首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Loss of one type of sensory input can cause improved functionality of other sensory systems. Whereas this form of plasticity, cross-modal plasticity, is well established, the molecular and cellular mechanisms underlying it are still unclear. Here, we show that visual deprivation (VD) increases extracellular serotonin in the juvenile rat barrel cortex. This increase in serotonin levels facilitates synaptic strengthening at layer 4 to layer 2/3 synapses within the barrel cortex. Upon VD, whisker experience leads to trafficking of the AMPA-type glutamate receptors (AMPARs) into these synapses through the activation of ERK and increased phosphorylation of AMPAR subunit GluR1 at the juvenile age when natural whisker experience no longer induces synaptic GluR1 delivery. VD thereby leads to sharpening of the functional whisker-barrel map at layer 2/3. Thus, sensory deprivation of one modality leads to serotonin release in remaining modalities, facilitates GluR1-dependent synaptic strengthening, and refines cortical organization.  相似文献   

2.
Regulated trafficking of AMPA receptors (AMPARs) is an important mechanism that underlies the activity-dependent modification of synaptic strength. Trafficking of AMPARs is regulated by specific interactions of their subunits with other proteins. Recently, we have reported that the AMPAR subunit GluR1 binds the cGMP-dependent kinase type II (cGKII) adjacent to the kinase catalytic site, and that this interaction is increased by cGMP. In this complex, cGKII phosphorylates GluR1 at serine 845 (S845), a site known to be phosphorylated also by PKA. S845 phosphorylation leads to an increase of GluR1 on the plasma membrane. In neurons, cGMP is produced by soluble guanylate cyclase (sGC), which is activated by nitric oxide (NO). Calcium flux through the NMDA receptor (NMDAR) activates neuronal nitric oxide synthase (nNOS), which produces NO. Using a combination of biochemical and electrophysiological experiments, we have shown that trafficking of GluR1 is under the regulation of NO, cGMP and cGKII. Moreover, our study indicates that the interaction of cGKII with GluR1, which is under the regulation of the NMDAR and NO, plays an important role in hippocampal plasticity.  相似文献   

3.
Regulated trafficking of AMPA receptors (AMPARs) is an important mechanism that underlies the activity-dependent modification of synaptic strength. Trafficking of AMPARs is regulated by specific interactions of their subunits with other proteins. Recently, we have reported that the AMPAR subunit GluR1 binds the cGMP-dependent kinase type II (cGKII) adjacent to the kinase catalytic site, and that this interaction is increased by cGMP. In this complex, cGKII phosphorylates GluR1 at serine 845 (S845), a site known to be phosphorylated also by PKA. S845 phosphorylation leads to an increase of GluR1 on the plasma membrane. In neurons, cGMP is produced by soluble guanylate cyclase (sGC), which is activated by nitric oxide (NO). Calcium flux through the NMDA receptor (NMDAR) activates neuronal nitric oxide synthase (nNOS), which produces NO. Using a combination of biochemical and electrophysiological experiments, we have shown that trafficking of GluR1 is under the regulation of NO, cGMP and cGKII. Moreover, our study indicates that the interaction of cGKII with GluR1, which is under the regulation of the NMDAR and NO, plays an important role in hippocampal plasticity.  相似文献   

4.
Enhancement of synaptic transmission, as occurs in long-term potentiation (LTP), can result from several mechanisms that are regulated by phosphorylation of the AMPA-type glutamate receptor (AMPAR). Using a quantitative assay of net serine 845 (Ser-845) phosphorylation in the GluR1 subunit of AMPARs, we investigated the relationship between phospho-Ser-845, GluR1 surface expression, and synaptic strength in hippocampal neurons. About 15% of surface AMPARs in cultured neurons were phosphorylated at Ser-845 basally, whereas chemical potentiation (forskolin/rolipram treatment) persistently increased this to 60% and chemical depression (N-methyl-D-aspartate treatment) decreased it to 10%. These changes in Ser-845 phosphorylation were paralleled by corresponding changes in the surface expression of AMPARs in both cultured neurons and hippocampal slices. For every 1% increase in net phospho-Ser-845, there was 0.75% increase in the surface fraction of GluR1. Phosphorylation of Ser-845 correlated with a selective delivery of AMPARs to extrasynaptic sites, and their synaptic localization required coincident synaptic activity. Furthermore, increasing the extrasynaptic pool of AMPA receptors resulted in stronger theta burst LTP. Our results support a two-step model for delivery of GluR1-containing AMPARs to synapses during activity-dependent LTP, where Ser-845 phosphorylation can traffic AMPARs to extrasynaptic sites for subsequent delivery to synapses during LTP.  相似文献   

5.
Ehlers MD  Heine M  Groc L  Lee MC  Choquet D 《Neuron》2007,54(3):447-460
Synaptic activity regulates the postsynaptic accumulation of AMPA receptors over timescales ranging from minutes to days. Indeed, the regulated trafficking and mobility of GluR1 AMPA receptors underlies many forms of synaptic potentiation at glutamatergic synapses throughout the brain. However, the basis for synapse-specific accumulation of GluR1 is unknown. Here we report that synaptic activity locally immobilizes GluR1 AMPA receptors at individual synapses. Using single-molecule tracking together with the silencing of individual presynaptic boutons, we demonstrate that local synaptic activity reduces diffusional exchange of GluR1 between synaptic and extraynaptic domains, resulting in postsynaptic accumulation of GluR1. At neighboring inactive synapses, GluR1 is highly mobile with individual receptors frequently escaping the synapse. Within the synapse, spontaneous activity confines the diffusional movement of GluR1 to restricted subregions of the postsynaptic membrane. Thus, local activity restricts GluR1 mobility on a submicron scale, defining an input-specific mechanism for regulating AMPA receptor composition and abundance.  相似文献   

6.
The number of synaptic alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA)-type glutamate receptors (AMPARs) controls the strength of excitatory transmission. AMPARs cycle between internal endosomal compartments and the plasma membrane. Interactions between the AMPAR subunit GluR2, glutamate receptor interacting protein 1 (GRIP1), and the endosomal protein NEEP21 are essential for correct GluR2 recycling. Here we show that an about 85-kDa protein kinase phosphorylates GRIP1 on serine 917. This kinase is present in NEEP21 immunocomplexes and is activated in okadaic acid-treated neurons. Pulldown assays and atomic force microscopy indicate that phosphorylated GRIP shows reduced binding to NEEP21. AMPA or N-methyl-D-aspartate stimulation of hippocampal neurons induces delayed phosphorylation of the same serine 917. A wild type carboxy-terminal GRIP1 fragment expressed in hippocampal neurons interferes with GluR2 surface expression. On the contrary, a S917D mutant fragment does not interfere with GluR2 surface expression. Likewise, coexpression of GluR2 together with full-length wild type GRIP1 enhances GluR2 surface expression in fibroblasts, whereas full-length GRIP1-S917D had no effect. This indicates that this serine residue is implicated in AMPAR cycling. Our results identify an important regulatory mechanism in the trafficking of AMPAR subunits between internal compartments and the plasma membrane.  相似文献   

7.
Oxygen and glucose deprivation (OGD) induces delayed cell death in hippocampal CA1 neurons via Ca2+/Zn2+-permeable, GluR2-lacking AMPA receptors (AMPARs). Following OGD, synaptic AMPAR currents in hippocampal neurons show marked inward rectification and increased sensitivity to channel blockers selective for GluR2-lacking AMPARs. This occurs via two mechanisms: a delayed down-regulation of GluR2 mRNA expression and a rapid internalization of GluR2-containing AMPARs during the OGD insult, which are replaced by GluR2-lacking receptors. The mechanisms that underlie this rapid change in subunit composition are unknown. Here, we demonstrate that this trafficking event shares features in common with events that mediate long term depression and long term potentiation and is initiated by the activation of N-methyl-d-aspartic acid receptors. Using biochemical and electrophysiological approaches, we show that peptides that interfere with PICK1 PDZ domain interactions block the OGD-induced switch in subunit composition, implicating PICK1 in restricting GluR2 from synapses during OGD. Furthermore, we show that GluR2-lacking AMPARs that arise at synapses during OGD as a result of PICK1 PDZ interactions are involved in OGD-induced delayed cell death. This work demonstrates that PICK1 plays a crucial role in the response to OGD that results in altered synaptic transmission and neuronal death and has implications for our understanding of the molecular mechanisms that underlie cell death during stroke.Oxygen and glucose deprivation (OGD)3 associated with transient global ischemia induces delayed cell death, particularly in hippocampal CA1 pyramidal cells (13), a phenomenon that involves Ca2+/Zn2+-permeable, GluR2-lacking AMPARs (4). AMPARs are heteromeric complexes of subunits GluR1–4 (5), and most AMPARs in the hippocampus contain GluR2, which renders them calcium-impermeable and results in a marked inward rectification in their current-voltage relationship (68). Ischemia induces a delayed down-regulation of GluR2 mRNA and protein expression (4, 911), resulting in enhanced AMPAR-mediated Ca2+ and Zn2+ influx into CA1 neurons (10, 12). In these neurons, AMPAR-mediated postsynaptic currents (EPSCs) show marked inward rectification 1–2 days following ischemia and increased sensitivity to 1-naphthyl acetyl spermine (NASPM), a channel blocker selective for GluR2-lacking AMPARs (1316). Blockade of these channels at 9–40 h following ischemia is neuroprotective, indicating a crucial role for Ca2+-permeable AMPARs in ischemic cell death (16).In addition to delayed changes in AMPAR subunit composition as a result of altered mRNA expression, it was recently reported that Ca2+-permable, GluR2-lacking AMPARs are targeted to synaptic sites via membrane trafficking at much earlier times during OGD (17). This subunit rearrangement involves endocytosis of AMPARs containing GluR2 complexed with GluR1/3, followed by exocytosis of GluR2-lacking receptors containing GluR1/3 (17). However, the molecular mechanisms behind this trafficking event are unknown, and furthermore, it is not known whether these trafficking-mediated changes in AMPAR subunit composition contribute to delayed cell death.AMPAR trafficking is a well studied phenomenon because of its crucial involvement in long term depression (LTD) and long term potentiation (LTP), activity-dependent forms of synaptic plasticity thought to underlie learning and memory. AMPAR endocytosis, exocytosis, and more recently subunit-switching events (brought about by trafficking that involves endo/exocytosis) are central to the necessary changes in synaptic receptor complement (7, 1820). It is possible that similar mechanisms regulate AMPAR trafficking during OGD.PICK1 is a PDZ and BAR (Bin-amphiphysin-Rus) domain-containing protein that binds, via the PDZ domain, to a number of membrane proteins including AMPAR subunits GluR2/3. This interaction is required for AMPAR internalization from the synaptic plasma membrane in response to Ca2+ influx via NMDAR activation in hippocampal neurons (2123). This process is the major mechanism that underlies the reduction in synaptic strength in LTD. Furthermore, PICK1-mediated trafficking has recently emerged as a mechanism that regulates the GluR2 content of synaptic receptors, which in turn determines their Ca2+ permeability (7, 20). This is likely to be of profound importance in both plasticity and pathological mechanisms. Importantly, PICK1 overexpression has been shown to induce a shift in synaptic AMPAR subunit composition in hippocampal CA1 neurons, resulting in inwardly rectifying AMPAR EPSCs via reduced surface GluR2 and no change in GluR1 (24). This suggests that PICK1 may mediate the rapid switch in subunit composition occurring during OGD (17). Here, we demonstrate that the OGD-induced switch in AMPAR subunit composition is dependent on PICK1 PDZ interactions, and importantly, that this early trafficking event that occurs during OGD contributes to the signaling that results in delayed neuronal death.  相似文献   

8.
Lateral mobility of AMPA-type glutamate receptors as well as their trafficking between plasma membrane and intracellular compartments are major mechanisms for the regulation of synaptic plasticity. Here we applied a recently established labeling technique in combination with lentiviral expression in hippocampal neurons to label individual ACP-tagged AMPA receptor subunits specifically at the surface of neurons. We show that this technique allows the differential labeling of two receptor subunits on the same cell. Moreover, these subunits are integrated into heteromeric receptors together with endogenous subunits, and these labeled receptors are targeted to active synapses. Sequential labeling experiments indicate that there is basal surface insertion of GluR1, GluR2 and GluR3, and that this insertion is strongly increased following potassium depolarization. Moreover, we found that ACP-labeled GluR3 shows the highest surface mobility among GluR1, GluR2, and GluR3. In double-infected neurons the diffusion coefficient of labeled GluR2 at the surface of living neurons is significantly higher in GluR2/GluR3-infected neurons compared to GluR1/GluR2-infected neurons suggesting a higher mobility of GluR2/3 receptors compared to GluR1/2 receptors. These results indicate that surface mobility is regulated by different subunit compositions of AMPA receptors.  相似文献   

9.
Some ubiquitin-like (UBL) domain-containing proteins are known to play roles in receptor trafficking. Alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptors (AMPARs) undergo constitutive cycling between the intracellular compartment and the cell surface in the central nervous system. However, the function of UBL domain-containing proteins in the recycling of the AMPARs to the synaptic surface has not yet been reported.Here, we report that the Transmembrane and ubiquitin-like domain-containing 1 (Tmub1) protein, formerly known as the Hepatocyte Odd Protein Shuttling (HOPS) protein, which is abundantly expressed in the brain and which exists in a synaptosomal membrane fraction, facilitates the recycling of the AMPAR subunit GluR2 to the cell surface. Neurons transfected with Tmub1/HOPS-RNAi plasmids showed a significant reduction in the AMPAR current as compared to their control neurons. Consistently, the synaptic surface expression of GluR2, but not of GluR1, was significantly decreased in the neurons transfected with the Tmub1/HOPS-RNAi and increased in the neurons overexpressing EGFP-Tmub1/HOPS. The altered surface expression of GluR2 was speculated to be due to the altered surface-recycling of the internalized GluR2 in our recycling assay. Eventually, we found that GluR2 and glutamate receptor interacting protein (GRIP) were coimmunoprecipitated by the anti-Tmub1/HOPS antibody from the mouse brain. Taken together, these observations show that the Tmub1/HOPS plays a role in regulating basal synaptic transmission; it contributes to maintain the synaptic surface number of the GluR2-containing AMPARs by facilitating the recycling of GluR2 to the plasma membrane.  相似文献   

10.
Kim MJ  Dunah AW  Wang YT  Sheng M 《Neuron》2005,46(5):745-760
NMDA receptors (NMDARs) control bidirectional synaptic plasticity by regulating postsynaptic AMPA receptors (AMPARs). Here we show that NMDAR activation can have differential effects on AMPAR trafficking, depending on the subunit composition of NMDARs. In mature cultured neurons, NR2A-NMDARs promote, whereas NR2B-NMDARs inhibit, the surface expression of GluR1, primarily by regulating its surface insertion. In mature neurons, NR2B is coupled to inhibition rather than activation of the Ras-ERK pathway, which drives surface delivery of GluR1. Moreover, the synaptic Ras GTPase activating protein (GAP) SynGAP is selectively associated with NR2B-NMDARs in brain and is required for inhibition of NMDAR-dependent ERK activation. Preferential coupling of NR2B to SynGAP could explain the subtype-specific function of NR2B-NMDARs in inhibition of Ras-ERK, removal of synaptic AMPARs, and weakening of synaptic transmission.  相似文献   

11.
Hanley JG  Khatri L  Hanson PI  Ziff EB 《Neuron》2002,34(1):53-67
AMPA receptor (AMPAR) trafficking is crucial for synaptic plasticity that may be important for learning and memory. NSF and PICK1 bind the AMPAR GluR2 subunit and are involved in trafficking of AMPARs. Here, we show that GluR2, PICK1, NSF, and alpha-/beta-SNAPs form a complex in the presence of ATPgammaS. Similar to SNARE complex disassembly, NSF ATPase activity disrupts PICK1-GluR2 interactions in this complex. Alpha- and beta-SNAP have differential effects on this reaction. SNAP overexpression in hippocampal neurons leads to corresponding changes in AMPAR trafficking by acting on GluR2-PICK1 complexes. This demonstrates that the previously reported synaptic stabilization of AMPARs by NSF involves disruption of GluR2-PICK1 interactions. Furthermore, we are reporting a non-SNARE substrate for NSF disassembly activity.  相似文献   

12.
Dynamic regulation of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs) underlies aspects of synaptic plasticity. Although numerous AMPAR-interacting proteins have been identified, their quantitative and relative contributions to native AMPAR complexes remain unclear. Here, we quantitated protein interactions with neuronal AMPARs by immunoprecipitation from brain extracts. We found that stargazin-like transmembrane AMPAR regulatory proteins (TARPs) copurified with neuronal AMPARs, but we found negligible binding to GRIP, PICK1, NSF, or SAP-97. To facilitate purification of neuronal AMPAR complexes, we generated a transgenic mouse expressing an epitope-tagged GluR2 subunit of AMPARs. Taking advantage of this powerful new tool, we isolated two populations of GluR2 containing AMPARs: an immature complex with the endoplasmic reticulum chaperone immunoglobulin-binding protein and a mature complex containing GluR1, TARPs, and PSD-95. These studies establish TARPs as the auxiliary components of neuronal AMPARs.  相似文献   

13.
Tracy TE  Yan JJ  Chen L 《The EMBO journal》2011,30(8):1577-1592
Newly formed glutamatergic synapses often lack postsynaptic AMPA-type glutamate receptors (AMPARs). Aside from 'unsilencing' the postsynaptic site, however, the significance of postsynaptic AMPAR insertion during synapse maturation remains unclear. To investigate the role of AMPAR in synapse maturation, we used RNA interference (RNAi) to knockdown AMPARs in cultured hippocampal neurons. Surprisingly, loss of postsynaptic AMPARs increased the occurrence of presynaptically inactive synapses without changing the release probability of the remaining active synapses. Additionally, heterologous synapses formed between axons and AMPAR-expressing HEK cells develop significantly fewer inactive presynaptic terminals. The extracellular domain of the AMPAR subunit GluA2 was sufficient to reproduce this effect at heterologous synapses. Indeed, the retrograde signalling by AMPARs is independent of their channel function as RNAi-resistant AMPARs restore synaptic transmission in neurons lacking AMPARs despite chronic receptor antagonist treatment. Our findings suggest that postsynaptic AMPARs perform an organizational function at synapses that exceeds their standard role as ionotropic receptors by conveying a retrograde trans-synaptic signal that increases the transmission efficacy at a synapse.  相似文献   

14.
Franks KM  Isaacson JS 《Neuron》2005,47(1):101-114
Olfaction is required at birth for survival; however, little is known about the maturation of olfactory cortical circuits. Here we show that in vivo sensory experience mediates the development of excitatory transmission in pyramidal neurons of rat olfactory cortex. We find a postnatal critical period during which there is an experience-dependent increase in the contribution of AMPARs versus NMDARs to transmission at primary sensory synapses but not associational inputs. The shift in receptors underlying transmission is mediated by a strong activity-dependent downregulation of NMDARs and modest increase in AMPARs. Sensory activity leads to a loss of "silent" NMDAR-only synapses and an increase in threshold for inducing long-term plasticity. These results indicate the importance of early olfactory experience in the establishment of cortical circuits and could reflect mechanisms governing early olfactory "imprinting."  相似文献   

15.
Regulation of AMPA receptor trafficking by N-cadherin   总被引:1,自引:0,他引:1  
Dendritic spines are dynamically regulated, both morphologically and functionally, by neuronal activity. Morphological changes are mediated by a variety of synaptic proteins, whereas functional changes can be dramatically modulated by the regulation of alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA) receptor trafficking. Although these two forms of plasticity appear to be highly coordinated, the connections between them are not fully understood. In this study the synaptic cell adhesion molecule N-cadherin was found to associate with AMPA receptors and regulate AMPA receptor trafficking in neurons. N-cadherin and beta-catenin formed a protein complex with AMPA receptors in vivo, and this association was regulated by extracellular Ca2+. In addition, these proteins co-clustered at synapses in cultured neurons. In heterologous cells and in cultured neurons, overexpression of wild-type N-cadherin specifically increased the surface expression level of the AMPA receptor subunit glutamate receptor 1 (GluR1) and this effect was reversed by a dominant-negative form of N-cadherin. Finally, GluR1 increased the surface expression of N-cadherin in heterologous cells. Importantly, recent studies suggest that N-cadherin and beta-catenin play key roles in structural plasticity in neurons. Therefore, our data suggest that the association of N-cadherin with AMPA receptors may serve as a biochemical link between structural and functional plasticity of synapses.  相似文献   

16.
Little is known about the dynamics of the dendritic transport of alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptors (AMPARs) to synapses. Here, using virally expressed green fluorescent protein (GFP)-GluR1 and GFP-GluR2 and confocal photobleach techniques we show near real-time movement of these subunits in living cultured hippocampal neurons. GFP-GluR1 fluorescence was widely distributed throughout the extranuclear compartment with no evidence for discrete intracellular stores. GFP-GluR1 transport was predominantly proximal to distal at rates of 0.2-0.4 mum.s-1. GFP-GluR2 fluorescence was more punctate and localized at or close to the plasma membrane. Overall, GFP-GluR2 movement was less dynamic with distinct mobile and immobile pools. Neither activation nor inhibition of surface-expressed N-methyl-d-aspartate receptors or AMPARs had any significant effect on the rates of GFP-GluR1 or GFP-GluR2 dendritic transport. These results demonstrate that GluR1 is constitutively and rapidly transported throughout the neuron. GluR2, on the other hand, is less mobile, with a majority retained in relatively immobile membrane-associated clusters, with approximately 40% showing synaptic co-localization. Furthermore, the transport of both subunits is activity-independent, suggesting that the regulated delivery of AMPARs to the vicinity of synapses is not a mechanism that is involved in processes such as synaptic plasticity.  相似文献   

17.
Homeostatic synaptic scaling is regulated by protein SUMOylation   总被引:1,自引:0,他引:1  
Homeostatic scaling allows neurons to alter synaptic transmission to compensate for changes in network activity. Here, we show that suppression of network activity with tetrodotoxin, which increases surface expression of AMPA receptors (AMPARs), dramatically reduces levels of the deSUMOylating (where SUMO is small ubiquitin-like modifier) enzyme SENP1, leading to a consequent increase in protein SUMOylation. Overexpression of the catalytic domain of SENP1 prevents this scaling effect, and we identify Arc as a SUMO substrate involved in the tetrodotoxin-induced increase in AMPAR surface expression. Thus, protein SUMOylation plays an important and previously unsuspected role in synaptic trafficking of AMPARs that underlies homeostatic scaling.  相似文献   

18.
The AMPA type of glutamate receptors (AMPARs)-mediated excitotoxicity is involved in the secondary neuronal death following traumatic brain injury (TBI). But the underlying cellular and molecular mechanisms remain unclear. In this study, the role of phosphatase and tensin homolog deleted on chromosome 10 (PTEN) in GluR2-lacking AMPARs mediated neuronal death was investigated through an in vitro stretch injury model of neurons. It was indicated that both the mRNA and protein levels of PTEN were increased in cultured hippocampal neurons after stretch injury, which was associated with the decreasing expression of GluR2 subunits on the surface of neuronal membrane. Inhibition of PTEN activity by its inhibitor can promote the survival of neurons through preventing reduction of GluR2 on membrane. Moreover, the effect of inhibiting GluR2-lacking AMPARs was similar to PTEN suppression-mediated neuroprotective effect in stretch injury-induced neuronal death. Further evidence identified that the total GluR2 protein of neurons was not changed in all groups. So inhibition of PTEN or blockage of GluR2-lacking AMPARs may attenuate the death of hippocampal neurons post injury through decreasing the translocation of GluR2 subunit on the membrane effectively.  相似文献   

19.
Synaptogenesis requires recruitment of neurotransmitter receptors to developing postsynaptic specializations. We developed a coculture system reconstituting artificial synapses between neurons and nonneuronal cells to investigate the molecular components required for AMPA-receptor recruitment to synapses. With this system, we find that excitatory axons specifically express factors that recruit the AMPA receptor GluR4 subunit to sites of contact between axons and GluR4-transfected nonneuronal cells. Furthermore, the N-terminal domain (NTD) of GluR4 is necessary and sufficient for its recruitment to these artificial synapses and also for GluR4 recruitment to native synapses. Moreover, we show that axonally derived neuronal pentraxins NP1 and NPR are required for GluR4 recruitment to artificial and native synapses. RNAi knockdown and knockout of the neuronal pentraxins significantly decreases GluR4 targeting to synapses. Our results indicate that NP1 and NPR secreted from presynaptic neurons bind to the GluR4 NTD and are critical trans-synaptic factors for GluR4 recruitment to synapses.  相似文献   

20.
-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors (AMPARs), a subtype of glutamate receptor, contribute to olfactory processing in the olfactory bulb (OB). These ion channels consist of various combinations of the subunits GluR1–GluR4, which bestow certain properties. For example, AMPARs that lack GluR2 are highly permeable to Ca2+ and generate inwardly rectifying currents. Because increased intracellular Ca2+ could trigger a host of Ca2+-dependent odor-encoding processes, we used whole cell recording as well as histological and immunocytochemical (ICC) techniques to investigate whether AMPARs on rat OB neurons flux Ca2+. Application of 1-naphthylacetyl spermine (NAS), a selective antagonist of Ca2+-permeable AMPARs (CP-AMPARs), inhibited AMPAR-mediated currents in subsets of interneurons and principal cells in cultures and slices. The addition of spermine to the electrode yielded inwardly rectifying current-voltage plots in some cells. In OB slices, olfactory nerve stimulation elicited excitatory responses in juxtaglomerular and mitral cells. Bath application of NAS with D,L-2-amino-5-phosphonovaleric acid (AP5) to isolate AMPARs suppressed the amplitudes of these synaptic responses compared with responses obtained using AP5 alone. Co2+ staining, which involves the kainate-stimulated influx of Co2+ through CP-AMPARs, produced diverse patterns of labeling in cultures and slices as did ICC techniques used with a GluR2-selective antibody. These results suggest that subsets of OB neurons express CP-AMPARs, including functional CP-AMPARs at synapses. Ca2+ entry into cells via these receptors could influence odor encoding by modulating K+ channels, N-methyl-D-aspartate receptors, and Ca2+-binding proteins, or it could facilitate synaptic vesicle fusion. GluR2; polyamines; cobalt; glutamate receptor; olfaction  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号