首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The redox potentials of the hemes of the mitochondrial bc(1) complex are dependent on the proton-motive force due to the energy transduction. This allows the membrane potential and pH gradient components to be calculated from the oxidation state of the hemes measured with multi-wavelength cell spectroscopy. Oxidation states were measured in living RAW 264.7 cells under varying electron flux and membrane potential obtained by a combination of oligomycin and titration with a proton ionophore. A stochastic model of bc(1) turnover was used to confirm that the membrane potential and redox potential of the ubiquinone pool could be measured from the redox poise of the b-hemes under physiological conditions assuming the redox couples are in equilibrium. The pH gradient was then calculated from the difference in redox potentials of cytochrome c and ubiquinone pool using the stochastic model to evaluate the ΔG of the bc(1) complex. The technique allows absolute quantification of the membrane potential, pH gradient, and proton-motive force without the need for genetic manipulation or exogenous compounds.  相似文献   

2.
Cancer cells exhibit remarkable alterations in cellular metabolism, particularly in their nutrient substrate preference. We have devised several experimental methods that rapidly analyze the metabolic substrate flux in cancer cells: glycolysis and the oxidation of major fuel substrates glucose, glutamine, and fatty acids. Using the XF Extracellular Flux analyzer, these methods measure, in real-time, the oxygen consumption rate (OCR) and extracellular acidification rate (ECAR) of living cells in a microplate as they respond to substrates and metabolic perturbation agents. In proof-of-principle experiments, we analyzed substrate flux and mitochondrial bioenergetics of two human glioblastoma cell lines, SF188s and SF188f, which were derived from the same parental cell line but proliferate at slow and fast rates, respectively. These analyses led to three interesting observations: 1) both cell lines respired effectively with substantial endogenous substrate respiration; 2) SF188f cells underwent a significant shift from glycolytic to oxidative metabolism, along with a high rate of glutamine oxidation relative to SF188s cells; and 3) the mitochondrial proton leak-linked respiration of SF188f cells increased significantly compared to SF188s cells. It is plausible that the proton leak of SF188f cells may play a role in allowing continuous glutamine-fueled anaplerotic TCA cycle flux by partially uncoupling the TCA cycle from oxidative phosphorylation. Taken together, these rapid, sensitive and high-throughput substrate flux analysis methods introduce highly valuable approaches for developing a greater understanding of genetic and epigenetic pathways that regulate cellular metabolism, and the development of therapies that target cancer metabolism.  相似文献   

3.
The precise metabolic steps that couple glucose catabolism to insulin secretion in the pancreatic beta cell are incompletely understood. ATP generated from glycolytic metabolism in the cytosol, from mitochondrial metabolism, and/or from the hydrogen shuttles operating between cytosolic and mitochondrial compartments has been implicated as an important coupling factor. To identify the importance of each of these metabolic pathways, we have compared the fates of four fuel secretagogues (glucose, pyruvate, dihydroxyacetone, and glycerol) in the INS1-E beta cell line. Two of these fuels, dihydroxyacetone and glycerol, are normally ineffective as secretagogues but are enabled by adenovirus-mediated expression of glycerol kinase. Comparison of these two particular fuels allows the effect of redox state on insulin secretion to be evaluated since the phosphorylated products dihydroxyacetone phosphate and glycerol phosphate lie on opposite sides of the NADH-consuming glycerophosphate dehydrogenase reaction. Based upon measurements of glycolytic metabolites, mitochondrial oxidation, mitochondrial matrix calcium, and mitochondrial membrane potential, we find that insulin secretion most tightly correlates with mitochondrial metabolism for each of the four fuels. In the case of glucose stimulation, the high control strength of glucose phosphorylation sets the pace of glucose metabolism and thus the rate of insulin secretion. However, bypassing this reaction with pyruvate, dihydroxyacetone, or glycerol uncovers constraints imposed by mitochondrial metabolism, each of which attains a similar maximal limit of insulin secretion. More specifically, we found that the hyperpolarization of the mitochondrial membrane, related to the proton export from the mitochondrial matrix, correlates well with insulin secretion. Based on these findings, we propose that fuel-stimulated secretion is in fact limited by the inherent thermodynamic constraints of proton gradient formation.  相似文献   

4.
Oxidative redox titrations of the mitochondrial cytochromes were performed in near-anoxic RAW 264.7 cells by inhibiting complex I. Cytochrome oxidation changes were measured with multi-wavelength spectroscopy and the ambient redox potential was calculated from the oxidation state of endogenous cytochrome c. Two spectral components were separated in the α-band range of cytochrome oxidase and they were identified as the difference spectrum of heme a when it has a high (a(H)) or low (a(L)) midpoint potential (E(m)) by comparing their occupancy during redox titrations carried out when the membrane potential (ΔΨ) was dissipated with a protonophore to that predicted by the neoclassical model of redox cooperativity. The difference spectrum of a(L) has a maximum at 605nm whereas the spectrum of a(H) has a maximum at 602nm. The ΔΨ-dependent shift in the E(m) of a(H) was too great to be accounted for by electron transfer from cytochrome c to heme a against ΔΨ but was consistent with a model in which a(H) is formed after proton uptake against ΔΨ suggesting that the spectral changes are the result of protonation. A stochastic simulation was implemented to model oxidation states, proton uptake and E(m) changes during redox titrations. The redox anti-cooperativity between heme a and heme a(3), and proton binding, could be simulated with a model where the pump proton interacted with heme a and the substrate proton interacted with heme a(3) with anti-cooperativity between proton binding sites, but not with a single proton binding site coupled to both hemes.  相似文献   

5.
Synaptosomes, isolated from the whole brain of young (3 months) and old (24 months) rats were used to study the major bioenergetic systems of neuronal mitochondria in situ, within the synaptosome. Approximately 85% of the resting oxygen consumption of synaptosomes from both young and old rats was a result of proton leak (and possibly other ion cycling) across the mitochondrial inner membrane. There were no significant differences between synaptosomes from the young and old rats in the kinetic responses of the substrate oxidation system, the mitochondrial proton leak and the phosphorylation system to changes in the proton electrochemical gradient. Flux control coefficients of 0.71, 0.27 and 0.02 were calculated for substrate oxidation system, phosphorylation system and the proton leak, respectively, at maximal ATP producing capacity in synaptosomes from young animals. The corresponding values calculated for synaptosomes from old animals were 0.53, 0.43 and 0.05. Thus substrate oxidation had greatest control over oxygen consumption at maximal phosphorylating capacity for synaptosomes from whole brain, with proton leak, having little control under maximal ATP producing capacity. The uncoupled rate of oxygen consumption, in the presence of the mitochondrial uncoupler, carbonyl cyanide p-trifluoromethoxyphenylhydrazone (FCCP), was significantly lower (p = 0.0124) in synaptosomes from old rats (6.08 +/- 0.42, n = 11) when compared with those from the young rats (7.87 +/- 0.48, n = 8). Thus, there is an impaired flux through the substrate oxidation system is synaptosomes from old rats, as compared to synaptosomes from the young animals. These in situ results may have important implications for the interpretation of theories that age-dependent impairment of mitochondrial energy production may result in increased susceptibility to neurodegeneration.  相似文献   

6.
The metabolic control analysis was applied to digitonin-permeabilized HepG2 cell line to assess the flux control exerted by cytochrome c oxidase on the mitochondrial respiration. Experimental conditions eliciting different energy/respiratory states in mitochondria were settled. The results obtained show that the mitochondrial electrochemical potential accompanies a depressing effect on the control coefficient exhibited by the cytochrome c oxidase. Both the components of the protonmotive force, i.e. the voltage (ΔΨ(m)) and the proton (ΔpH(m)) gradient, displayed a similar effect. Quantitative estimation of the ΔΨ(m) unveiled that the voltage-dependent effect on the control coefficient of cytochrome c oxidase takes place sharply in a narrow range of membrane potential from 170-180 to 200-210mV consistent with the physiologic transition from state 3 to state 4 of respiration. Extension of the metabolic flux control analysis to the NADH dehydrogenase and bc(1) complexes of the mitochondrial respiratory chain resulted in a similar effect. A mechanistic model is put forward whereby the respiratory chain complexes are proposed to exist in a voltage-mediated threshold-controlled dynamic equilibrium between supercomplexed and isolated states.  相似文献   

7.
The cytochrome bc(1) complex catalyzes electron transfer from ubiquinol to cytochrome c by a protonmotive Q cycle mechanism in which electron transfer is linked to proton translocation across the inner mitochondrial membrane. In the Q cycle mechanism proton translocation is the net result of topographically segregated reduction of quinone and reoxidation of quinol on opposite sides of the membrane, with protons being carried across the membrane as hydrogens on the quinol. The linkage of proton chemistry to electron transfer during quinol oxidation and quinone reduction requires pathways for moving protons to and from the aqueous phase and the hydrophobic environment in which the quinol and quinone redox reactions occur. Crystal structures of the mitochondrial cytochrome bc(1) complexes in various conformations allow insight into possible proton conduction pathways. In this review we discuss pathways for proton conduction linked to ubiquinone redox reactions with particular reference to recently determined structures of the yeast bc(1) complex.  相似文献   

8.
9.
Most of the adenosine triphosphate (ATP) synthesized during glucose metabolism is produced in the mitochondria through oxidative phosphorylation. This is a complex reaction powered by the proton gradient across the mitochondrial inner membrane, which is generated by mitochondrial respiration. A detailed model of this reaction, which includes dynamic equations for the key mitochondrial variables, was developed earlier by Magnus and Keizer. However, this model is extraordinarily complicated. We develop a simpler model that captures the behavior of the original model but is easier to use and to understand. We then use it to investigate the mitochondrial responses to glycolytic and calcium input. We use the model to explain experimental observations of the opposite effects of raising cytosolic Ca(2+)in low and high glucose, and to predict the effects of a mutation in the mitochondrial enzyme nicotinamide nucleotide transhydrogenase (Nnt) in pancreatic beta-cells.  相似文献   

10.
A regulated genome-scale model for Clostridium acetobutylicum ATCC 824 was developed based on its metabolic network reconstruction. To aid model convergence and limit the number of flux-vector possible solutions (the size of the phenotypic solution space), modeling strategies were developed to impose a new type of constraint at the endo-exo-metabolome interface. This constraint is termed the specific proton flux state, and its use enabled accurate prediction of the extracellular medium pH during vegetative growth of batch cultures. The specific proton flux refers to the influx or efflux of free protons (per unit biomass) across the cell membrane. A specific proton flux state encompasses a defined range of specific proton fluxes and includes all metabolic flux distributions resulting in a specific proton flux within this range. Effective simulation of time-course batch fermentation required the use of independent flux balance solutions from an optimum set of specific proton flux states. Using a real-coded genetic algorithm to optimize temporal bounds of specific proton flux states, we show that six separate specific proton flux states are required to model vegetative-growth metabolism and accurately predict the extracellular medium pH. Further, we define the apparent proton flux stoichiometry per weak acids efflux and show that this value decreases from approximately 3.5 mol of protons secreted per mole of weak acids at the start of the culture to approximately 0 at the end of vegetative growth. Calculations revealed that when specific weak acids production is maximized in vegetative growth, the net proton exchange between the cell and environment occurs primarily through weak acids efflux (apparent proton flux stoichiometry is 1). However, proton efflux through cation channels during the early stages of acidogenesis was found to be significant. We have also developed the concept of numerically determined sub-systems of genome-scale metabolic networks here as a sub-network with a one-dimensional null space basis set. A numerically determined sub-system was constructed in the genome-scale metabolic network to study the flux magnitudes and directions of acetylornithine transaminase, alanine racemase, and D-alanine transaminase. These results were then used to establish additional constraints for the genome-scale model.  相似文献   

11.
We studied the roles of glycolysis and glutaminolysis following an acute reduction in mitochondrial membrane potential (Ψm) induced by the thiazolidinedione troglitazone (TRO) and compared the responses with CCCP‐induced depolarization in breast cancer derived MCF‐7 and MDA‐MB‐231 cells as well as in the MCF‐10A normal breast cell line. TRO and CCCP both acutely reduced Ψm but after 24 h TRO‐treated cells had restored Ψm associated with both increased glycolysis and glutaminolysis. In contrast, CCCP‐treated cells exhibited only a partial restoration of Ψm associated with increased glycolysis but decreased glutaminolysis. TRO‐induced glutaminolysis was coupled to increased ammonium (GDH flux) and decreased alanine production (ALT flux) in all three cell lines. Both cancer cell lines exhibited a higher spontaneous GDH/ALT flux than the normal breast cell line associated with a reduced keto‐acid pool. TRO's effect on GDH/ALT fluxes and mitochondrial keto‐acid pool homeostasis was additive with glucose withdrawal suggesting limited intramitochondrial pyruvate availability. The TRO‐induced acceleration in GDH flux supplies substrate for Complex I contributing to the restoration of Ψm as well as Krebs cycle intermediates for biosynthesis. Inhibiting mitochondrial proton ATPase with oligomycin or nullifying the proton gradient with CCCP prevented both the TRO‐induced recovery of Ψm and accelerated GDH flux but restored ALT flux consonant with important roles for proton pumping in regulating GDH flux and Ψm recovery. Blocking enhanced GDH flux reduced DNA synthesis consistent with glutaminolysis via GDH playing an important biosynthetic role in tumorigenesis. J. Cell. Physiol. 226: 511–519, 2011. © 2010 Wiley‐Liss, Inc.  相似文献   

12.
A mathematical model of control of energy transformation in mitochondria is presented. The considered processes are: the proton translocation by the respiratory chain, the production of ATP by ATPase, the translocation of adenine nucleotides and of phosphate by their translocators, and a passive backflow of protons through the mitochondrial membrane. The mathematical equations expressing the steady-state kinetics of these processes and the relations between them were derived on the basis of current experimental data. The model predicts fairly well the values of the proton electrochemical gradient, of the ATP/ADP ratios within and outside mitochondria and of the distribution of phosphate between both compartments in different metabolic states of mitochondria. From the general agreement of model computations with experimental data, it is suggested that the electron flux through the respiratory chain is immediately controlled by the energy back-pressure of the proton electrochemical gradient, that the ATPase reaction is near equilibrium in phosphorylating mitochondria but that the adenine nucleotide exchange across the mitochondrial membrane requires some loss of energy. The latter is caused by an inhibition of the translocator by ATP from the outer side or by ADP from the inner side depending on the actual ATP/ADP in both compartments. It explains that no fixed relation exists between the rate of respiration and the phosphorylation state of extramitochondrial adenine nucleotides. The relation is modified by the concentration of phosphate and by intramitochondrial energy utilization.  相似文献   

13.
We developed a computational model of mitochondrial energetics that includes Ca2+, proton, Na+, and phosphate dynamics. The model accounts for distinct respiratory fluxes from substrates of complex I and complex II, pH effects on equilibrium constants and enzyme kinetics, and the acid-base equilibrium distributions of energy intermediaries. We experimentally determined NADH and ΔΨm in guinea pig mitochondria during transitions from de-energized to energized, or during state 2/4 to state 3 respiration, or into hypoxia and uncoupling, and compared the results with those obtained in model simulations. The model quantitatively reproduces the experimentally observed magnitude of ΔΨm, the range of NADH levels, respiratory fluxes, and respiratory control ratio upon transitions elicited by sequential additions of substrate and ADP. Simulation results are also able to mimic the change in ΔΨm upon addition of phosphate to state 4 mitochondria, leading to matrix acidification and ΔΨm polarization. The steady-state behavior of the integrated mitochondrial model qualitatively simulates the dependence of respiration on the proton motive force, and the expected flux-force relationships existing between respiratory and ATP synthesis fluxes versus redox and phosphorylation potentials. This upgraded mitochondrial model provides what we believe are new opportunities for simulating mitochondrial physiological behavior during dysfunctional states involving changes in pH and ion dynamics.  相似文献   

14.
Elevated levels of reactive oxygen species (ROS) play a critical role in cardiac myocyte signaling in both healthy and diseased cells. Mitochondria represent the predominant cellular source of ROS, specifically the activity of complexes I and III. The model presented here explores the modulation of electron transport chain ROS production for state 3 and state 4 respiration and the role of substrates and respiratory inhibitors. Model simulations show that ROS production from complex III increases exponentially with membrane potential (ΔΨm) when in state 4. Complex I ROS release in the model can occur in the presence of NADH and succinate (reverse electron flow), leading to a highly reduced ubiquinone pool, displaying the highest ROS production flux in state 4. In the presence of ample ROS scavenging, total ROS production is moderate in state 3 and increases substantially under state 4 conditions. The ROS production model was extended by combining it with a minimal model of ROS scavenging. When the mitochondrial redox status was oxidized by increasing the proton permeability of the inner mitochondrial membrane, simulations with the combined model show that ROS levels initially decline as production drops off with decreasing ΔΨm and then increase as scavenging capacity is exhausted. Hence, this mechanistic model of ROS production demonstrates how ROS levels are controlled by mitochondrial redox balance.  相似文献   

15.
The necessity for defining hypoxia as O2-limited energy flux rather than low partial pressure is explored from a systems perspective. Oxidative phosphorylation, the Krebs cycle, glycolysis, substrate supply, and cell energetics interact as subsystems; the set point is a match between ATP demand and aerobic ATP production. To this end the transport subsystem must match the transcapillary and mitochondrial O2 fluxes. High transcapillary O2 flux requires intracellular PO2 in the range 1-10 Torr. In this range the O2 drive on electron transport must be compensated by adaptive changes in the phosphorylation and redox drives. Thus the metabolic subsystem supports diffusive O2 transport by maintaining O2 flux at intracellular partial pressures required for O2 release from blood. Since responses to stress are distributed according to the state of the entire system, several simultaneous metabolic measurements, including intracellular PO2 (or a known direction of change in intracellular PO2) and the O2 dependence of a measurable function are required to judge the adequacy of O2 supply. ATP demand and aerobic capacity must also be evaluated, because the hypoxic threshold depends on the ratio of ATP demand to aerobic capacity. The application and limitation of commonly used criteria of hypoxia are discussed, and a more precise terminology is proposed.  相似文献   

16.

Background  

A computational model of myocardial energy metabolism was used to assess the metabolic responses to normal and reduced myocardial blood flow. The goal was to examine to what extent glycolysis and lactate formation are controlled by the supply of glycolytic substrate and/or the cellular redox (NADH/NAD+) and phosphorylation (ATP/ADP) states.  相似文献   

17.
Mitochondria from various organisms, especially plants, fungi and many bacteria contain so-called alternative NADH:ubiquinone oxidoreductases that catalyse the same redox reaction as respiratory chain complex I, but do not contribute to the generation of transmembrane proton gradients. In eucaryotes, these enzymes are associated with the mitochondrial inner membrane, with their NADH reaction site facing either the mitochondrial matrix (internal alternative NADH:ubiquinone oxidoreductases) or the cytoplasm (external alternative NADH:ubiquinone oxidoreductases). Some of these enzymes also accept NADPH as substrate, some require calcium for activity. In the past few years, the characterisation of several alternative NADH:ubiquinone oxidoreductases on the DNA and on the protein level, of substrate specificities, mitochondrial import and targeting to the mitochondrial inner membrane has greatly improved our understanding of these enzymes. The present review will, with an emphasis on yeast model systems, illuminate various aspects of the biochemistry of alternative NADH:ubiquinone oxidoreductases, address recent developments and discuss some of the questions still open in the field.  相似文献   

18.
Elevated levels of reactive oxygen species (ROS) play a critical role in cardiac myocyte signaling in both healthy and diseased cells. Mitochondria represent the predominant cellular source of ROS, specifically the activity of complexes I and III. The model presented here explores the modulation of electron transport chain ROS production for state 3 and state 4 respiration and the role of substrates and respiratory inhibitors. Model simulations show that ROS production from complex III increases exponentially with membrane potential (ΔΨm) when in state 4. Complex I ROS release in the model can occur in the presence of NADH and succinate (reverse electron flow), leading to a highly reduced ubiquinone pool, displaying the highest ROS production flux in state 4. In the presence of ample ROS scavenging, total ROS production is moderate in state 3 and increases substantially under state 4 conditions. The ROS production model was extended by combining it with a minimal model of ROS scavenging. When the mitochondrial redox status was oxidized by increasing the proton permeability of the inner mitochondrial membrane, simulations with the combined model show that ROS levels initially decline as production drops off with decreasing ΔΨm and then increase as scavenging capacity is exhausted. Hence, this mechanistic model of ROS production demonstrates how ROS levels are controlled by mitochondrial redox balance.  相似文献   

19.
An evolutionary scheme for the origin of chemiosmotic coupling of redox reactions and ATP synthesis is proposed. It is argued that the primitive heterotroph, which generated ATP by substrate level phosphorylation, used some of this ATP in active proton extrusion to regulate cytoplasmic pH. As fermentation substrates were used up, selection favoured organisms which produced a light-dependent redox pump for proton extrusion. This partly replaced the ATP-dependent proton extrusion, thereby economizing on fermentation substrates. The ATP-requiring mechanism was retained for dark proton extrusion. A further economic advantage would come about if the energy of the light-generated proton gradient were used to reverse the ATP-dependent proton pump, leading to chemiosmotic photophosphorylation. This hypothesis explains the origin of the two kinds of proton pump, and their occurrence in the same membrane; the origin of these two prerequisites of chemiosmotic coupling had not previously been adequately explained. The success of the proton pump based on redox loops of alternating vectorial electron and hydrogen atom carriers, rather than the apparently simpler light-driven proton pump of Halobacterium is explained in terms of the ease of converting the former type of cyclic photophosphorylation, but not the latter, into a system bringing about net redox reactions.  相似文献   

20.
Jin Q  Bethke CM 《Biophysical journal》2002,83(4):1797-1808
We show that the rate at which electrons pass through the respiratory chain in mitochondria and respiring prokaryotic cells is described by the product of three terms, one describing electron donation, one acceptance, and a third, the thermodynamic drive. We apply the theory of nonequilibrium thermodynamics in the context of the chemiosmotic model of proton translocation and energy conservation. This approach leads to a closed-form expression that predicts steady-state electron flux as a function of chemical conditions and the proton motive force across the mitochondrial inner membrane or prokaryotic cytoplasmic membrane. The rate expression, derived considering reverse and forward electron flow, is the first to account for both thermodynamic and kinetic controls on the respiration rate. The expression can be simplified under specific conditions to give rate laws of various forms familiar in cellular physiology and microbial ecology. The expression explains the nonlinear dependence of flux on electrical potential gradient, its hyperbolic dependence on substrate concentration, and the inhibiting effects of reaction products. It provides a theoretical basis for investigating life under unusual conditions, such as microbial respiration in alkaline waters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号