contain at least one processive motor and one backwards motor.  相似文献   

14.
The crystal structures of smooth muscle and scallop striated muscle myosin have both been completed in the past 18 months. Structural studies of unconventional myosins, in particular the stunning discovery that myosin VI moves backwards on actin, are starting to have deep impact on the field and have induced new ways of thinking about actin-based motility. Sophisticated genetic, biochemical and biophysical studies were used to test and refine hypotheses of the molecular mechanism of motility that were developed in the past. Although all these studies confirmed some aspects of these hypotheses, they also raised many new unresolved questions. Much of the evidence points to the importance of the actin-myosin binding process and an associated disorder-to-order transition.  相似文献   

15.
Unconventional myosins have been associated with hearing loss in humans, mice, and zebrafish. Mutations in myosin VI cause both recessive and dominant forms of nonsyndromic deafness in humans and deafness in Snell's waltzer mice associated with abnormal fusion of hair cell stereocilia. Although myosin VI has been implicated in diverse cellular processes such as vesicle trafficking and epithelial morphogenesis, the role of this protein in the sensory hair cells remains unclear. To investigate the function of myosin VI in zebrafish, we cloned and examined the expression pattern of myosin VI, which is duplicated in the zebrafish genome. One duplicate, myo6a, is expressed in a ubiquitous pattern during early development and at later stages, and is highly expressed in the brain, gut, and kidney. myo6b, on the other hand, is predominantly expressed in the sensory epithelium of the ear and lateral line at all developmental stages examined. Both molecules have different splice variants expressed in these tissues. Using a candidate gene approach, we show that myo6b is satellite, a gene responsible for auditory/vestibular defects in zebrafish larvae. Examination of hair cells in satellite mutants revealed that stereociliary bundles are irregular and disorganized. At the ultrastructural level, we observed that the apical surface of satellite mutant hair cells abnormally protrudes above the epithelium and the membrane near the base of the stereocilia is raised. At later stages, stereocilia fused together. We conclude that zebrafish myo6b is required for maintaining the integrity of the apical surface of hair cells, suggesting a conserved role for myosin VI in regulation of actin-based interactions with the plasma membrane.  相似文献   

16.
曹洋  沈梅  张洁  李向东 《昆虫知识》2011,48(2):239-246
肌球蛋白是一类重要的分子马达,可以将ATP水解产生的能量转化成动能,沿由肌动蛋白组成的细丝运动。肌球蛋白构成一个大的基因家族,在许多细胞活动中起着重要作用,包括肌肉收缩、胞内转运、听觉、视觉等。果蝇基因组有13种肌球蛋白基因,包括2种常规肌球蛋白和11种非常规肌球蛋白。本文综述了近年来果蝇非常规肌球蛋白的研究进展。  相似文献   

17.
Myosin VI: cellular functions and motor properties   总被引:2,自引:0,他引:2  
Myosin VI has been localized in membrane ruffles at the leading edge of cells, at the trans-Golgi network compartment of the Golgi complex and in clathrin-coated pits or vesicles, indicating that it functions in a wide variety of intracellular processes. Myosin VI moves along actin filaments towards their minus end, which is the opposite direction to all of the other myosins so far studied (to our knowledge), and is therefore thought to have unique properties and functions. To investigate the cellular roles of myosin VI, we identified various myosin VI binding partners and are currently characterizing their interactions within the cell. As an alternative approach, we have expressed and purified full-length myosin VI and studied its in vitro properties. Previous studies assumed that myosin VI was a dimer, but our biochemical, biophysical and electron microscopic studies reveal that myosin VI can exist as a stable monomer. We observed, using an optical tweezers force transducer, that monomeric myosin VI is a non-processive motor which, despite a relatively short lever arm, generates a large working stroke of 18 nm. Whether monomer and/or dimer forms of myosin VI exist in cells and their possible functions will be discussed.  相似文献   

18.
19.
A monomeric myosin VI with a large working stroke   总被引:6,自引:0,他引:6       下载免费PDF全文
Myosin VI is involved in a wide variety of intracellular processes such as endocytosis, secretion and cell migration. Unlike almost all other myosins so far studied, it moves towards the minus end of actin filaments and is therefore likely to have unique cellular properties. However, its mechanism of force production and movement is not understood. Under our experimental conditions, both expressed full-length and native myosin VI are monomeric. Electron microscopy using negative staining revealed that the addition of ATP induces a large conformational change in the neck/tail region of the expressed molecule. Using an optical tweezers-based force transducer we found that expressed myosin VI is nonprocessive and produces a large working stroke of 18 nm. Since the neck region of myosin VI is short (it contains only a single IQ motif), it is difficult to reconcile the 18 nm working stroke with the classical 'lever arm mechanism', unless other structures in the molecule contribute to the effective lever. A possible model to explain the large working stroke of myosin VI is presented.  相似文献   

20.
Myosins are molecular motors that move along filamentous actin. Seven classes of myosin are expressed in vertebrates: conventional myosin, or myosin-II, as well as the 6 unconventional myosin classes -I, -V, -VI, -VII, -IX, and -X. We have mapped in mouse 22 probes encompassing all known unconventional myosins and, as a result, have identified 16 potential unconventional myosin genes. These genes include 7 myosins-I, 2 myosins-V, 1 myosin-VI, 3 myosins-VII, 2 myosins-IX, and 1 myosin-X. The map location of 5 of these genes was identified in human chromosomes by fluorescencein situhybridization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号