首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
研究了物种库限制与生态位限制在湖滨湿地植物分布格局形成过程中的相对重要性。在龙感湖湖滨湿地具有明显水位梯度的湿生植 物区、挺水植物区和沉水植物区采集种子库土样, 采用幼苗萌发法确定了不同水位区种子库的物种成分;并将不同水位区的种子库土样分别置于0、25和50cm3个水位下萌发和生长, 45和90d后比较不同取样区种子库在不同水位处理下所建立的植物群落的异同。结果表明, 不同取样区的种子库物种成分有显著差异, 沿水深梯度呈现明显的带状分布格局。水位处理实验表明, 0cm水位条件下的群落主要由湿生植物和挺水植物组成, 而25和50cm水位下只有沉水植物, 表明不同功能群的物种对水深有不同的耐受力, 生态位限制是决定湿地植物分布格局的关键因子。同时, 挺水植物区的种子库置于沉水条件下, 以及沉水植物区的种子库置于0cm水位下都只能形成极为简单的植物群落, 表明物种库限制对湿地植物群落的形成同样具有显著影响。研究表明, 湿地植物的群落构成与分布格局是由生态位限制和物种库限制共同决定的, 两者的相对重要性可能取决于水体的稳定性。  相似文献   

2.
  • 1 The relationship of the seed bank to the vegetation of a freshwater marsh was studied along gradients of water depth and soil organic matter content. Characters examined included standing crop, seedling density, and species composition, distribution and richness.
  • 2 The seed bank differed from the vegetation in that only nine of twenty-seven species were present in both, abundant seed-bank species were uncommon as adults, and adults showed different distributions along a gradient of soil organic matter content whereas their seeds were most abundant in soils with high organic matter.
  • 3 The seed bank resembled the vegetation in that separate multivariate analyses of the communities revealed that variation in the species composition of each was significantly correlated with water depth and soil organic matter content. Further, species richness in both communities decreased with water depth and increased with soil organic matter content. Lastly, the standing crop of the vegetation and the number of seedlings both decreased with water depth and increased with soil organic matter.
  • 4 Consideration of spatial patterns and environmental gradients revealed more similarities between vegetation and seed banks than were obtained by comparing species lists. The results suggest that artificial stimulation of seed bank germination for management purposes will not produce vegetation changes as large as those suggested by differences in species lists.
  相似文献   

3.
4.
Seed banks are of vital importance for local plant persistence and recruitment, for maintaining both plant and genetic diversity and for habitat restoration. Yet, seed-bank dynamics, particularly on the long term and in deciduous forests, remain poorly understood. Additionally, information on compositional seed-bank differences under contrasting tree canopies remains scarce.This study aims at quantifying long-term seed-bank dynamics by sampling vegetation and seed banks along a four-stage successional chronosequence (40, 80, 120 and 250 years) using 12 10 m×10 m plots per forest stand age–class under fully developed oak–hornbeam and beech canopies.Seed banks were remarkably abundant and diverse. Species richness and seed density declined steeply with forest stand age, regardless of canopy species. Seed-bank composition differed significantly with stand age, yet also with tree species. Most likely, tree species-dependent ecosystem engineer effects on light availability and possibly also litter quality affect the seed bank through the vegetation. Compositional differences between seed banks from stands with a different canopy diminished with increasing stand age, possibly due to a gradual loss of species with a less persistent seed bank.Long-term seed-bank dynamics in deciduous forests seem to consist predominantly of a unidirectional and predictable depletion of the seed bank as long as large disturbances, which would allow seed-bank replenishment of early-successional species, are lacking. Furthermore, forest seed-banks appear to converge upon a characteristic seed bank in the later stages of forest development, irrespective of canopy composition, driven by seed-bank depletion and limited input from the herb layer.  相似文献   

5.
Wetland seed banks comprise the propagules of plant species that have species-specific germination requirements for germination in either flooded or dry conditions. At the community level, wetland structure and succession during and after a seasonal flooding event depends upon the early life-history requirements of species, including germination under flooded and dry conditions. We examined the effects of simulated flood and post-flood scenarios on seedling emergence from a seed bank of seasonally flooded grassland in the Pantanal, Brazil. Field samplings were conducted in both wet and dry seasons, both of which were subject to flood and post-flood conditions. A total of 70 species emerged from the seed bank, dominated by Poaceae and Cyperaceae. Sixteen species were exclusive to the wet and one exclusive to the dry season. The richness of perennial species was higher under flood conditions, while the richness of annuals was greater post-flood. In general, the aquatic and amphibious species exhibited a significant germination response to flooding. Terrestrial species only germinated in post-flood conditions, with higher richness in the dry season. Four species had high seedling abundance in both treatments. The capacity of regeneration by seeds is high in these grasslands and can be increased by seasonal flooding and drawdown. In these seasonally flooded grasslands, we observed three main germination strategies: under flooded conditions, aquatic and amphibious species; post-flood conditions, an explosion of annual amphibious and terrestrial species; and in moist soil, perennial terrestrial species. The differential responses to flooding versus post-flood conditions help to maintain the structure and species richness in the community over time.  相似文献   

6.
Periodic fire, grazing, and a variable climate are considered the most important drivers of tallgrass prairie ecosystems, having large impacts on the component species and on ecosystem structure and function. We used long-term experiments at Konza Prairie Biological Station to explore the underlying demographic mechanisms responsible for tallgrass prairie responses to two key ecological drivers: fire and grazing. Our data indicate that belowground bud banks (populations of meristems associated with rhizomes or other perennating organs) mediate tallgrass prairie plant response. Fire and grazing altered rates of belowground bud natality, tiller emergence from the bud bank, and both short-term (fire cycle) and long-term (>15 year) changes in bud bank density. Annual burning increased grass bud banks by 25% and decreased forb bud banks by 125% compared to burning every 4 years. Grazing increased the rate of emergence from the grass bud bank resulting in increased grass stem densities while decreasing grass bud banks compared to ungrazed prairie. By contrast, grazing increased both bud and stem density of forbs in annually burned prairie but grazing had no effect on forb bud or stem density in the 4-year burn frequency treatment. Lastly, the size of the reserve grass bud bank is an excellent predictor of long-term ANPP in tallgrass prairie and also of short-term interannual variation in ANPP associated with fire cycles, supporting our hypothesis that ANPP is strongly regulated by belowground demographic processes. Meristem limitation due to management practices such as different fire frequencies or grazing regimes may constrain tallgrass prairie responses to interannual changes in resource availability. An important consequence is that grasslands with a large bud bank may be the most responsive to future climatic change or other global change phenomena such as nutrient enrichment, and may be most resistant to exotic species invasions.  相似文献   

7.
Morgan  John W. 《Plant Ecology》1999,144(1):127-144
Many species-rich Themeda triandra grasslands in south-eastern Australia have been burnt annually in summer as a land management practice for decades. The characteristics of annual fires (maximum surface temperatures, maximum soil temperature changes at 10 mm depth, Byram fire intensity and duration of surface heating) were compared to fires that occur less frequently (2, 4 or 7-year inter-fire interval). The impacts of annual summer fires on seed survival, perennial plant dynamics and flowering were also documented at two sites over two years.Annual grassland fires differ principally from other grassland fire types in their duration of surface temperatures above 100°C (i.e., <1 min versus >2–3 min in grasslands burnt at 4–7-year intervals). This was correlated to fuel load, but not rate of spread or Byram fire intensity. Maximum surface temperatures were variable within annual fire events (98–458°C ) and did not differ significantly from those observed in other grassland fires. All sites experienced temperatures above 350°C but no site had its soil temperature increase at 10 mm depth by >10°C during fire. Byram fire intensity was lower in annually burnt sites, but positively correlated with rate of spread moreso than fuel load.Many perennial species (34–55%) and most perennial individuals (70–83%) avoid the annual summer fire event by being dormant at the time of burning. All perennial species regenerated rapidly by vegetative means after fire and seedlings were absent or rare for most species. As a result, turnover of species at the small-scale was low.Annual burning permits high perennial species richness (mean 18 species/0.25 m2) and high numbers of individual perennial plants (range 189–1036 plants/0.25 m2) to co-exist at the small-scale. Seasonal plant density maxima peaked in spring, 6–8 months after fire, and the number of plants in a species' population each year following fire depended on their seasonal response more than their direct fire response. The direction and magnitude of population change from one year to the next was species and site specific and did not correlate with life form or a plant's ability for vegetative spread. All perennial species have a short secondary juvenile period (i.e., 6–11 months) but relatively few individual plants flower in any one year. Seed that has made its way into the soil is completely protected from the direct effects of fire and hence, occasional post-fire seedling recruitment may be possible for all species.Maintaining annual burning in grasslands as a management regime is unlikely to lead to a decline in richness and plant density in the short-term. Rather, delayed burning (i.e., >3 year intervals), and the impact that this may have on interval dependent processes such as above-ground competition, are predicted to have more substantial long-term effects on the small-scale dynamic of this community.  相似文献   

8.
The invasion of European perennial grasses represents a new threat to the native coastal prairie of northern California. Many coastal prairie sites also experience anthropogenic nitrogen (N) deposition or increased N availability as a result of invasion by N-fixing shrubs. We tested the hypothesis that greater seedling competitive ability and greater responsiveness to high N availability of exotic perennial grasses facilitates their invasion in coastal prairie. We evaluated pairwise competitive responses and effects, and the occurrence of asymmetrical competition, among three common native perennial grasses (Agrostis oregonensis, Festuca rubra, and Nassella pulchra) and three exotic perennial grasses (Holcus lanatus, Phalaris aquatica, and Festuca arundinacea), at two levels of soil N. We also compared the root and shoot biomass and response to fertilization of singly-grown plants, so we could evaluate how performance in competition related to innate plant traits. Competitive effects and responses were negatively correlated and in general varied continuously across native and exotic species. Two exceptions were the exotic species Holcus, which had large effects on neighbors and small responses to them, and competed asymmetrically with all other species in the experiment, and the native grass Nassella, which had strong responses to but little effect on neighbors, and was out-competed by all but one other species in the experiment. High allocation to roots and high early relative growth rate appear to explain Holcus’s competitive dominance, but its shoot biomass when grown alone was not significantly greater than those of the species it out-competed. Competitive dynamics were unaffected by fertilization. Therefore, we conclude that seedling competitive ability alone does not explain the increasing dominance of exotic perennial grasses in California coastal prairie. Furthermore, since native and exotic species responded individualistically, grouping species as ‘natives’ and ‘exotics’ obscured underlying variation within the two categories. Finally, elevated soil N does not appear to influence competition among the native and exotic perennial grasses studied, so reducing soil N pools may not be a critical step for the restoration of California coastal prairie.  相似文献   

9.
Aim Relationships between elevation and litter‐dweller harvestman (Arachnida: Opiliones) species richness along three elevational gradients in the Brazilian Atlantic Forest were evaluated. Specifically, three candidate explanatory factors for the observed patterns were tested: (1) the mid‐domain effect, (2) the Rapoport effect, and (3) the influence of environmental variables on species density and specimen abundance. Location Cuscuzeiro, Corcovado and Capricórnio mountains, in Ubatuba (23°26′ S, 45°04′ W), a coastal municipality in São Paulo state, south‐eastern Brazil. Methods We recorded harvestman species and abundance through active sampling using 8 × 8‐m plots in both summer and winter. At each plot we measured the temperature, humidity and mean litter depth. Harvestman species richness per elevational band was the sum of all species recorded in each band, plus the species supposed to occur due to the interpolation of the upper and lower elevational records. Differences between observed and expected species richness per elevational band, based on the mid‐domain effect, were examined through a Monte Carlo simulation. The Rapoport effect was evaluated using both the midpoint method and a new procedure proposed here, the ‘specimen method’. We applied multiple regression analysis to evaluate the contribution of each environmental variable (elevation, temperature, humidity and litter depth) on species density and specimen abundance per plot. Results Harvestman abundance and species richness decreased at higher elevations in the three mountains. The decrease in species richness was not monotonic and showed a plateau of high species richness at lower elevations. The number of harvestman species per elevational band does not fit that predicted by the mid‐domain effect based solely on geometric constraints assuming hard boundaries. Species with their midpoints at higher elevations tended to cover broader elevational range sizes. Both the midpoint method and the specimen method detected evidence of the Rapoport effect in the data. At fine spatial scales, temperature and humidity had positive effects on species density and specimen abundance, while mean litter depth had no clear effect. These relationships, however, were not constant between seasons. Main conclusions Our results suggest that harvestman species density declines at higher elevations due to restrictions imposed by temperature and humidity. We found a pattern in species range distribution as predicted by the elevational Rapoport effect. However, the usual rescue effect proposed to explain the Rapoport effect does not apply in our study. Since the majority of harvestman species covering broader elevational ranges do not exhibit reduced abundance at low elevations, an alternative rescue effect is proposed here. According to this alternative rescue effect, the decrease in species richness at higher elevations occurs due to differential upper limits of species with source populations below mid‐elevations. The seasonal differences in the relationships between environmental variables and species richness/specimen abundance per plot is an indication that species occurrence on elevational gradients is seasonally dependent. Thus relationships and hypotheses based on data recorded over short time periods, or in a single season, should be viewed cautiously.  相似文献   

10.
Abernethy  V.J.  Willby  N.J. 《Plant Ecology》1999,140(2):177-190
This study used germination methods to examine the density, species composition and functional composition of propagule banks in a series of riverine wetland aquatic habitats subject to varying degrees of hydrological and management-related disturbance. Under permanent inundation (the conditions prevailing at most sites during the growing season) propagule germination and species richness was low, with floodplain perennials and helophytes particularly affected. Densities of floodplain annuals were largely maintained through continued germination of a few flooding tolerant species. On damp mud (conditions associated with hydrological instability) total seedling number and species richness increased significantly, but species richness of germinating hydrophytes declined. Mean seedling density at 0–0.1m depth was 15450 ± 4400 m–2, reaching a maximum (162 050 m–2) in temporary backwaters. Annual (e.g., Lindernia dubia, Cyperus fuscus) and facultative ruderal species (e.g., Lythrum salicaria and Alisma plantago-aquatica) predominated. Vertical zonation of the propagule bank was weakly developed. The numbers of individuals and species germinating varied significantly between sites. The seasonal, most intensely disturbed sites (temporary backwaters) supported a numerically large, species-rich propagule bank based on floodplain annuals, while the permanent, less disturbed sites (ditches and an oxbow pond) had a small, species-poor propagule bank composed of hydrophytes and helophytes supplemented by allochthonous seed inputs. Sites intermediate on the gradient had a propagule bank dominated by facultative amphibious, ruderal hydrophytes. The composition of the seed bank and the established vegetation was most similar at the heavily disturbed sites where the seed bank was maintained by vigorously fruiting annuals and supplemented by inputs from temporary habitats upstream. At permanent sites much of the propagule bank composition could be accounted for by inputs of floodborne seed from the immediately adjacent floodplain. The established vegetation at such sites appeared to be maintained mainly by vegetative propagation with recruitment from the propagule bank likely only after severe disturbance. The potential contribution of functionally diverse propagule banks to sucessional processes within fluvially dynamic floodplain aquatic habitats is emphasised.  相似文献   

11.
Abstract. The germinable seed bank of Festuca spp., Carex patagonica, and other annuals and perennials in a semiarid Patagonian grassland was analyzed every three months. The effects of grazing, topography and microsites with respect to established grass tussocks on the germinable-seed bank were also analyzed. The total germinable-seed bank was larger in summer after seed rain. At this time of the year most of the seeds were from annuals and perennial dicots. Seeds of the dominant Festuca spp. were the main components of the graminoid seed bank, which was homogeneously distributed in patches of bare soil. In spring, i.e. some months after the seed rain, the germinable-seed bank of most of the species was greatly reduced, while the seed bank of Carex patagonica did not change significantly. At this time of the year, the graminoid seed bank was heterogeneously distributed in space, with the seeds accumulating in wind-protected microsites. In the grazing treatments, the seed bank of the perennial grasses was reduced proportionally to the decrease of the plant cover. On the other hand, the germinable-seed bank of C. patagonica increased with the grazing treatments, in relation to the increase of vegetation cover. Topographical position had two types of effect on the seed bank of perennial grasses. One was the increase of the germinable-seed bank, after the seed rain, on the relatively warmer northeast facing slopes, which was related to a higher seed rain in these places. The other was an increased seed loss on slopes. The different seed-bank strategies observed in this grassland are compared and discussed in relation to strategies described for other grasslands.  相似文献   

12.
Mesic deciduous forest herbs often disperse seed with morphophysiological dormancy (MPD) that prevents germination during unfavorable periods for seedling survival. However, for seeds of some species with MPD, seasonal separation of root and shoot emergence and variation in dormancy levels can complicate interpretation of seedling emergence timing in the field. We tested whether dormancy-break and germination requirements differed among co-occurring perennial forest herbs, Actaea racemosa, Hydrastis canadensis, and Sanguinaria canadensis, which are wild-harvested for their medicinal properties and known to have MPD. Seeds of all species exhibited a summer → autumn → winter requirement for seedling emergence in spring. However, species differed in seed-bank persistence due to variation in primary dormancy levels and stratification requirement of seeds. A. racemosa and H. canadensis can form short-term persistent seed bank, whereas S. canadensis can form a long-term persistent seed-bank, regardless of whether elaiosomes were removed from seeds prior to burial. A. racemosa seeds are dispersed in autumn with weak physiological dormancy, as seeds germinated to high rates at 15/6°C after 8 weeks. In contrast, most seeds of the summer dispersed species, H. canadensis and S. canadensis, require summer temperatures to overcome physiological dormancy. Consequently, seedling emergence is reduced and delayed by 1 year if seeds are not sown immediately following the period of natural dispersal. Seedling emergence was much lower in the field than in controlled conditions for all species, especially in the small-seeded A. racemosa. Interspecific variation in dormancy levels and germination traits must be considered when establishing populations for conservation purposes and in understanding recruitment limitation in perennial forest herbs.  相似文献   

13.

Questions

The degree to which renosterveld shrublands are fire‐dependent is currently unclear. To address this issue, the following questions were asked: (1) does smoke stimulate germination of soil‐stored seeds in renosterveld; (2) does recently‐burned renosterveld display changed composition and higher diversity than unburned vegetation; and (3) how do the species compositions of renosterveld soil seed banks and standing vegetation compare?

Location

Swartland, Cape Floristic Region, South Africa.

Methods

Soil seed bank samples from a north‐ and south‐facing slope were smoke‐treated and germinated to test for smoke‐stimulated germination. Burned standing vegetation was surveyed 16 months post‐fire, as was unburned vegetation on the same slopes. Seed bank species richness and density were compared between smoke‐treated and untreated samples within and between slopes. Burned and unburned standing vegetation were compared within and between slopes in terms of species richness, abundance and aerial cover. Compositional similarity of the seed banks and standing vegetation was assessed.

Results

Seed banks were dominated by annuals and graminoids. Smoke treatment had no effect, except for driving significantly higher species richness and seedling density in south‐facing slope perennial shrubs. Species richness and seedling density were significantly higher in seed banks on the south‐facing slope compared to the north‐facing slope. Burned standing vegetation exhibited significantly higher diversity than unburned vegetation. Annuals and graminoids displayed significantly higher species richness and aerial cover in burned renosterveld. The north‐facing slope contained less than half the number of species/m2 compared to the south‐facing slope. The seed banks and standing vegetation showed low to intermediate similarity (Sørensen = 31%–53%), but grouped close together on an NMDS plot, suggesting intermediate similarity overall.

Conclusions

Elevated germination of perennial shrubs in smoke‐treated seed bank samples and increased diversity of post‐fire standing vegetation suggest the renosterveld in this study shows elements of a fire‐driven system. Certain species only recruited in burned sites, suggesting fire‐stimulated germination. Aspect had a major influence on plant community composition, with the mesic south‐facing slope being more diverse than the xeric north‐facing slope. The similarity between the seed banks and standing vegetation was higher than previously shown for renosterveld, and appears to be higher than for fynbos.  相似文献   

14.
Sea level rise may alter salinity and inundation regimes and create patches of open water in oligohaline coastal marshes, potentially affecting the composition and germination of seed bank species. We conducted seedling emergence experiments to: (1) examine the effects of standing vegetation on the seed banks of three oligohaline marsh communities in coastal Louisiana (dominated by Paspalum vaginatum Sw., Sagittaria lancifolia L., or Spartina patens (Ait.) Muhl., respectively); and (2) investigate the effects of salinity and inundation regime on germination of seed bank species. We also studied the effect of a temporary increase in salinity (to simulate a salt water intrusion event) on the viability of buried seeds. We found that the presence or absence of vegetation within a community affected the abundance of some species in the seed bank but had little effect on species composition. Also, the seed banks of the three communities exhibited considerable overlap in species composition and had similar species richness (10–11) and diversity (antilog Shannon-Weaver diversity index = 6.5–7.1), despite differences in vegetation type. Higher salinities and flooding reduced seedling emergence for most species; few species emerged at salinities above four parts per thousand (ppt), and only Sagittaria lancifolia and Eleocharis parvula germinated well under flooded conditions. A temporary increase in salinity did not affect species richness or seedling emergence of most species. Our results suggest that differences in vegetation may have little effect on the composition of seed banks of oligohaline marshes. However, higher salinities and greater depth and duration of inundation (anticipated as global sea level continues to rise) may decrease recruitment of seed bank species, reducing their abundance in oligohaline marsh communities.  相似文献   

15.
We evaluated the combined effects of fire after drought on the seed bank composition and its role in the postfire recovery of NW Patagonia grasslands. During three years, we monitored the seed bank and the aboveground vegetation. Species were arranged in functional groups and Detrended Correspondence Analysis was used to separate sites according to species and functional groups. Similarity between aboveground vegetation and seed bank was calculated with SØrensen Index. In the first year, the seed density was similar in the control and burned sites and was lower than following years in all the sites. The species that survived the high temperatures were all annuals with the exception of the perennial species Fabiana imbricata and Rumex acetosella. In the second postfire year, the diversity and seed density increased due to the contribution of fugitive species (rare in the community) and exotic annual species. Seed bank of perennial species was the most affected by fire and just recovered in the third year. Drought did not affect the similarity between the seed bank and vegetation. Fire had low impact on the total seed bank, probably due to the heat buffering nature of the soil, whereas drought reduced significantly seed bank size and richness. Seed bank contributes to grassland richness maintenance.  相似文献   

16.
Miaojun Ma  Xianhui Zhou  Guozhen Du 《Flora》2010,205(2):128-134
We examined the role of the soil seed bank along a grazing disturbance gradient and its relationship with the vegetation of alpine meadows on the Tibet plateau, and discussed the implications for restoration. The seed bank had a high potential for restoration of species-rich vegetation; 62 species were identified in the vegetation and 87 in the seed bank, 39 species being common to both. Mean seed density was 3069–6105 viable seeds m−2. The density of buried seeds increased significantly with increasing disturbance, indicating that restoration of disturbed areas is not seed limited. Seed density and species richness decreased with depth. The proportion of perennial species decreased with decrease in disturbance both in seed bank and in vegetation. A large portion of species with persistent seeds in the disturbed areas indicate that this seed type can be regarded a strategy of adaptation to current disturbances. Detrended correspondence analysis (DCA) showed significant differences of species composition between seed bank and vegetation, except for the seriously disturbed site. Our results suggest that the establishment of new species in severely disturbed areas is more dependent on the seed bank. By contrast, the restoration in less-disturbed and mature meadows does not rely on seed banks, and the establishment of the vegetation in these communities is more likely to rely on seed dispersal from the standing vegetation and on species with vegetative reproduction.  相似文献   

17.
Effects of fire and small-scale soil disturbances on species richness, community heterogeneity, and microsuccession were investigated in a central Oklahoma tallgrass prairie. In the fall of 1985, 0.2 m2 soil disturbances were created on burned and unburned tallgrass prairie. Vegetation on and off disturbances was sampled at monthly intervals over two growing seasons. During the first growing season, the cover of forbs and annuals, and species richness were significantly greater on versus off disturbances, but these differences did not persist through the second year. The variation in species composition among disturbed plots (heterogeneity) was significantly greater compared to undisturbed areas throughout the study. Fire had no consistent effect on richness and heterogeneity of vegetation on soil disturbances but fire reduced heterogeneity on undisturbed vegetation. Rate of succession, based on an increase in cumulative cover of perennial grasses over time, did not differ among treatments during the first growing season. During the second year, rate of succession was significantly greater on burned soil disturbances compared to unburned soil disturbances. These results suggest that while small-scale soil disturbances have primarily short-lived effects on grassland community structure, disturbances do help to maintain spatial and temporal variation in tallgrass prairie communities. Unlike in undisturbed vegetation, however, species richness and heterogeneity on soil disturbances were little effected by fire, but the rate of colonization onto disturbances appeared to be enhanced by fire.  相似文献   

18.
Grazing removes a plant’s aboveground vegetative and reproductive tissues and can modify the soil seed bank, potentially impacting the restoration of preferred species. Knowledge about aboveground vegetation and species composition of soil seed bank and the processes that contribute to vegetation recovery on and surrounding watering points subjected to grazing is lacking. Successful restoration strategies hinge on addressing these knowledge gaps. We assessed the effects of livestock grazing on aboveground vegetation and soil seed bank characteristics along a river bank and surrounding areas subject to different grazing intensities and draw implications for restoration. Plots (50?×?50 m) were established along five transects representing differing levels of grazing intensity. Soil samples were taken from three layers within each plot to determine soil properties and species composition of soil seed bank using the seedling emergence method. Heavy grazing resulted in the disappearance of perennial grasses, a reduction in species diversity and a decrease in soil nutrients with increased soil depth. Overall, the similarity between the extant aboveground vegetation and flora within the soil seed bank was low. The soil seed bank was dominated by herbaceous species and two woody species, suggesting that many woody species are not accumulating in the soil. With increasing soil depth, the seed density and richness declined. Canonical correspondence analyses (CCAs) showed that emerged seedlings from the soil seed bank were significantly influenced by soil carbon, organic matter, total nitrogen, total potassium and soil cation exchange capacity. This finding suggests that current grazing practices have a negative impact on the vegetation surrounding watering points; hence there is a need for improved grazing management strategies and vegetation restoration in these areas. The soil seed bank alone cannot restore degraded river banks; active transfer of propagules from adjacent undisturbed forest areas is essential.  相似文献   

19.
探讨季节性放牧下土壤种子库的特性对荒漠草原合理利用具有重要作用。以宁夏荒漠草原为对象,通过封育(FY)、传统时间轮牧(FG)、延迟开始轮牧(YG)、提前结束轮牧(TG)、延迟开始并提前结束轮牧(YT)和自由放牧(ZY)处理,研究了0~5、5~10、10~15 cm土层土壤种子库物种组成、种子库密度、垂直分布、多样性及其与地上植被的关系,探讨了种子库与土壤环境因子的关系。结果表明: 研究区土壤种子库物种组成共有9个科21个种。土壤种子库物种组成以TG种子库种类最多,达13种,而FY和ZY土壤种子库种类最少,各8种。ZY土壤种子库密度显著高于FY、YG、TG、YT;FY的土壤种子库中多年生植物种子数量最多,达32.0%;ZY种子库中多年生植物种子数最少,仅为12.4%,主要以有性繁殖的一年生杂类草种子为主;土壤种子库主要集中于0~5 cm表层土壤,随着土层深度的增加,土壤种子库大小降低。土壤种子库的优势度和多样性均以FY最高,优势度、多样性和均匀度均以ZY最低。土壤种子库与地上植被的相似性总体较低,相比之下FG及ZY种子库与地上植被相似性较高,FY最低。土壤水分、有机质、全氮、全磷、土壤容重是影响土壤种子库的主要土壤因子。与传统全年自由放牧相比,季节性四区轮牧能使荒漠草原土壤种子库多年生植物种类、密度以及种子库物种丰富度、多样性和均匀度增加,虽作用不及长期封育草地,但对荒漠草原的利用与保护具有重要意义。  相似文献   

20.
The Tibetan Plateau has undergone significant climate warming in recent decades, and precipitation has also become increasingly variable. Much research has explored the effects of climate change on vegetation on this plateau. As potential vegetation buried in the soil, the soil seed bank is an important resource for ecosystem restoration and resilience. However, almost no studies have explored the effects of climate change on seed banks and the mechanisms of these effects. We used an altitudinal gradient to represent a decrease in temperature and collected soil seed bank samples from 27 alpine meadows (3,158–4,002 m) along this gradient. A structural equation model was used to explore the direct effects of mean annual precipitation (MAP) and mean annual temperature (MAT) on the soil seed bank and their indirect effects through aboveground vegetation and soil environmental factors. The species richness and abundance of the aboveground vegetation varied little along the altitudinal gradient, while the species richness and density of the seed bank decreased. The similarity between the seed bank and aboveground vegetation decreased with altitude; specifically, it decreased with MAP but was not related to MAT. The increase in MAP with increasing altitude directly decreased the species richness and density of the seed bank, while the increase in MAP and decrease in MAT with increasing altitude indirectly increased and decreased the species richness of the seed bank, respectively, by directly increasing and decreasing the species richness of the plant community. The size of the soil seed bank declined with increasing altitude. Increases in precipitation directly decreased the species richness and density and indirectly decreased the species richness of the seed bank with increasing elevation. The role of the seed bank in aboveground plant community regeneration decreases with increasing altitude, and this process is controlled by precipitation but not temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号