首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Previous work from our group stated that nitric oxide (NO), via cytokines, induces apoptosis in chromaffin cells by a mechanism involving iNOS, nNOS, and NF-κB. In this paper the involvement of glutamate as a possible intracellular trigger of neurosecretion and NO-mediated apoptosis has been evaluated. We show that chromaffin cells express different ionotropic and metabotropic glutamate receptors, this exerting different effects on the regulation of basal and glutamate-induced catecholamine secretion, via NO/cGMP. In addition, we studied the effects of endogenously generated NO, both basal and glutamate-stimulated, on apoptosis of chromaffin cells. Our results show that glutamate agonists are able to induce cell death and apoptosis in bovine chromaffin cells, parallel to an increase in NO production. Such effects were reversed by NOS inhibitors and glutamate receptor antagonists. Under basal conditions, iNOS inhibitors did not have any effect on apoptosis, whereas nNOS inhibitors induced apoptosis, indicating a neuroprotective effect of constitutive nNOS-generated NO. In contrast, glutamate-induced apoptosis was strongly reversed by nNOS inhibitors and weakly by iNOS inhibitors, thus indicating nNOS involvement in glutamate-mediated apoptosis. These results were confirmed by the fact that nNOS expression, but not iNOS, is specifically activated by glutamate. Finally, our results suggest the participation of PKG, PKA, PKC, and MAPK pathways in glutamate-mediated nNOS activation in chromaffin cells and point out the involvement of both PKA and PKC signaling pathways in the apoptotic effect of glutamate.  相似文献   

4.
Li QL  Ni J  Bian SL  Yao LC  Zhu H  Zhang W 《生理学报》2001,53(2):142-146
本文旨在观察神经酰胺对离体孵育的大鼠黄体细胞孕酮分泌及细胞凋亡的影响,以PMSG-hCG处理的雌性Wistar大鼠为模型,分离制备黄体细胞,将外源性细胞渗透性神经酰胺与黄体细胞共同孵育,分别用放免法和流式细胞仪分析神经酰胺对黄体细胞孕酮生成和凋亡的影响,同时还检测了一氧化氮合酶(NOS)活性和一氧化氮(NO)水平的变化,结果显示,神经酰胺可以剂量相关方式抑制hCG-诱导的孕酮分泌,而对基础孕酮没有显著影响,离体孵育12h的大鼠黄体细胞存在自发性凋亡,5umol/L神经酰胺能显著增加亡率(P<0.05),流式细胞仪分析可见增强的凋亡蜂,实验还发现,50umol/L神经酰胺能明显促进NOS活性(P<0.01)和NO生成(P<0.01),结果提示,神经酰胺可能通过调节甾体激素生成和细胞凋亡而作为一种重要的信息分子参与黄体退化等卵巢的生理过程。  相似文献   

5.
6.
Adrenal chromaffin cells synthesize and secrete catecholamines and neuropeptides that may regulate hormonal and paracrine signaling in stress and also during inflammation. The aim of our work was to study the role of the cytokine interleukin-1β (IL-1β) on catecholamine release and synthesis from primary cell cultures of human adrenal chromaffin cells. The effect of IL-1β on neuropeptide Y (NPY) release and the intracellular pathways involved in catecholamine release evoked by IL-1β and NPY were also investigated. We observed that IL-1β increases the release of NPY, norepinephrine (NE), and epinephrine (EP) from human chromaffin cells. Moreover, the immunoneutralization of released NPY inhibits catecholamine release evoked by IL-1β. Moreover, IL-1β regulates catecholamine synthesis as the inhibition of tyrosine hydroxylase decreases IL-1β-evoked catecholamine release and the cytokine induces tyrosine hydroxylase Ser40 phosphorylation. Moreover, IL-1β induces catecholamine release by a mitogen-activated protein kinase (MAPK)-dependent mechanism, and by nitric oxide synthase activation. Furthermore, MAPK, protein kinase C (PKC), protein kinase A (PKA), and nitric oxide (NO) production are involved in catecholamine release evoked by NPY. Using human chromaffin cells, our data suggest that IL-1β, NPY, and nitric oxide (NO) may contribute to a regulatory loop between the immune and the adrenal systems, and this is relevant in pathological conditions such as infection, trauma, stress, or in hypertension.  相似文献   

7.
Inducible nitric oxide synthase (iNOS) and nitric oxide (NO) can ameliorate apoptosis induced by toxic glycochenodeoxycholate (GCDC) in hepatocytes. However, the underlying molecular mechanisms are not yet understood in detail. This study is to clarify the function of iNOS/NO and its mechanisms during the apoptotic process. The apoptosis was brought about by GCDC in rat primary hepatocytes. iNOS/NO signaling was then investigated. iNOS inhibitor 1400 W enhanced the GCDC-induced apoptosis as reflected by caspase-3 activity and TUNEL assay. Exogenous NO regulated the apoptosis subsequent to NO donor S-nitroso-N-acetyl-penicillamine (SNAP) or sodium nitroprusside (SNP). The GCDC-induced apoptosis was decreased with 0.1 mM SNAP or 0.15 mM SNP, while it was increased with 0.8 mM SNAP or 1.2 mM SNP. The endogenous iNOS inhibited apoptosis, but the exogenous NO played a dual role during the GCDC-induced apoptosis. There was a potential iNOS/Akt/survivin axis that inhibited the hepatocyte apoptosis in low doses of NO donors. In contrast, high doses of NO donors activated CHOP through p38MAP-kinase (p38MAPK), upregulated TRAIL receptor DR5, and suppressed survivin. Consequently the high doses of NO donors promoted the apoptosis in hepatocytes. Our data suggest that the iNOS/NO signaling can modulate Akt/survivin and p38MAPK/CHOP pathways to mediate the GCDC-induced the apoptosis in hepatocytes. These signaling pathways may serve as targets for therapeutic intervention in cholestatic liver disease.  相似文献   

8.
9.
10.
Inflammation has been implicated in the pathogenesis of Parkinson's disease (PD). In the chronic 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) model of PD, inducible NO synthase (iNOS) derived nitric oxide (NO) is an important mediator of dopaminergic cell death. Ligands of the peroxisome proliferator-activated receptor (PPAR) exert anti-inflammatory effects. We here investigated whether pioglitazone, a PPARgamma agonist, protected mice from MPTP-induced dopaminergic cell loss, glial activation, and loss of catecholamines in the striatum. As shown by western blot, PPARgamma was expressed in the striatum and the substantia nigra of vehicle- and MPTP-treated mice. Oral administration of 20 mg/(kg day) of pioglitazone protected tyrosine hydroxylase (TH)-positive substantia nigra neurons from death induced by 5 x 30 mg/kg MPTP. However, the decrease of dopamine in the striatum was only partially prevented. In mice treated with pioglitazone, there were a reduced activation of microglia, reduced induction of iNOS-positive cells and less glial fibrillary acidic protein positive cells in both striatum and substantia nigra pars compacta. In addition, treatment with pioglitazone almost completely blocked staining of TH-positive neurons for nitrotyrosine, a marker of NO-mediated cell damage. Because an increase in inhibitory protein-kappa-Balpha (IkappaBalpha) expression and inhibition of translocation of the nuclear factor kappaB (NFkappaB) subunit p65 to the nucleus in dopaminergic neurons, glial cells and astrocytes correlated with the protective effects of pioglitazone, our results suggest that pioglitazone sequentially acts through PPARgamma activation, IkappaBalpha induction, block of NFkappaB activation, iNOS induction and NO-mediated toxicity. In conclusion, treatment with pioglitazone may offer a treatment opportunity in PD to slow the progression of disease that is mediated by inflammation.  相似文献   

11.
Chromogranin B (CHGB) is the major matrix protein in human catecholamine storage vesicles. CHGB genetic variation alters catecholamine secretion and blood pressure. Here, effective Chgb protein under‐expression was achieved by siRNA in PC12 cells, resulting in ~ 48% fewer secretory granules on electron microscopy, diminished capacity for catecholamine uptake (by ~ 79%), and a ~ 73% decline in stores available for nicotinic cholinergic‐stimulated secretion. In vivo, loss of Chgb in knockout mice resulted in a ~ 35% decline in chromaffin granule abundance and ~ 44% decline in granule diameter, accompanied by unregulated catecholamine release into plasma. Over‐expression of CHGB was achieved by transduction of a CHGB‐expressing lentivirus, resulting in ~ 127% elevation in CHGB protein, with ~ 122% greater abundance of secretory granules, but only ~ 14% increased uptake of catecholamines, and no effect on nicotinic‐triggered secretion. Human CHGB protein and its proteolytic fragments inhibited nicotinic‐stimulated catecholamine release by ~ 72%. One conserved‐region CHGB peptide inhibited nicotinic‐triggered secretion by up to ~ 41%, with partial blockade of cationic signal transduction. We conclude that bi‐directional quantitative derangements in CHGB abundance result in profound changes in vesicular storage and release of catecholamines. When processed and released extra‐cellularly, CHGB proteolytic fragments exert a feedback effect to inhibit catecholamine secretion, especially during nicotinic cholinergic stimulation.

  相似文献   


12.
The effect of regucalcin, a regulatory protein in intracellular signaling pathway, on cell death was investigated by using the cloned rat hepatoma H4-II-E cells overexpressing regucalcin. The hepatoma cells (wild-type) and stable regucalcin (RC)/pCXN2 transfectants were cultured for 72 h in medium containing 10% fetal bovine serum (FBS) to obtain subconfluent monolayers. After culture for 72 h, cells were further cultured for 12-72 h in medium without FBS containing either vehicle or lipopolysaccharide (LPS; 0.1 or 1.0 microg/ml). The number of wild-type cells was significantly decreased by culture for 24 or 48 h in the presence of LPS (0.1 or 1.0 microg/ml). The effect of LPS (0.1 or 1.0 microg/ml) in decreasing the number of hepatoma cells was significantly prevented in transfectants overexpressing regucalcin. However, the culture with LPS (0.1 or 1.0 microg/ml) for 72 h caused a significant decrease in cell number of transfectants. Ca(2+)/calmodulin-dependent nitric oxide (NO) synthase activity was significantly decreased by culture with LPS (1.0 microg/ml) for 24-72 h of wild-type cells. This decrease was significantly prevented in transfectants. LPS (0.1 or 1.0 microg/ml)-induced decrease in the number of wild-type cells was significantly prevented by culture with caspase-3 inhibitor (10(-8) M). Moreover, the number of wild-type cells was significantly decreased by culture with PD 98059 (10(-6) M), dibucaine (10(-6) M), or staurosporine (10(-6) M), which is an inhibitor of various protein kinases. The effect of PD 98059 or dibucaine on the number of wild-type cells was not observed in transfectants, although the effect of staurosporine was seen in transfectants. Culture with Bay K 8644 (2.5 x 10(-6) M), an agonist of Ca(2+) entry in cells, caused a significant decrease in the number of wild-type cells. Such an effect was not seen in transfectants. The presence of LPS did not significantly decrease the number of wild-type cells in the presence of Bay K 8644. Agarose gel electrophoresis showed the presence of low-molecular-weight deoxyribonucleic acid (DNA) fragments of adherent wild-type cells cultured with Bay K 8644, and this DNA fragmentation was significantly prevented in transfectants. This study demonstrates that overexpression of regucalcin has a suppressive effect on cell death induced by LPS or various intracellular signaling-related factors.  相似文献   

13.
P19 embryonic carcinoma cells can be differentiated into neurons that form synaptic connections and that produce a variety of neurotransmitters. Results of RT‐PCR indicate that P19 neurons express several neurotrophin receptors (p75NTR, trkB, and trkC, but not trkA) but they do not express any of the four neurotrophins. Consistent with the presence of trkB but not trkA, BDNF causes rapid phosphorylation of MAP kinases ERK1 and ERK2, but NGF does not. Neurotrophins induce translocation of NF‐κB into the nucleus. All four neurotrophins induce activation of NF‐κB in a biphasic manner. This effect is apparently mediated by p75NTR, because an inhibitor of trk receptors, K252a, does not inhibit activation of NF‐κB. Instead, K252a itself promotes activation of NF‐κB and this effect is additive with the effect of neurotrophins. Inhibition of reactive oxygen intermediates with PDTC completely abolishes basal activity of NF‐κB and strongly inhibits activation of NF‐κB by neurotrophins, indicating an important role of reactive oxygen intermediates in the pathway by which neurotrophins activate NF‐κB. NF‐κB is known to promote expression of the iNOS gene. We found that all four neurotrophins increased iNOS mRNA levels, resulting in increased accumulation of iNOS protein. In contrast, none of the neurotrophins stimulated nNOS mRNA or protein synthesis. PDTC abolishes constitutive and neurotrophin‐induced expression of iNOS mRNA and protein and abolishes constitutive expression of nNOS mRNA, suggesting that reactive oxygen intermediates promote expression of nNOS. © 2003 Wiley Periodicals, Inc. J Neurobiol 55: 191–203, 2003  相似文献   

14.
We previously showed that dopamine receptors D1R and D2R expressed in NG108-15 cells activated protein kinase A and extracellular signal-regulated kinase (ERK) respectively, resulting in differential activation of nuclear factor (NF)-kappaB activity. To investigate whether other dopamine receptor subtypes regulate NF-kappaB, we established NG108-15 cells stably expressing D3R, D4R and D5R (NGD3R, NGD4R and NGD5R). D5R stimulation with SKF 38393 decreased NF-kappaB luciferase reporter activity in NGD5R cells, similar to D1R stimulation in NGD1R cells. However, D3R or D4R stimulation with quinpirole showed no change in NF-kappaB-Luci activity, although forskolin-induced cyclic AMP responsive element-Luci activation was attenuated by quinpirole treatment in NGD2LR, NGD3R and NGD4R cells. As expected, activation of ERK or serum responsive element-luciferase reporter not observed following stimulation with quinpirole in D3R- or D4R-expressing cells. We further examined the effects of haloperidol and risperidone, which are typical and atypical antipsychotic drugs respectively, on NF-kappaB activity by gel shift assay in mouse frontal cortex. Haloperidol treatment slightly attenuated basal NF-kappaB activity. By contrast, risperidone treatment enhanced NF-kappaB activity. Taken together, D2R and D1R/D5R had opposite effects on NF-kappaB activity in NG108-15 cells. Risperidone up-regulated and haloperidol down-regulated NF-kappaB activity in mouse brain. This effect may be related to the atypical antipsychotic properties of risperidone.  相似文献   

15.
It has previously been shown that expression of monocyte chemoattractant protein (mcp)-1 and apoptosis of luteal cells occur concomitantly during the estrous cycle in the rat corpus luteum; however, luteal cells containing mcp-1 mRNA did not seem to be apoptotic. In the present study, the relationship between the induction of apoptosis and mcp-1 expression in cultures of dispersed rat luteal cells was examined. Both apoptosis and mcp-1 expression were spontaneously induced in cultured luteal cells in a manner inhibitable by antioxidative reagents or an inhibitor of nuclear translocation of nuclear factor-kB. However, the cells containing mcp-1 mRNA were distinct from those undergoing apoptosis, and the inhibition of apoptosis by the pan-caspase inhibitor z-VAD-fmk did not influence the induction of mcp-1 expression. These results collectively indicate that oxidative stress simultaneously, but independently, induces apoptosis and mcp-1 expression in luteal cells through the activation of nuclear factor-kB. This phenomenon might help to explain how monocytes/macrophages accumulate in regressive corpora lutea where their target apoptotic cells exist.  相似文献   

16.
Abstract: We examined the possibility that c-Jun N-terminal kinase (JNK) and nuclear factor κB (NF-κB) might be involved in intracellular signaling cascades that mediate NMDA-initiated neuronal events. Exposure of cortical neurons to 100 µ M NMDA induced activation of JNK within 1 min. Activity of JNK was further increased over the next 5 min and then declined by 30 min. Similarly, ionomycin, a selective Ca2+ ionophore, induced activation of JNK. The NMDA-induced activation of JNK was abrogated in the absence of extracellular Ca2+, suggesting that Ca2+ entry is necessary and sufficient for the JNK activation. Immunohistochemistry with anti-NF-κB antibody demonstrated nuclear translocation of NF-κB within 5 min following NMDA treatment. NMDA treatment also enhanced the DNA binding activity of nuclear NF-κB in a Ca2+-dependent manner. Treatment with 3 m M aspirin blocked the NMDA-induced activation of JNK and NF-κB. Neuronal death following a brief exposure to 100 µ M NMDA was Ca2+ dependent and attenuated by addition of aspirin or sodium salicylate. The present study suggests that Ca2+ influx is required for NMDA-induced activation of JNK and NF-κB as well as NMDA neurotoxicity. This study also implies that aspirin may exert its neuroprotective action against NMDA through blocking the NMDA-induced activation of NF-κB and JNK.  相似文献   

17.
To improve the survival and/or differentiation of grafted BMSCs (bone marrow stem cells) represents one of the challenges for the promising cell‐based therapy. Considerable reports have implicated Sal B (salvianolic acid B), a potent aqueous extract of Salvia miltiorrhiza, in enhancing the survival of cells under various conditions. In this study, we investigated the effect of Sal B on H2O2‐induced apoptosis in rat BMSCs, focusing on the survival signalling pathways. Results indicated that the MEK [MAPK (mitogen‐activated protein kinase)/ERK (extracellular‐signal‐regulated kinase) kinase] inhibitor (PD98059) and 10 μM Sal B remarkably prevented BMSCs from H2O2‐induced apoptosis through attenuating caspase‐3 activation, which is accompanied by the significant up‐regulation of Bcl‐2. In addition, the ROS (reactive oxygen species) accumulation was also reduced after Sal B treatment. Furthermore, Sal B inhibited the ERK1/2 phosphorylations stimulated by H2O2. Taken together, our results showed that H2O2‐induced apoptosis in BMSCs via the ROS/MEK/ERK1/2 pathway and Sal B may exert its cytoprotection through mediating the pathway.  相似文献   

18.
目的:探讨缺氧对肺动脉平滑肌细胞(PASMC)增殖和凋亡的影响以及诱导型一氧化氮合酶(iNOS)的蛋白表达变化及肾上腺髓质素(ADM)在缺氧影响PASMC增殖和凋亡中的作用与意义.方法:离体缺氧培养大鼠PASMC,采用MTT比色法和PCNA的免疫组化法测定细胞增殖反应,采用流式细胞仪法检测细胞凋亡情况,采用Westen blot蛋白印迹法检测iNOS的蛋白表达.结果:①MTT法发现,缺氧24 h组的A值明显高于常氧组(P<0.01),而缺氧 ADM组明显低于缺氧组(P<0.01),与常氧组比较差别无显著性(P>0.05),缺氧 L-NAME组A值明显高于缺氧组和常氧组(P<0.01).②免疫组化法发现,常氧组PCNA呈弱阳性表达,而缺氧24 h组PCNA呈阳性表达(P<0.01).ADM明显抑制了缺氧24 h组PCNA的表达(P<0.01);而L-NAME则促进了缺氧24 h组PCNA的表达(P<0.01).③流式细胞仪分析发现,常氧组、缺氧组、缺氧 ADM组、缺氧 L-NAME组,在缺氧培养24 h后,其凋亡指数比较差别无显著性(P均>0.05).④Westen blot发现常氧组大鼠PASMC见少量iNOS表达,缺氧4 h后,表达明显增多(P<0.01),8h,24 h持续高表达(P<0.01);L-NAME对iNOS蛋白的表达没有影响.ADM促进iNOS蛋白的表达.结论:①缺氧能促进肺动脉平滑肌细胞低氧性增殖,对肺动脉平滑肌细胞的凋亡无影响.②缺氧能诱导肺动脉平滑肌细胞表达iNOS,ADM能促进iNOS的表达,ADM、iNOS在HPH发展中可能起到抑制作用.  相似文献   

19.
Liu Z  Fan Y  Wang Y  Han C  Pan Y  Huang H  Ye Y  Luo L  Yin Z 《FEBS letters》2008,582(12):1643-1650
Dipyrithione (PTS2) possesses anti-bacterial and anti-fungal activity. In the present study, we found that PTS2 dose-dependently inhibited the LPS-induced up-regulation of nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) protein level in RAW264.7 cells. RT-PCR experiments showed that PTS2 suppressed LPS-induced iNOS but not COX-2 expression at the mRNA level. As expected, PTS2 prevented NO secretion in RAW264.7 cells. Furthermore, PTS2 administration significantly decreased LPS-induced mortality in mice. Mechanistically, PTS2 decreased expression and phosphorylation of STAT1, but did not interfere with the MAPK and NF-kappaB pathways. In conclusion, PTS2 protects mice against endotoxic shock and inhibits LPS-induced production of pro-inflammatory mediators, suggesting that PTS2 could play an anti-inflammatory role in response to LPS.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号