首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Chlamydiae are obligate intracellular bacteria, comprising some of the most important bacterial pathogens of animals and humans. During their unique developmental cycle they have to attach to and enter their eukaryotic host cells, a process mediated by proteins in the chlamydial outer membrane. So far the only experimental data for chlamydial outer membrane proteins are available from members of the Chlamydiaceae, a family comprising exclusively human and animal pathogens. To get further insights into the evolution of the protein composition of the chlamydial outer membrane and into host-dependent differences, we performed an extensive experimental analysis of outer membrane fractions of Protochlamydia amoebophila elementary bodies, which constitute the infectious form of this non-pathogenic member of the Chlamydiae that thrives as a symbiont in Acanthamoeba spp. We used 1-D and 2-DE in combination with MALDI-TOF, MALDI-TOF/TOF and nanoLC-ESI-MS/MS, and compared our experimental results with a previously published in silico analysis of chlamydial outer membrane proteins. This resulted in the identification of 38 proteins supported by both studies and therefore very likely to be located in the P. amoebophila outer membrane. The obtained experimental data provide the first comprehensive overview of outer membrane proteins of a chlamydial organism outside the Chlamydiaceae. They reveal both fundamental differences and convergent evolution between pathogenic and symbiotic chlamydiae.  相似文献   

2.
We recently demonstrated that the major outer membrane protein of Chlamydia psittaci, the primary vaccine candidate for combating chlamydial infections, functions as a porin-like ion channel. In this study, we have cloned, expressed and functionally reconstituted recombinant major outer membrane proteins from C. psittaci and Chlamydia pneumoniae and analysed them at the single channel level. Both form porin-like ion channels that are functionally similar to those formed by native C. psittaci major outer membrane protein. Also, like the native channels, recombinant C. psittaci channels are modified by a native major outer membrane protein-specific monoclonal antibody. This is the first time that native function has been demonstrated for recombinant chlamydial major outer membrane proteins. Future bilayer reconstitution will provide a strategy for detailed structure/function studies of this new subclass of bacterial porins and the work also has important implications for successful protein refolding and the development of improved subunit vaccines.  相似文献   

3.
Whole sequence genome analysis is invaluable in providing complete profiles of related proteins and gene families. The genome sequences of the obligate intracellular bacteria Chlamydia trachomatis and Chlamydia pneumoniae both encode proteins with similarity to several 90-kDa Chlamydia psittaci proteins. These proteins are members of a large superfamily, C. trachomatis with 9 members and C. pneumoniae with 21 members. All polymorphic membrane protein (Pmp) are heterogeneous, both in amino acid sequence and in predicted size. Most proteins have apparent signal peptide leader sequences and hence are predicted to be localized to the outer membrane. The unifying features of all proteins are the conserved amino acid motifs GGAI and FXXN repeated in the N-terminal half of each protein. In both genomes, the pmp genes are clustered at various locations on the chromosome. Phylogenetic analysis suggests six related families, each with at least one C. trachomatis and one C. pneumoniae orthologue. One of these families has seen prolific expansion in C. pneumoniae, resulting in 13 protein paralogues. The maintenance of orthologues from each species suggests specific functions for the proteins in chlamydial biology.  相似文献   

4.
A predicted protein (CT713) with weak sequence similarity to the major outer membrane protein (20.4% identity) in Chlamydia trachomatis was identified by Chlamydia genome analysis. We show that this protein is expressed, surface accessible, localized to the chlamydial outer membrane complex and functions as a porin. This protein, PorB, was highly conserved among different serovars, with nearly identical sequences between serovars D, B, C and L2. Sequence comparison between C. trachomatis and Chlamydia pneumoniae showed less conservation between species with 59.3% identity. Immunofluorescence staining with monospecific antisera to purified PorB revealed antigen localized within chlamydial inclusions and found throughout the developmental cycle. Antibodies to PorB neutralized infectivity of C. trachomatis in an in vitro neutralization assay confirming that PorB is surface exposed. As PorB was found to be in the outer membrane, as well as having weak structural characteristics similar to major outer membrane protein (MOMP) and other porins, a liposome-swelling assay was used to determine whether this protein had pore-forming capabilities. PorB had pore-forming activity and was shown to be different from MOMP porin activity.  相似文献   

5.
The major outer membrane protein of chlamydial elementary bodies was identified in dimer, trimer, and other multimeric forms. These natural multimers were stabilized by disulfide-mediated cross-linking. Such cross-linking of outer membrane proteins may play an important role in the formation and evolution of chlamydial cell wall structure.  相似文献   

6.
Shewanella livingstonensis Ac10 is a psychrotrophic Gram-negative bacterium that grows at temperatures close to 0°C. Previous proteomic studies of this bacterium identified cold-inducible soluble proteins and outer membrane proteins that could possibly be involved in its cold adaptation (Kawamoto et al. in Extremophiles 11:819–826, 2007). In this study, we established a method for separating the inner and outer membranes by sucrose density gradient ultracentrifugation and performed proteomic studies of the inner membrane fraction. The cells were grown at temperatures of 4 and 18°C, and phospholipid-enriched inner membrane fractions were obtained. Two-dimensional polyacrylamide gel electrophoresis and peptide mass fingerprinting analysis of the proteins identified 14 cold-inducible proteins (more than a 2-fold increase at 4°C). Six of these proteins were predicted to be inner membrane proteins. Two predicted periplasmic proteins, 5 predicted cytoplasmic proteins, and 1 predicted outer membrane protein were also found in the inner membrane fraction, suggesting their association with the inner membrane proteins and/or lipids. These cold-inducible proteins included proteins that are presumed to be involved in chemotaxis (AtoS and PspA), membrane protein biogenesis (DegP, SurA, and FtsY), and morphogenesis (MreB). These findings provide a basis for further studies on the cold-adaptation mechanism of this bacterium.  相似文献   

7.
Chlamydiae are widespread bacterial pathogens responsible for a broad range of diseases, including sexually transmitted infections, pneumonia and trachoma. To validate the existence of hitherto hypothetical proteins predicted from recent chlamydial genome sequencing projects and to examine the patterns of expression of key components at the protein level, we have surveyed the expressed proteome of Chlamydia trachomatis strain L2. A combination of two-dimensional gel analysis, multi-dimensional protein identification (MudPIT) and nanocapillary liquid chromatography-tandem mass spectrometry allowed a total of 328 chlamydial proteins to be unambiguously assigned. Proteins identified as being expressed in the metabolically inert form, elementary body, of Chlamydia include the entire set of predicted glycolytic enzymes, indicating that metabolite flux rather than de novo synthesis of this pathway is triggered upon infection of host cells. An enzyme central to cell wall biosynthesis was also detected in the intracellular form, reticulate body, of Chlamydia, suggesting that the peptidoglycan is produced during growth within host cells. Other sets of proteins identified include 17 outer membrane-associated proteins of potential significance in vaccine studies and 67 proteins previously annotated as hypothetical or conserved hypothetical. Taken together, >/=35% of the predicted proteome for C. trachomatis has been experimentally verified, representing the most extensive survey of any chlamydial proteome to date.  相似文献   

8.
Analysis by two-dimensional gel electrophoresis of theN-laurylsarkosinate(Sarkosyl)-insoluble envelope complexes ofl-[35]S-cysteine-iabeled elementary bodies ofChlamydia pneumoniae strain IOL-207,Chlamydia trachomatis serovar LGV2, D, and F, andChlamydia psittaci strain 6BC showed differences in the molecular charges of chlamydial outer membrane proteins. The apparent isoelectric point (pI) of the major outer membrane protein ofC. pneumoniae strain IOL-207 was 6.4, whereas the pI of the major outer membrane protein of theC. trachomatis andC. psittaci strains differed little from one another, ranging from 5.3 to 5.5. The 60-kDa cysteinerich protein ofC. pneumoniae was the only 60-kDa chlamydial protein with a pI value (5.9) more acidic than that of the corresponding major outer membrane protein. As a general rule, the charges of both the 60-kDa and the lowmolecular-mass (12–15 kDa) cysteine-rich proteins were widely variable, depending on the strain. However, in cach individual strain, the variation of the charge of the 60-kDa protein had a compensatory change in the lowmolecular-mass cysteine-rich protein.  相似文献   

9.
A panel of monoclonal antibodies (MAb) was generated against Chlamydia trachomatis serovar B, an etiologic agent of blinding trachoma. The specificities of MAb were determined by dot blot assay by using viable elementary bodies of 13 C. trachomatis serovars and two C. psittaci strains. The dot blot assay was used to identify those antigens that were unique and immunoaccessible on the chlamydial surface. MAb were identified that recognized bi-specific (serovars B and Ba) or subspecies-specific (various B complex serovars) surface-exposed antigenic determinants that were either resistant or sensitive to heat denaturation (56 degrees C, 30 min). All of the MAb recognized the major outer membrane protein as determined by either immunoblotting or radioimmunoprecipitation. MAb specific for immunoaccessible major outer membrane protein epitopes protected mice from toxic death after i.v. injection of B serovar elementary bodies and neutralized the infectivity of the organism for monkey eyes. In contrast, MAb reactive against non-immunoaccessible subspecies- or species-specific major outer membrane protein epitopes or against an immunoaccessible genus-specific epitope located on chlamydial lipopolysaccharide did not protect mice from toxic death or neutralize infectivity of the parasite for monkey eyes. These data suggest that those major outer membrane protein antigenic determinants that are serovar or serogroup specific and are accessible to antibody on the chlamydial cell surface may be useful as a recombinant subunit vaccine for trachoma.  相似文献   

10.
Chlamydiae are obligate intracellular pathogens that spend their entire growth phase sequestered in a membrane-bound vacuole called an inclusion. A set of chlamydial proteins, labelled Inc proteins, has been identified in the inclusion membrane (IM). The predicted IncA, IncB and IncC amino acid sequences share very limited similarity, but a common hydrophobicity motif is present within each Inc protein. In an effort to identify a relatively complete catalogue of Chlamydia trachomatis proteins present in the IM of infected cells, we have screened the genome for open reading frames encoding this structural motif. Hydropathy plot analysis was used to screen each translated open reading frame in the C. trachomatis genome database. Forty-six candidate IM proteins (C-lncs) that satisfied the criteria of containing a bilobed hydrophobic domain of at least 50 amino acids were identified. The genome of Chlamydia pneumoniae encodes a larger collection of C-lnc proteins, and only approximately half of the C-lncs are encoded within both genomes. In order to confirm the hydropathy plot screening method as a valid predictor of C-lncs, antisera and/or monoclonal antibodies were prepared against six of the C. trachomatis C-lncs. Immunofluorescence microscopy of C. trachomatis-infected cells probed with these antibodies showed that five out of six C-lncs are present in the chlamydial IM. Antisera were also produced against C. pneumoniae p186, a protein sharing identity with Chlamydia psittaci lncA and carrying a similar bilobed hydrophobic domain. These antisera labelled the inclusion membrane in C. pneumoniae infected cells, confirming that proteins sharing the unique secondary structural characteristic also localize to the inclusion membrane of C. pneumoniae. Sera from patients with high-titre antibodies to C. trachomatis were examined for reactivity with each tested C-lnc protein. Three out of six tested C-lncs were recognized by a majority of these patient sera. Collectively, these studies identify and characterize novel proteins localized to the chlamydial IM and demonstrate the existence of a potential secondary structural targeting motif for localization of chlamydial proteins to this unique intracellular environment.  相似文献   

11.
As an intracellular pathogen, the mechanism by which Chlamydia invade eukaryotic cells represents a cornerstone to understanding chlamydial biology. The ability of chlamydiae specifically to bind heparan sulphate or heparin and the association of this ability to bind and enter mammalian host cells was approached by searching experimentally for chlamydial outer membrane proteins that bind heparin. The 60 000 molecular weight cysteine-rich outer membrane complex protein, OmcB, bound heparin. The ability of OmcB to bind heparin was supported by mapping the region of the protein with heparin-binding capacity and demonstrating that an OmcB synthetic 20-mer peptide from this region specifically bound heparin. Surface localization of OmcB was shown using monospecific antisera specific to the 20-mer OmcB peptide that bound the surfaces of elementary bodies (EB) and by heparin-binding peptide cross-linking of EB surface proteins.  相似文献   

12.
Diversity of Chlamydia trachomatis major outer membrane protein genes.   总被引:66,自引:3,他引:63       下载免费PDF全文
Genomic DNA libraries were constructed for Chlamydia trachomatis serovars B and C by using BamHI fragments, and recombinants that contained the major outer membrane protein (omp1) gene for each serovar were identified and sequenced. Comparisons between these gene sequences and the gene from serovar L2 demonstrated fewer base pair differences between serovars L2 and B than between L2 and C; this finding is consistent with the serologic and antigenic relationships among these serovars. The translated amino acid sequence for the major outer membrane proteins (MOMPs) contained the same number of amino acids for serovars L2 and B, whereas the serovar C MOMP contained three additional amino acids. The antigenic diversity of the chlamydial MOMP was reflected in four sequence-variable domains, and two of these domains were candidates for the putative type-specific antigenic determinant. The molecular basis of omp1 gene diversity among C. trachomatis serovars was observed to be clustered nucleotide substitutions for closely related serovars and insertions or deletions for distantly related serovars.  相似文献   

13.
Polymorphic membrane protein (Pmp)21 otherwise known as PmpD is the longest of 21 Pmps expressed by Chlamydophila pneumoniae. Recent bioinformatical analyses annotated PmpD as belonging to a family of exported Gram-negative bacterial proteins designated autotransporters. This prediction, however, was never experimentally supported, nor was the function of PmpD known. Here, using 1D and 2D PAGE we demonstrate that PmpD is processed into two parts, N-terminal (N-pmpD), middle (M-pmpD) and presumably third, C-terminal part (C-pmpD). Based on localization of the external part on the outer membrane as shown by immunofluorescence, immuno-electron microscopy and immunoblotting combined with trypsinization, we demonstrate that N-pmpD translocates to the surface of bacteria where it non-covalently binds other components of the outer membrane. We propose that N-pmpD functions as an adhesin, as antibodies raised against N-pmpD blocked chlamydial infectivity in the epithelial cells. In addition, recombinant N-pmpD activated human monocytes in vitro by upregulating their metabolic activity and by stimulating IL-8 release in a dose-dependent manner. These results demonstrate that N-PmpD is an autotransporter component of chlamydial outer membrane, important for bacterial invasion and host inflammation.  相似文献   

14.
15.
Most chlamydial strains have a pyruvoyl-dependent decarboxylase protein that converts L-arginine to agmatine. However, chlamydiae do not produce arginine, so they must import it from their host. Chlamydophila pneumoniae has a gene cluster encoding a putative outer membrane porin (CPn1033 or aaxA), an arginine decarboxylase (CPn1032 or aaxB), and a putative cytoplasmic membrane transporter (CPn1031 or aaxC). The aaxC gene was expressed in Escherichia coli producing an integral cytoplasmic membrane protein that catalyzed the exchange of L-arginine for agmatine. Expression of the aaxA gene produced an outer membrane protein that enhanced the arginine uptake and decarboxylation activity of cells coexpressing aaxB and aaxC. This chlamydial arginine/agmatine exchange system complemented an E. coli mutant missing the native arginine-dependent acid resistance system. These cells survived extreme acid shock in the presence of L-arginine. Biochemical and evolutionary analysis showed the aaxABC genes evolved convergently with the enteric arginine degradation system, and they could have a different physiological role in chlamydial cells. The chlamydial system uniquely includes an outer membrane porin, and it is most active at a higher pH from 3 to 5. The chlamydial AaxC transporter was resistant to cadaverine, L-lysine and L-ornithine, which inhibit the E. coli AdiC antiporter.  相似文献   

16.
Interactions between Chlamydia trachomatis, host cells, and the immune system are believed to involve lipopolysaccharide (LPS). We used immunogold techniques to study the distribution of chlamydial LPS in cultured cells infected with C. trachomatis LGV-L1. McCoy cells inoculated with C. trachomatis were cultured and then fixed and embedded in situ with acrylic resins. Sections were immunolabeled with a protein A-gold method using antisera to the genus-specific, periodate-sensitive epitope on chlamydial LPS. Pre-embedding immunogold labeling on permeabilized cells was also done. By post-embedding methods, labeling for LPS was equally abundant over the outer membranes of elementary (EB) and reticulate bodies (RB). By post-embedding labeling, the sub-surface side of the EB outer membrane was more heavily labeled than the surface side. By pre-embedding labeling, LPS was found to be less abundant on the surface of EBs than RBs. Labeling for LPS was found over apparent lysosomes in McCoy cells and over electron-dense blebs on or near the surface of the plasma membranes of McCoy cells. These results indicate that the concentration of LPS in chlamydial membranes is constant during development but that with development its location changes from being mostly cell-surface to sub-surface. These results show that the post-embedding immunogold technique can be a useful approach for the cell culture-based study of chlamydial LPS.  相似文献   

17.
An understanding of the molecular basis of the humoral immune response to chlamydial infections in man requires the identification of target antigens to which antibodies are directed. The antigenic specificity of antibody from patients with lymphogranuloma venereum (LGV) or trachoma was therefore assessed by Western blotting. Surface polypeptides were first identified using purified chlamydial outer membrane complex as antigen. Antibodies in sera from patients with LGV but not from control negative sera reacted with a wide range of chlamydial surface polypeptides with molecular masses of 19, 29, 41, 58, 63 and 65 kDa. The major component of the antibody response detected by both immunoblotting and immunoprecipitation assay was directed against the major outer membrane protein (MOMP). Antibody to MOMP was species-specific on Western blotting, whereas antibody to several other polypeptides recognized common immunodeterminants on polypeptides of C. psittaci Cal-10 of equivalent molecular mass. Immunologically C. psittaci Cal-10 was more closely related to LGV strains of C. trachomatis than a guinea pig inclusion conjunctivitis strain of C. psittaci. Trachoma sera collected from a village in southern Iran showed predominantly type-specific antibody on micro-immunofluorescence to serotype A or B trachoma agents. These sera showed a weak immune response to MOMP, a pronounced response to a polypeptide of 36 kDa and much less widespread reactivity with other chlamydial polypeptides. The lack of an immune response to SDS-stable immunodeterminants on MOMP might contribute to the susceptibility of trachoma patients to repeated cycles of ocular infection with chlamydiae.  相似文献   

18.
More than 50 Helicobacter pylori genes are predicted to encode outer membrane proteins (OMPs), but there has been relatively little experimental investigation of the H. pylori cell surface proteome. In this study, we used selective biotinylation to label proteins localized to the surface of H. pylori, along with differential detergent extraction procedures to isolate proteins localized to the outer membrane. Proteins that met multiple criteria for surface-exposed outer membrane localization included known adhesins, as well as Cag proteins required for activity of the cag type IV secretion system, putative lipoproteins, and other proteins not previously recognized as cell surface components. We identified sites of nontryptic cleavage consistent with signal sequence cleavage, as well as C-terminal motifs that may be important for protein localization. A subset of surface-exposed proteins were highly susceptible to proteolysis when intact bacteria were treated with proteinase K. Most Hop and Hom OMPs were susceptible to proteolysis, whereas Hor and Hof proteins were relatively resistant. Most of the protease-susceptible OMPs contain a large protease-susceptible extracellular domain exported beyond the outer membrane and a protease-resistant domain at the C terminus with a predicted β-barrel structure. These features suggest that, similar to the secretion of the VacA passenger domain, the N-terminal domains of protease-susceptible OMPs are exported through an autotransporter pathway. Collectively, these results provide new insights into the repertoire of surface-exposed H. pylori proteins that may mediate bacterium-host interactions, as well as the cell surface topology of these proteins.  相似文献   

19.
Two major 60 kD protein species can be separated by differential detergent extraction in Chlamydia spp. A Sarkosyl-soluble 60 kD protein is (i) structurally and antigenically distinct from the previously characterized 60 kD Omp2 outer membrane protein; and (ii) antigenically related to a bacterial common antigen of similar molecular weight which includes a 65 kD mycobacterial antigen and the GroEL heat-shock protein of Escherichia coli. Among GroEL homologues, the chlamydial protein (chl-GroEL) uniquely displays affinity towards immobilized thiol groups. The significance of this property is discussed with respect to the synthesis and assembly of the chlamydial disulphide-rich cell wall late in the growth cycle. Chl-GroEL is identical to the Triton X-100-soluble, ocular delayed-type hypersensitivity agent (Morrison et al., 1989), an essential component in the development of blinding trachoma. An autoimmune mechanism for chronic chlamydial diseases based on chl-GroEL homology to host proteins is hypothesized.  相似文献   

20.
Chlamydiae replicate intracellularly within a vacuole that is modified early in infection to become fusogenic with a subset of exocytic vesicles. We have recently identified four chlamydial inclusion membrane proteins, IncD-G, whose expression is detected within the first 2 h after internalization. To gain a better understanding of how these Inc proteins function, a yeast two-hybrid screen was employed to identify interacting host proteins. One protein, 14-3-3beta, was identified that interacted specifically with IncG. The interaction between 14-3-3beta and IncG was confirmed in infected HeLa cells by indirect immunofluorescence microscopy and interaction with a GFP-14-3-3beta fusion protein. 14-3-3 proteins are phosphoserine-binding proteins. Immunoprecipitation studies with [32P]-orthophosphate-labelled cells demonstrated that IncG is phosphorylated in both chlamydia-infected HeLa cells and in yeast cells expressing IncG. Site-directed mutagenesis of predicted 14-3-3 phosphorylation sites demonstrated that IncG binds to 14-3-3beta via a conserved 14-3-3-binding motif (RS164RS166F). Finally, indirect immunofluorescence demonstrated that 14-3-3beta interacts with Chlamydia trachomatis inclusions but not C. psittaci or C. pneumoniae inclusions. 14-3-3beta is the first eukaryotic protein found to interact with the chlamydial inclusion; however, its unique role in C. trachomatis pathogenesis remains to be determined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号