首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Structural changes of the pulmonary circulation during the pathogenesis of pulmonary arterial hypertension remain to be fully elucidated. Although angiography has been used for visualizing the pulmonary circulation, conventional angiography systems have considerable limitations for visualizing small microvessels (diameters < 200 microm), particularly within a closed-chest animal model. In this study we assess the effectiveness of monochromatic synchrotron radiation (SR) for microangiography of the pulmonary circulation in the intact-chest rat. Male adult Sprague-Dawley rats were anesthetized, and a catheter was positioned within the right ventricle, for administering iodinated contrast agent (Iomeron 350). Subsequently, microangiography of pulmonary arterial branches within the left lung was performed using monochromatic SR. Additionally, we assessed dynamic changes in vessel diameter during acute hypoxic (10% and 8% O2 for 4 min each) pulmonary vasoconstriction (HPV). Using SR we were able to visualize pulmonary microvessels with a diameter of <100 microm (the 4th generation of branching from the left axial artery). Acute hypoxia caused a significant decrease in the diameter of all vessels less than 500 microm. The greatest degree of pulmonary vasoconstriction was observed in vessels with a diameter between 200 and 300 microm. These results demonstrate the effectiveness of SR for visualizing pulmonary vessels in a closed-chest rat model and for assessing dynamic changes associated with HPV. More importantly, these observations implicate SR as an effective tool in future research for assessing gross structural changes associated with the pathogenesis of pulmonary arterial hypertension.  相似文献   

2.
Rho-kinase-mediated vasoconstriction and endothelial dysfunction are considered two primary instigators of pulmonary arterial hypertension (PAH). However, their contribution to the adverse changes in pulmonary blood flow distribution associated with PAH has not been addressed. This study utilizes synchrotron radiation microangiography to assess the specific role, and contribution of, Rho-kinase-mediated vasoconstriction and endothelial dysfunction in PAH. Male adult Sprague-Dawley rats were injected with saline (Cont-rats) or monocrotaline (MCT-rats) 3 wk before microangiography was performed on the left lung. We assessed dynamic changes in vessel internal diameter (ID) in response to 1) the Rho-kinase inhibitor fasudil (10 mg/kg iv); or 2) ACh (3 μg · kg?1 · min?1), sodium nitroprusside (SNP, 5 μg · kg?1 · min?1), and N(ω)-nitro-l-arginine methyl ester (l-NAME, 50 mg/kg iv). We observed that MCT-rats had fewer vessels of the microcirculation compared with Cont-rats. The fundamental result of this study is that fasudil improved pulmonary blood flow distribution and reduced pulmonary pressure in PAH rats, not only by dilating already-perfused vessels (ID > 100 μm), but also by restoring blood flow to vessels that had previously been constricted closed (ID < 100 μm). Endothelium-dependent vasodilation was impaired in MCT-rats primarily in vessels with an ID < 200 μm. Moreover the vasoconstrictor response to l-NAME was accentuated in MCT-rats, but only in the 200- to 300-μm vessels. These results highlight the importance of Rho-kinase-mediated control and endothelial control of pulmonary vascular tone in PAH. Indeed, an effective therapeutic strategy for treating PAH should target both the smooth muscle Rho-kinase and endothelial pathways.  相似文献   

3.
Structural and functional changes of pulmonary circulation related to pathophysiology of pulmonary arterial hypertension (PAH) remain to be fully elucidated. Angiographic visualization in in vivo animals provided a powerful tool for assessing the major indexes associated with the pathogenesis of PAH. In this study, we have exploited the full potential of synchrotron radiation (SR) microangiography to show the ability to visualize pulmonary hemodynamics in a closed-chest mouse. Male adult mice were anesthetized and cannulated with a customized 24-gauge catheter into the right ventricle via the jugular vein for administering iodine contrast agent. The microangiography was performed on the left lung. We measured dynamic changes in vessel diameter in response to acetylcholine (ACh) and acute exposure to hypoxic gas (10% O(2)). Moreover, the pulmonary transit time was estimated by the time of contrast agent circulating. We were able to visualize the pulmonary arteries from the left pulmonary artery (LPA) to the third generation of branching (inner diameter <100 μm). ACh and acute hypoxia induced vascular responses chiefly in the second and third branching vessels rather than the LPA and the first branching vessels. The transit time was only 0.83 s. These results demonstrate the effectiveness of SR for visualizing the pulmonary circulation in a closed-chest mouse. Future studies using SR microangiography on specific gene-targeted knockout and transgenic mice will provide new insights into the pathophysiology of pulmonary dysfunction and functional adaptation to survive in hypoxic condition.  相似文献   

4.
Nitric oxide (NO) produced by endothelial NO synthase (eNOS) plays a central role in regulation of vascular tone and reactivity. The purpose of this study is to clarify the basal tone and microvascular reactivity in eNOS-overexpressing transgenic (Tg) mice in vivo with a microangiography system using monochromatic synchrotron radiation (SR). The mouse femoral artery was cannulated, nonionic contrast media was injected, and microangiography was performed in hindlimbs of mice. Serial images of the small blood vessels (diameter <200 microm) were recorded by the SR microangiography system. At basal conditions, the diameter of tibial arteries in eNOS-Tg mice was larger than that of wild-type mice (179 +/- 8 versus 132 +/- 8 microm; P < 0.01). l-NAME treatment decreased the vessel diameter and canceled the difference in vessel diameters between two genotypes. Acetylcholine- and sodium nitroprusside-induced relaxations of small vessels were significantly reduced in Tg mice compared with wild-type mice (35.0 +/- 9.4 versus 61.6 +/- 6.7%, 85.0 +/- 10.2 versus 97.3 +/- 6.7% of the maximum relaxation, respectively). Our data provide the evidence that overproduced NO from endothelium reduces vascular tone and plays a pivotal role in regulation of vascular tone in small vessels. Furthermore, the reduced NO-mediated relaxation in small vessels of eNOS-Tg mice is demonstrated for the first time in vivo. SR microangiography allows us to evaluate the reactivity in small-sized vessels and appears to be a powerful tool for assessing the microvascular circulation in vivo.  相似文献   

5.
Pulmonary arterial hypertension (PAH) is a disease affecting distal pulmonary arteries (PA). These arteries are deformed, leading to right ventricular failure. Current treatments are limited. Physiologically, pulsatile blood flow is detrimental to the vasculature. In response to sustained pulsatile stress, vessels release nitric oxide (NO) to induce vasodilation for self-protection. Based on this observation, this study developed a protocol to assess whether an artificial pulmonary pulsatile blood flow could induce an NO-dependent decrease in pulmonary artery pressure. One group of piglets was exposed to chronic hypoxia for 3 weeks and compared to a control group of piglets. Once a week, the piglets underwent echocardiography to assess PAH severity. At the end of hypoxia exposure, the piglets were subjected to a pulsatile protocol using a pulsatile catheter. After being anesthetized and prepared for surgery, the jugular vein of the piglet was isolated and the catheter was introduced through the right atrium, the right ventricle and the pulmonary artery, under radioscopic control. Pulmonary artery pressure (PAP) was measured before (T0), immediately after (T1) and 30 min after (T2) the pulsatile protocol. It was demonstrated that this pulsatile protocol is a safe and efficient method of inducing a significant reduction in mean PAP via an NO-dependent mechanism. These data open up new avenues for the clinical management of PAH.  相似文献   

6.
Interest surrounds the role of an NADPH oxidase-like enzyme in hypoxic pulmonary vasoconstriction (HPV). We have studied the effects of the NADPH oxidase inhibitors iodonium diphenyl (ID) and cadmium sulphate (CdSO4) upon HPV of isolated rat pulmonary arteries (n = 73, internal diameter 545 +/- 23 microm). Vessels were preconstricted with prostaglandin F2alpha (PGF2alpha, 0.5 or 5 microM) prior to a hypoxic challenge. ID (10 or 50 microM), CdSO4 (100 microM) or vehicle (50 microl) was added for 30 min before re-exposure to PGF2alpha and hypoxia. ID and CdSO4 significantly inhibited HPV. In vessels preconstricted with 5 microM PGF2alpha, ID (10 and 50 microM) reduced HPV from 37.4 +/- 5.6 % to 9.67 +/- 4.4 % of the contractile response elicited by 80 mM KCl (P<0.05) and from 30.1 +/- 5.0 % to 0.63 +/- 0.6% 80 mM KCl response (P<0.01), respectively. CdSO4 (100 microM) reduced HPV from 29.4 +/-4.0 % to 17.1 +/- 2.2% 80 mM KCl response (P<0.05). In vessels preconstricted with 0.5 microM PGF2alpha, ID (10 and 50 microM) reduced HPV from 16.0 +/- 3.15% to 3.36 +/- 1.44 % 80 mM KCl response (P<0.01) and from 15.0 +/- 1.67 % to 2.82 +/- 1.40 % 80 mM KCl response (P<0.001), respectively. Constriction to PGF2alpha was potentiated by ID. ID and CdSO4, at concentrations previously shown to inhibit neutrophil NADPH oxidase, attenuate HPV in isolated rat pulmonary arteries. This suggests that an NADPH oxidase-like enzyme is involved in HPV and could act as the pulmonary oxygen sensor.  相似文献   

7.
We studied the lung proteome changes in two widely used models of pulmonary arterial hypertension (PAH): monocrotaline (MCT) injection and chronic hypoxia (CH); untreated rats were used as controls (n = 6/group). After 28 days, invasive right ventricular systolic pressure (RVSP) was measured. Lungs were immunostained for alpha-smooth muscle actin (alphaSMA). 2-DE (n = 4/group) followed by nano-LC-MS/MS was applied for protein identification. Western blotting was used additionally if possible. RVSP was significantly increased in MCT- and CH-rats (MCT 62.5 +/- 4.4 mmHg, CH 62.2 +/- 4.1 mmHg, control 25.0 +/- 1.7 mmHg, p<0.001). This was associated with an increase of alphaSMA positive vessels. In both groups, there was a significantly increased expression of proteins associated with the contractile apparatus (diphosphoHsp27 (p<0.001), Septin2 (p<0.001), F-actin capping protein (p<0.01), and tropomyosin beta (p<0.02)). In CH, proteins of the nitric oxide (Hsc70; p = 0.002), carbon monoxide (biliverdin reductase; p = 0.005), and vascular endothelial growth factor (VEGF) pathway (annexin 3; p<0.001) were significantly increased. In MCT, proteins involved in serotonin synthesis (14-3-3; p = 0.02), the enhanced unfolded protein response (ERp57; p = 0.02), and intracellular chloride channels (CLIC 1; p = 0.002) were significantly elevated. Therefore, MCT- and CH-induced vasoconstriction and remodeling seemed to be mediated via different signaling pathways. These differences should be considered in future studies using either PAH model.  相似文献   

8.
Severe pulmonary arterial hypertension (PAH) occurs in idiopathic form and in association with diverse diseases. The pathological hallmarks are distal smooth muscle hypertrophy, obliteration of small pulmonary arteriole lumens, and disorganized cellular proliferation in plexiform lesions. In situ thrombosis is also observed. A detailed understanding of the disease progression has been hampered by the absence of an animal model bearing all the pathological features of human disease. To create a model with these characteristics, we gave young (200-g) rats monocrotaline 1 wk following left pneumonectomy; controls with vehicle treatment or sham operation were also studied. In experimental rats, pulmonary arteries had distal smooth muscle hypertrophy and proliferative perivascular lesions. The lesions had a plexiform appearance, occurred early in disease development, and were composed of cells expressing endothelial antigens. Three-dimensional microangiography revealed severe vascular pruning and disorganized vascular networks. We found that expression of tissue factor (TF), the membrane glycoprotein that initiates coagulation, facilitates angiogenesis, and mediates arterial injury in the systemic circulation, was increased in the pulmonary arterioles and plexiform-like lesions of the rats. TF was also heavily expressed in the vessels and plexiform lesions of humans with pulmonary arterial hypertension. We conclude that plexiform-like lesions can be reproduced in rats, and this model will facilitate experiments to address controversies about the role of these lesions in PAH. Increased TF expression may contribute to the prothrombotic diathesis and vascular cell proliferation typical of human disease.  相似文献   

9.
Inhibition of voltage-gated, L-type Ca(2+) (Ca(L)) channels by clinical calcium channel blockers provides symptomatic improvement to some pediatric patients with pulmonary arterial hypertension (PAH). The present study investigated whether abnormalities of vascular Ca(L) channels contribute to the pathogenesis of neonatal PAH using a newborn piglet model of hypoxia-induced PAH. Neonatal piglets exposed to chronic hypoxia (CH) developed PAH by 21 days, which was evident as a 2.1-fold increase in pulmonary vascular resistance in vivo compared with piglets raised in normoxia (N). Transpulmonary pressures (DeltaPtp) in the corresponding isolated perfused lungs were 20.5 +/- 2.1 mmHg (CH) and 11.6 +/- 0.8 mmHg (N). Nifedipine reduced the elevated DeltaPtp in isolated lungs of CH piglets by 6.4 +/- 1.3 mmHg but only reduced DeltaPtp in lungs of N piglets by 1.9 +/- 0.2 mmHg. Small pulmonary arteries from CH piglets also demonstrated accentuated Ca(2+)-dependent contraction, and Ca(2+) channel current was 3.94-fold higher in the resident vascular muscle cells. Finally, although the level of mRNA encoding the pore-forming alpha(1C)-subunit of the Ca(L) channel was similar between small pulmonary arteries from N and CH piglets, a profound and persistent upregulation of the vascular alpha(1C) protein was detected by 10 days in CH piglets at a time when pulmonary vascular resistance was only mildly elevated. Thus chronic hypoxia in the neonate is associated with the anomalous upregulation of Ca(L) channels in small pulmonary arteries in vivo and the resulting abnormal Ca(2+)-dependent resistance may contribute to the pathogenesis of PAH.  相似文献   

10.
To determine the role of endothelium in hypoxic pulmonary vasoconstriction (HPV), we measured vasomotor responses to hypoxia in isolated seventh-generation porcine pulmonary arteries < 300 microm in diameter with (E+) and without endothelium. In E+ pulmonary arteries, hypoxia decreased the vascular intraluminal diameter measured at a constant transmural pressure. These constrictions were complete in 30-40 min; maximum at PO(2) of 2 mm Hg; half-maximal at PO(2) of 40 mm Hg; blocked by exposure to Ca(2+)-free conditions, nifedipine, or ryanodine; and absent in E+ bronchial arteries of similar size. Hypoxic constrictions were unaltered by indomethacin, enhanced by indomethacin plus N(G)-nitro-L-arginine methyl ester, abolished by BQ-123 or endothelial denudation, and restored in endothelium-denuded pulmonary arteries pretreated with 10(-10) M endothelin-1 (ET-1). Given previous demonstrations that hypoxia caused contractions in isolated pulmonary arterial myocytes and that ET-1 receptor antagonists inhibited HPV in intact animals, our results suggest that full in vivo expression of HPV requires basal release of ET-1 from the endothelium to facilitate mechanisms of hypoxic reactivity in pulmonary arterial smooth muscle.  相似文献   

11.
Chronic hypercapnia is commonly found in patients with severe hypoxic lung disease and is associated with a greater elevation of pulmonary arterial pressure than that due to hypoxia alone. We hypothesized that hypercapnia worsens hypoxic pulmonary hypertension by augmenting pulmonary vascular remodeling and hypoxic pulmonary vasoconstriction (HPV). Rats were exposed to chronic hypoxia [inspiratory O(2) fraction (FI(O(2))) = 0.10], chronic hypercapnia (inspiratory CO(2) fraction = 0.10), hypoxia-hypercapnia (FI(O(2)) = 0.10, inspiratory CO(2) fraction = 0.10), or room air. After 1 and 3 wk of exposure, muscularization of resistance blood vessels and hypoxia-induced hematocrit elevation were significantly inhibited in hypoxia-hypercapnia compared with hypoxia alone (P < 0.001, ANOVA). Right ventricular hypertrophy was reduced in hypoxia-hypercapnia compared with hypoxia at 3 wk (P < 0.001, ANOVA). In isolated, ventilated, blood-perfused lungs, basal pulmonary arterial pressure after 1 wk of exposure to hypoxia (20.1 +/- 1.8 mmHg) was significantly (P < 0.01, ANOVA) elevated compared with control conditions (12.1 +/- 0.1 mmHg) but was not altered in hypoxia-hypercapnia (13.5 +/- 0.9 mmHg) or hypercapnia (11.8 +/- 1.3 mmHg). HPV (FI(O(2)) = 0.03) was attenuated in hypoxia, hypoxia-hypercapnia, and hypercapnia compared with control (P < 0.05, ANOVA). Addition of N(omega)-nitro-L-arginine methyl ester (10(-4) M), which augmented HPV in control, hypoxia, and hypercapnia, significantly reduced HPV in hypoxia-hypercapnia. Chronic hypoxia caused impaired endothelium-dependent relaxation in isolated pulmonary arteries, but coexistent hypercapnia partially protected against this effect. These findings suggest that coexistent hypercapnia inhibits hypoxia-induced pulmonary vascular remodeling and right ventricular hypertrophy, reduces HPV, and protects against hypoxia-induced impairment of endothelial function.  相似文献   

12.
Familial pulmonary arterial hypertension (PAH) is associated with mutations in bone morphogenetic protein type II receptor (BMPR2). Many of these mutations occur in the BMPR2 tail domain, leaving the SMAD functions intact. To determine the in vivo consequences of BMPR2 tail domain mutation, we created a smooth muscle-specific doxycycline-inducible BMPR2 mutation with an arginine to termination mutation at amino acid 899. When these SM22-rtTA x TetO(7)-BMPR2(R899X) mice had transgene induced for 9 wk, starting at 4 wk of age, they universally developed pulmonary vascular pruning as assessed by fluorescent microangiography. Approximately one-third of the time, the induced animals developed elevated right ventricular systolic pressures (RVSP), associated with extensive pruning, muscularization of small pulmonary vessels, and development of large structural pulmonary vascular changes. These lesions included large numbers of macrophages and T cells in their adventitial compartment as well as CD133-positive cells in the lumen. Small vessels filled with CD45-positive and sometimes CD3-positive cells were a common feature in all SM22-rtTA x TetO(7)-BMPR2(R899X) mice. Gene array experiments show changes in stress response, muscle organization and function, proliferation, and apoptosis and developmental pathways before RVSP increases. Our results show that the primary phenotypic result of BMPR2 tail domain mutation in smooth muscle is pulmonary vascular pruning leading to elevated RVSP, associated with early dysregulation in multiple pathways with clear relevance to PAH. This model should be useful to the research community in examining early molecular and physical events in the development of PAH and as a platform to validate potential treatments.  相似文献   

13.
Hypoxic pulmonary vasoconstriction (HPV) is known to affect regional pulmonary blood flow distribution. It is unknown whether lungs with well-matched ventilation (V)/perfusion (Q) have regional differences in the HPV response. Five prone pigs were anesthetized and mechanically ventilated (positive end-expiratory pressure = 2 cmH2O). Two hypoxic preconditions [inspired oxygen fraction (FI(O2)) = 0.13] were completed to stabilize the animal's hypoxic response. Regional pulmonary blood Q and V distribution was determined at various FI(O2) (0.21, 0.15, 0.13, 0.11, 0.09) using the fluorescent microsphere technique. Q and V in the lungs were quantified within 2-cm3 lung pieces. Pieces were grouped, or clustered, based on the changes in blood flow when subjected to increasing hypoxia. Unique patterns of Q response to hypoxia were seen within and across animals. The three main patterns (clusters) showed little initial difference in V/Q matching at room air where the mean V/Q range was 0.92-1.06. The clusters were spatially located in cranial, central, and caudal portions of the lung. With decreasing FI(O2), blood flow shifted from the cranial to caudal regions. We determined that pulmonary blood flow changes, caused by HPV, produced distinct response patterns that were seen in similar regions across our prone porcine model.  相似文献   

14.
To determine the effects of alveolar hypoxia on pulmonary microvascular volume, X-ray microfocal angiographic images of isolated perfused dog lung lobes were obtained during passage of a bolus of radiopaque contrast medium during both normoxic (alveolar gas, 15% O(2), 6% CO(2), and 79% N(2)) and hypoxic (3% O(2), 6% CO(2), and 91% N(2)) conditions. Regions of interest (ROIs) over the lobar artery and vein at low magnification and a feeding artery ( approximately 500 microm diameter) and the nearby microvasculature (vessels smaller than approximately 50 microm) at high magnification were identified, and X-ray absorbance vs. time curves were acquired under both conditions from the same ROIs. The total pulmonary vascular volume was calculated from the flow and the mean transit time for the contrast medium passage from the lobar artery to lobar vein. The fractional changes in microvascular volume were determined from the areas under the high-magnification X-ray absorbance curves. Hypoxia decreased lobar volume by 13 +/- 3% (SE) and regional microvascular volume by 26 +/- 4% (SE). Given the morphometry of the lung vasculature, these results suggest that capillary volume was decreased by hypoxia.  相似文献   

15.
Pulmonary vascular remodeling is an important pathological feature of pulmonary arterial hypertension (PAH), which is characterized by thickening of the medial smooth muscle layer. Hypertrophy of pulmonary artery smooth muscle cells (PASMCs) participates in the development of medial thickening. Genistein can attenuate PAH and inhibit medial thickening of pulmonary arteries. Since hypoxia is one of the main causes of pulmonary hypertension, this study aims to investigate the mechanism of genistein in inhibiting hypertrophic responses in PASMCs induced by hypoxia. Cells isolated from the chick embryo were cultured with or without genistein and subjected to hypoxia or not. The increase of cell surface area and α-smooth muscle actin (α-SMA) of PASMCs was significantly suppressed by genistein during hypoxia. This result was confirmed by the incorporation of puromycin into peptide chains and flow cytometry analysis. Constrained mRNA and protein hypoxia-inducible factor (HIF)-1α expression was improved by genistein under hypoxia condition. Genistein restored redox homeostasis by fluorescent probe determination. The effect of genistein on hypertrophic response was blocked by estrogen receptor inhibitor, β1-adrenoceptor agonist and β2-adrenoceptor antagonist. In conclusion, genistein potently attenuates hypoxia-induced hypertrophy of PASMCs, which may enable a novel therapy for PAH.  相似文献   

16.
We investigated the role of the autonomic nervous system in the arterial chemoreceptor attenuation of hypoxic pulmonary vasoconstriction (HPV) using anesthetized dogs. Total pulmonary blood flow (Qt) and left pulmonary blood flow (Ql) were determined using electromagnetic flow probes. Carotid body chemoreceptors were perfused using blood pumped from an extracorporeal circuit containing an oxygenator. Four groups were used: 1) prevagotomy (control), 2) bilateral vagotomy, 3) post-atropine, and 4) post-propranolol. Left lung hypoxia decreased Ql/Qt from 42.9 +/- 2.9 to 28.1 +/- 3.0%, from 41.1 +/- 5.3 to 26.7 +/- 4.2%, from 38.6 +/- 1.3 to 22.2 +/- 2.4%, and from 48.2 +/- 4.2 to 28.5 +/- 3.7% in the four groups, respectively. Chemoreceptor stimulation during unilateral hypoxia increased Ql/Qt from 28.1 +/- 3.0 to 39.1 +/- 4.9% and from 28.5 +/- 3.7 to 40.6 +/- 3.7% in the control and propranolol groups. However, chemoreceptor stimulation had no effect on Ql/Qt during left lung hypoxia after vagotomy or atropine, as Ql/Qt went from 26.7 +/- 4.2 to 29.3 +/- 5.2% and from 22.2 +/- 2.4 to 24.1 +/- 1.5% in groups 2 and 3, respectively. Because chemoreceptor stimulation did not affect HPV in groups 2 and 3, we conclude that the chemoreceptor attenuation of HPV is mediated by the parasympathetic nervous system.  相似文献   

17.
Pulmonary arterial hypertension (PAH) is characterized by increasing pulmonary pressure, right ventricular failure, and death. The typical pathological changes include medial hypertrophy, intimal fibrosis and in situ thrombosis. Serotonin (5-HT) and other factors contribute to the development of pathologic lesions. Aspirin (ASA), a platelet aggregation inhibitor, inhibits 5-HT release from platelets. The aim of this study was to determine the efficacy of ASA in preventing or attenuating PAH. Sprague–Dawley rats injected with monocrotaline (MCT) developed severe PAH within 31 days. One hundred forty rats were randomized to receive either vehicle or ASA (0.5, 1, 2, or 4 mg/kg/day). The pre-ASA group was treated with ASA (1 mg/kg/day) for 30 days before the MCT injection. Thirty-one days after the injection (day 61 for the pre-ASA group), pulmonary arterial pressure (PAP), right ventricular hypertrophy and pulmonary arteriole thickness were measured. Plasma 5-HT was measured by high-performance liquid chromatography. Aspirin suppressed PAH and increased the survival rate compared with the control group (84 vs. 60%, P < 0.05). Aspirin treatment also reduced right ventricular hypertrophy and pulmonary arteriole proliferation in ASA-treated PAH model. In addition, plasma 5-HT was decreased in our ASA-treated PAH model. The degree of 5-HT reduction was associated with systolic PAP, right ventricular hypertrophy and wall thickness of pulmonary arterioles in rats. These results showed that ASA treatment effectively attenuated MCT-induced pulmonary hypertension, right ventricular hypertrophy, and occlusion of the pulmonary arteries. The effects of ASA was associated with a reduction of 5-HT.  相似文献   

18.
Intact Madison (M) rats have greater pulmonary pressor responses to acute hypoxia than Hilltop (H) rats. We tested the hypothesis that the difference in pressor response is intrinsic to pulmonary arteries and that endothelium contributes to the difference. Pulmonary arteries precontracted with phenylephrine (10(-7) M) from M rats had greater constrictor responses [hypoxic pulmonary vasoconstriction (HPV)] to acute hypoxia (0% O(2)) than those from H rats: 473 +/- 30 vs. 394 +/- 29 mg (P < 0.05). Removal of the endothelium or inhibition of nitric oxide (NO) synthase by N(omega)-nitro-L-arginine (L-NA, 10(-3) M) significantly blunted HPV in both strains. Inhibition of cyclooxygenase by meclofenamate (10(-5) M) or blockade of endothelin type A and B receptors by BQ-610 (10(-5) M) + BQ-788 (10(-5) M), respectively, had no effect on HPV. Constrictor responses to phenylephrine, endothelin-1, and prostaglandin F(2alpha) were similar in pulmonary arteries from both strains. The relaxation response to ACh, an NO synthase stimulator, was significantly greater in M than in H rats (80 +/- 3 vs. 62 +/- 4%, P < 0.01), but there was no difference in response to sodium nitroprusside, an NO donor. L-NA potentiated phenylephrine-induced contraction to a greater extent in pulmonary arteries from M than from H rats. These findings indicate that at least part of the strain-related difference in acute HPV is attributable to differences in endothelial function, possibly related to differences in NO production.  相似文献   

19.
Skin blood flow increases in response to local heat due to sensorineural and nitric oxide (NO)-mediated dilation. It has been previously demonstrated that arteriolar dilation is inhibited with NO synthase (NOS) blockade. Flow, nonetheless, increases with local heat. This implies that the previously unexamined nonarteriolar responses play a significant role in modulating flow. We thus hypothesized that local heating induces capillary recruitment. We heated a portion (3 cm2) of the Pallid bat wing from 25 degrees C to 37 degrees C for 20 min, and measured changes in terminal feed arteriole (approximately 25 microm) diameter and blood velocity to calculate blood flow (n = 8). Arteriolar dilation was reduced with NOS and sensorineural blockade using a 1% (wt/vol) NG-nitro-L-arginine methyl ester (L-NAME) and 2% (wt/vol) lidocaine solution (n = 8). We also measured changes in the number of perfused capillaries, and the time precapillary sphincters were open with (n = 8) and without (n = 8) NOS plus sensorineural blockade. With heat, the total number of perfused capillaries increased 92.7 +/- 17.9% (P = 0.011), and a similar increase occurred despite NOS plus sensorineural blockade 114.4 +/- 30.0% (P = 0.014). Blockade eliminated arteriolar dilation (-4.5 +/- 2.1%). With heat, the percent time precapillary sphincters remained open increased 32.3 +/- 6.0% (P = 0.0006), and this increase occurred despite NOS plus sensorineural blockade (34.1 +/- 5.8%, P = 0.0004). With heat, arteriolar blood flow increased (187.2 +/- 28.5%, P = 0.00003), which was significantly attenuated with NOS plus sensorineural blockade (88.6 +/- 37.2%, P = 0.04). Thus, capillary recruitment is a fundamental microvascular response to local heat, independent of arteriolar dilation and the well-documented sensorineural and NOS mechanisms mediating the response to local heat.  相似文献   

20.
Dependence of hypoxic changes of macro- and microcirculation on the activity of adrenergic receptors in the cooled organism was studied on decentralized shank of cat under perfusion with constant blood flow. After cooling of cat (to 30 degrees C) and blockade of alpha-adrenoreceptors hypoxic hypoxia (10% O2 in N2) caused (a) much greater reduction of precapillary resistance of shank, (b) more striking (by 3 times) increase of capillary filtration coefficient and (c) the increase of capillary pressure and postcapillary resistance in contrast to their decrease to hypoxia under hypothermia before alpha-blockade. Beta-adrenoreceptor blockade had no influence on the changes of the resistance and exchange function of skeletal muscle blood vessels evoked by hypoxia under cooling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号