首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Dissipation of mitochondrial membrane potential (DeltaPsi(m)) and release of cytochrome c from mitochondria appear to be key events during apoptosis. The precise relationship (cause or consequence) between both is currently unclear. We previously showed in a model of serum-free cultured granulosa explants that cytochrome c is retained in a subset of respiring mitochondria until late in the apoptotic process. In this study we further investigated the issue of heterogeneity by using the DeltaPsi(m)-sensitive probe CM-H2TMRos in combination with a DNA fluorochrome. Changes of DeltaPsi(m) were assessed qualitatively by epifluorescence microscopy and were quantified using digital imaging microscopy. This approach yielded the following results: (a) CM-H2TMRos staining is a reliable and specific procedure to detect DeltaPsi(m) changes in granulosa cells explants; (b) dissipation of transmembrane potential is an early event during apoptosis preceding nuclear changes but is confined to a subpopulation of mitochondria within an individual cell; (c) in frankly apoptotic cells a few polarized mitochondria can be detected. These findings support the hypothesis that ATP needed for completion of the apoptotic cascade can be generated during apoptosis in a subset of respiring mitochondria and is not necessarily derived from anaerobic glycolysis.  相似文献   

2.
Changes at the mitochondria are an early, required step in apoptosis in various cell types. We used western blot analysis to demonstrate that the proapoptotic protein Bax translocated from the cytosolic to the mitochondrial fraction in SH-SY5Y human neuroblastoma cells undergoing staurosporine- or EGTA-mediated apoptosis. Levels of mitochondrial Bax increased 15 min after staurosporine treatment. In EGTA-treated cells, increased levels of mitochondrial Bax were seen at 4 h, consistent with a slower onset of apoptosis in EGTA versus staurosporine treatments. We also demonstrate the concomitant translocation of cytochrome c from the mitochondrial to the cytosolic fractions. We correlated these translocations with changes in caspase-3-like activity. An increase in caspase-3-like activity was evident 2 h after staurosporine treatment. Inhibition of the mitochondrial permeability transition had no effect on Bax translocation or caspase-3-like activity in staurosporine-treated SH-SY5Y cells. In primary cultures of cerebellar granule neurons undergoing low K(+)-mediated apoptosis, Bax translocation to the mitochondrial fraction was evident at 3 h. Cytochrome c release into the cytosol was not significant until 8 h after treatment. These data support a model of apoptosis in which Bax acts directly at the mitochondria to allow the release of cytochrome c.  相似文献   

3.
BACKGROUND: Cytochrome c release from mitochondria to cytosol is a hallmark of apoptosis and is used to characterize the mitochondria-dependent pathway of this type of cell death. Techniques currently used to measure cytochrome c release, Western blot and fluorescence microscopy of immunolabeled cells, are time-consuming and inaccurate, and the latter is still limited by sample size. METHODS: We developed a rapid and reliable technique to detect cytochrome c release during drug-induced apoptosis, using flow cytometry. Plasma membrane of apoptotic HL-60 cells and thymocytes, treated with staurosporine and dexamethasone, respectively, were selectively permeabilized by digitonin at a low concentration. The released cytochrome c was quickly washed out from cells and that which remained in the mitochondria was immunolabeled after fixing the cells. RESULTS: The fraction of cells that retained their mitochondrial cytochrome c, or the highly fluorescent cells, gradually decreased so that after 4-8 h of drug treatment almost all the cells lost their cytochrome c and emerged as a population of low fluorescent cells. This was confirmed by parallel fluorescence microscopy of cells immunolabeled for cytochrome c. CONCLUSIONS: This technique allows the analysis of cytochrome c release from mitochondria of a large number of apoptotic cells in a short period of time and is proposed as an alternative to the methods currently used for this same purpose.  相似文献   

4.
During apoptosis, the mitochondrial membrane potential (MMP) decreases, but it is not known how this relates to the apoptotic process. It was recently suggested that cytochrome c is compartmentalized in closed cristal regions and therefore, matrix remodeling is required to attain complete cytochrome c release from the mitochondria. In this work we show that, at the onset of apoptosis, changes in MMP control matrix remodeling prior to cytochrome c release. Early after growth factor withdrawal the MMP declines and the matrix condenses. Both phenomena are reversed by adding oxidizable substrates. In mitochondria isolated from healthy cells, matrix condensation can be induced by either denying oxidizable substrates or by protonophores that dissipate the membrane potential. Matrix remodeling to the condensed state results in cristal unfolding and exposes cytochrome c to the intermembrane space facilitating its release from the mitochondria during apoptosis. In contrast, when a transmembrane potential is generated due to either electron transport or a pH gradient formed by acidifying the medium, mitochondria maintain an orthodox configuration in which most cytochrome c is sequestered in the cristae and is resistant to release by agents that disrupt the mitochondrial outer membrane.  相似文献   

5.
Cytochrome c is released from mitochondria into the cytosol in cells undergoing apoptosis. The temporal relationship between cytochrome c release and loss of mitochondrial membrane potential was monitored by laser-scanning confocal microscopy in single living pheochromocytoma-6 cells undergoing apoptosis induced by staurosporine. Mitochondrial membrane potential monitored by tetramethylrhodamine methyl ester decreased abruptly in individual cells from 2 to 7 h after treatment with staurosporine. Depolarization was accompanied by cytochrome c release documented by release of transfected green fluorescent protein-tagged cytochrome c in these cells. The results show that mitochondrial depolarization accompanies cytochrome c release in pheochromocytoma-6 cells undergoing apoptosis.  相似文献   

6.
Caspase-2 is an initiating caspase required for stress-induced apoptosis in various human cancer cells. Recent studies suggest that it can mediate the death function of tumor suppressor p53 and is activated by a multimeric protein complex, PIDDosome. However, it is not clear how caspase-2 exerts its apoptotic function in cells and whether its enzymatic activity is required for the apoptotic function. In this study, we used both in vitro mitochondrial cytochrome c release assays and cell culture apoptosis analyses to investigate the mechanism by which caspase-2 induces apoptosis. We show that active caspase-2, but neither a catalytically mutated caspase-2 nor active caspase-2 with its inhibitor, can cause cytochrome c release. Caspase-2 failed to induce cytochrome c release from mitochondria with Bid(-/-) background, and the release could be restored by addition of the wild-type Bid protein, but not by Bid with the caspase-2 cleavage site mutated. Caspase-2 was not able to induce cytochrome c release from Bax(-/-)Bak(-/-) mitochondria either. In cultured cells, gene deletion of Bax/Bak or Bid abrogated apoptosis induced by overexpression of caspase-2. Collectively, these results indicate that proteolytic activation of Bid and the subsequent induction of the mitochondrial apoptotic pathway through Bax/Bak is essential for apoptosis triggered by caspase-2.  相似文献   

7.
In a cell-free system based on Xenopus egg extracts, Bcl-2 blocks apoptotic activity by preventing cytochrome c release from mitochondria. We now describe in detail the crucial role of cytochrome c in this system. The mitochondrial fraction, when incubated with cytosol, releases cytochrome c. Cytochrome c in turn induces the activation of protease(s) resembling caspase-3 (CPP32), leading to downstream apoptotic events, including the cleavage of fodrin and lamin B1. CPP32-like protease activity plays an essential role in this system, as the caspase inhibitor, Ac-DEVD-CHO, strongly inhibited fodrin and lamin B1 cleavage, as well as nuclear morphology changes. Cytochrome c preparations from various vertebrate species, but not from Saccharomyces cerevisiae, were able to initiate all signs of apoptosis. Cytochrome c by itself was unable to process the precursor form of CPP32; the presence of cytosol was required. The electron transport activity of cytochrome c is not required for its pro-apoptotic function, as Cu- and Zn-substituted cytochrome c had strong pro-apoptotic activity, despite being redox-inactive. However, certain structural features of the molecule were required for this activity. Thus, in the Xenopus cell-free system, cytosol-dependent mitochondrial release of cytochrome c induces apoptosis by activating CPP32-like caspases, via unknown cytosolic factors.  相似文献   

8.
K Liu  D Shu  N Song  Z Gai  Y Yuan  J Li  M Li  S Guo  J Peng  H Hong 《PloS one》2012,7(8):e40877
There are conflicting reports on the role of cytochrome c during insect apoptosis. Our previous studies have showed that cytochrome c released from the mitochondria was an early event by western blot analysis and caspase-3 activation was closely related to cytochrome c release during apoptosis induced by baculovirus in Spodoptera litura cells (Sl-1 cell line). In the present study, alteration in mitochondrial morphology was observed by transmission electron microscopy, and cytochrome c release from mitochondria in apoptotic Sl-1 cells induced with Anagrapha falcifera multiple nuclear polyhedrosis virus (AfMNPV) has further been confirmed by immunofluoresence staining protocol, suggesting that structural disruption of mitochondria and the release of cytochrome c are important events during Lepidoptera insect cell apoptosis. We also used Sl-1 cell-free extract system and the technique of RNA interference to further investigate the role of cytochrome c in apoptotic Sl-1 cells induced by AfMNPV. Caspase-3 activity in cell- free extracts supplemented with exogenous cytochrome c was determined and showed an increase with the extension of incubation time. DsRNA-mediated silencing of cytochrome c resulted in the inhibition of apoptosis and protected the cells from AfMNPV-induced cell death. Silencing of expression of cytochrome c had a remarkable effect on pro-caspase-3 and pro-caspase-9 activation and resulted in the reduction of caspase-3 and caspase-9 activity in Sl-1 cells undergoing apoptosis. Caspase-9 inhibitor could inhibit activation of pro-caspase-3, and the inhibition of the function of Apaf-1 with FSBA blocked apoptosis, hinting that Apaf-1 could be involved in Sl-1 cell apoptosis induced by AfMNPV. Taken together, these results strongly demonstrate that cytochrome c plays an important role in apoptotic signaling pathways in Lepidopteran insect cells.  相似文献   

9.
细胞色素c在细胞凋亡中发挥着重要的作用,其作用机理在高等真核生物及低等真核生物酵母中已经比较清楚,但在盘基网柄菌(Dictyostelium discoideum)中的作用却没有相关报道.所以我们用western blot和实时荧光定量PCR的方法分别测定了盘基网柄菌前柄细胞和前孢子细胞中细胞色素c的含量及表达量的变化...  相似文献   

10.
Cytochrome c release from mitochondria induces caspase activation in cytosols; however, it is unclear whether the redox state of cytosolic cytochrome c can regulate caspase activation. By using cytosol isolated from mammalian cells, we find that oxidation of cytochrome c by added cytochrome oxidase stimulates caspase activation, whereas reduction of cytochrome c by added tetramethylphenylenediamine (TMPD) or yeast lactate dehydrogenase/cytochrome c reductase blocks caspase activation. Scrape-loading of cells with this reductase inhibited caspase activation induced by staurosporine. Similarly, incubating intact cells with ascorbate plus TMPD to reduce intracellular cytochrome c strongly inhibited staurosporine-induced cell death, apoptosis, and caspase activation but not cytochrome c release, indicating that cytochrome c redox state can regulate caspase activation. In homogenates from healthy cells cytochrome c was rapidly reduced, whereas in homogenates from apoptotic cells added cytochrome c was rapidly oxidized by some endogenous process. This oxidation was prevented if mitochondria were removed from the homogenate or if cytochrome oxidase was inhibited by azide. This suggests that permeabilization of the outer mitochondrial membrane during apoptosis functions not just to release cytochrome c but also to maintain it oxidized via cytochrome oxidase, thus maximizing caspase activation. However, this activation can be blocked by adding TMPD, which may have some therapeutic potential.  相似文献   

11.
Cytochrome c release from mitochondria is central to apoptosis, but the events leading up to it are disputed. The mitochondrial membrane potential has been reported to decrease, increase or remain unchanged during cytochrome c release. We measured mitochondrial membrane potential in Jurkat cells undergoing apoptosis by the uptake of the radiolabelled lipophilic cation TPMP, enabling small changes in potential to be determined. The ATP/ADP ratio, mitochondrial and cell volumes, plasma membrane potential and the mitochondrial membrane potential in permeabilised cells were also measured. Before cytochrome c release the mitochondrial membrane potential increased, followed by a decrease in potential associated with mitochondrial swelling and the release of cytochrome c and DDP-1, an intermembrane space house keeping protein. Mitochondrial swelling and cytochrome c release were both blocked by bongkrekic acid, an inhibitor of the permeability transition. We conclude that during apoptosis mitochondria undergo an initial priming phase associated with hyperpolarisation which leads to an effector phase, during which mitochondria swell and release cytochrome c.  相似文献   

12.
Cytochrome c: functions beyond respiration   总被引:1,自引:0,他引:1  
Cytochrome c is primarily known for its function in the mitochondria as a key participant in the life-supporting function of ATP synthesis. However, when a cell receives an apoptotic stimulus, cytochrome c is released into the cytosol and triggers programmed cell death through apoptosis. The release of cytochrome c and cytochrome-c-mediated apoptosis are controlled by multiple layers of regulation, the most prominent players being members of the B-cell lymphoma protein-2 (BCL2) family. As well as its role in canonical intrinsic apoptosis, cytochrome c amplifies signals that are generated by other apoptotic pathways and participates in certain non-apoptotic functions.  相似文献   

13.
Cytochrome c is thought to play an important role in the initiation of apoptosis following its release from mitochondria. It is controversial whether such release is also involved in caspase activation and apoptotic cell death after ligation of the cell surface molecule Fas. We addressed this issue by investigating cells from the human cell lines Jurkat and SKW6 which had been treated with the inhibitor of the mitochondrial F0/F1-ATPase, oligomycin. Oligomycin-treatment led, over a wide range of concentrations, to ATP-depletion and, at similar concentrations, abrogated the appearance of caspase-3-like activity caused by stauroporine. Electroporation of cytochrome c protein into intact cells induced caspase activation in both cell lines and significant nuclear apoptosis in Jurkat cells. In ATP-depleted cells, electroporation of cytochrome c induced neither caspase activation nor nuclear fragmentation. Fas-induced caspase activation and nuclear apoptosis, however, were unaffected by the depletion of ATP. Thus, cytochrome c is unlikely to be an important factor in Fas-induced cell death.  相似文献   

14.
We investigated the influence of cytochrome c on apoptosis induced by Anagrapha (Syngrapha) falcifera multiple nuclear polyhedrosis virus (AfMNPV). Microscopic observation revealed that infection of SL-1 cells with AfMNPV resulted in apoptosis, displaying apoptotic bodies in fluorescent-stained nuclei of AfMNPV-infected SL-1cells. Western blot analysis demonstrated that AfMNPV-induced apoptosis in insect SL-1 cells was significantly inhibited by cyclosporin A which blocked a translocation of cytochrome c from the mitochondria to the cytosol. As determined by using AC-DEVD-AFC as substrate, the activity of caspase-3 in AfMNPV-induced cells was detected as early as 4h post infection, gradually increased with time extension, and reached a highest level after 16h of infection. However, activity of caspase-3 in apoptotic cells decreased in the presence of cyclosporin A (30microM), indicating that activation of caspase-3 in SfaMNPV-induced cells was dependent on the release of cytochrome c from the mitochondria. In addition, cyclosporin A could markedly inhibit mitochondrial transmembrane potential (DeltaPsim) disruption in undergoing apoptotic cells. These data indicate that cytochrome c plays a key role in AfMNPV-induced apoptosis in S. litura cells and may be required for caspase activation during the induction of apoptosis.  相似文献   

15.
We previously reported that infection with the periodontopathic bacterium Actinobacillus actinomycetemcomitans induced apoptosis in a mouse macrophage cell line J774.1. In the present study, we examined the involvement of cytochrome c and caspases in the induction of apoptosis in A. actinomycetemcomitans-infected J774.1 cells. Following infection, the expression levels of cytochrome c, and cleaved forms of caspase-3 and caspase-9 in the cells were examined using immunoblot analysis. Cytochrome c was released from mitochondria into the cytoplasm after A. actinomycetemcomitans-infected J774.1 cells were cultured for 6 h, and caspase-3 and caspase-9 were found to be cleaved forms in the cells. Further, caspase-9 activity was markedly increased, and phosphorylated p53 was detected in the cells 30 h following infection. These results suggest that apoptosis in A. actinomycetemcomitans-infected J774.1 cells is regulated by the release of cytochrome c from mitochondria into cytoplasm and the subsequent activation of caspases through phosphorylation of p53.  相似文献   

16.
Several mitochondrial proteins, such as cytochrome c, are directly involved in the pathway for caspase activation following induction of apoptosis. Release of mitochondrial cytochrome c early in apoptosis is rapid and almost complete. Microinjection of cytochrome c into resting cells induces apoptosis, but the amount needed approaches the total cellular content. These observations suggest that mitochondrial protein release is an all-or-nothing process inside the cell and not an amplifiable apoptotic signal. To test this hypothesis, laser micro-irradiation was used to rupture membranes of individual mitochondria within living rat neural cells. Laser micro-irradiation caused swelling, fragmentation, depolarization, and cytochrome c depletion in targeted mitochondria. These effects were explained by correlative electron microscopic analysis showing local rupture of outer and inner membranes at the site of irradiation. In all cases, there were no detectable changes in the structure, membrane potential, or cytochrome c content of neighboring, non-irradiated organelles. Furthermore, irradiation of up to 15% of the mitochondria in a cell did not induce apoptosis. The results from these laser micro-irradiation experiments prove that local release of mitochondrial proteins does not constitute an amplifiable apoptotic signal in resting neural cells.  相似文献   

17.
Bortezomib, a proteasome inhibitor, shows substantial anti-tumor activity in a variety of tumor cell lines, is in phase I, II, and III clinical trials and has recently been approved for the treatment of patients with multiple myeloma. The sequence of events leading to apoptosis following proteasome inhibition by bortezomib is unclear. Bortezomib effects on components of the mitochondrial apoptotic pathway were examined: generation of reactive oxygen species (ROS), alteration in the mitochondrial membrane potential (Delta psi m), and release of cytochrome c from mitochondria. With human H460 lung cancer cells, bortezomib exposure at 0.1 microM showed induction of apoptotic cell death starting at 24 h, with increasing effects after 48-72 h of treatment. After 3-6 h, an elevation in ROS generation, an increase in Delta psi m, and the release of cytochrome c into the cytosol, were observed in a time-dependent manner. Co-incubation with rotenone and antimycin A, inhibitors of mitochondrial electron transport chain complexes I and III, or with cyclosporine A, an inhibitor of mitochondrial permeability transition pore, resulted in inhibition of bortezomib-induced ROS generation, increase in Delta psi m, and cytochrome c release. Tiron, an antioxidant agent, blocked the bortezomib-induced ROS production, Delta psi m increase, and cytochrome c release. Tiron treatment also protected against the bortezomib-induced PARP protein cleavage and cell death. Benzyloxycarbonyl-VAD-fluoromethyl ketone, an inhibitor of pan-caspase, did not alter the bortezomib-induced ROS generation and increase in Delta psi m, although it prevented bortezomib-induced poly(ADP-ribose) polymerase cleavage and apoptotic death. In PC-3 prostate carcinoma cells (with overexpression of Bcl-2), a reduction of bortezomib-induced ROS generation, Delta psi m increase was correlated with cellular resistance to bortezomib and the attenuation of drug-induced apoptosis. The transient transfection of wild type p53 in p53 null H358 cells caused stimulation of the bortezomib-induced apoptosis but failed to enhance ROS generation and Delta psi m increase. Thus ROS generation plays a critical role in the initiation of the bortezomib-induced apoptotic cascade by mediation of the disruption of Delta psi m and the release of cytochrome c from mitochondria.  相似文献   

18.
Cytochrome c, released from mitochondria into the cytosol, triggers formation of the apoptosome resulting in activation of caspases. This paper reviews the evidence for and against the redox state of cytochrome c regulating apoptosis, and possible mechanisms of this. Three research groups have found that the oxidized form of cytochrome c (Fe(3+)) can induce caspase activation via the apoptosome, while the reduced form (Fe(2+)) cannot. It is unclear whether this is due to the oxidized and reduced forms of cytochrome c having: (i) different affinities for Apaf-1, (ii) different abilities to activate Apaf-1 once bound, or (iii) different affinities for other components of the cell. Experiments replacing the Fe of cytochrome c with redox-inactive metals indicate that cytochrome c does not have to change redox states to activate caspases. In healthy cells, cytosolic cytochrome c is rapidly reduced by various enzymes and/or reductants, which may function to block apoptosis. However, in apoptotic cells, cytosolic cytochrome c is rapidly oxidized by mitochondrial cytochrome oxidase, to which it has access due to permeabilization of the outer membrane. Regulation of the redox state of cytochrome c potentially enables regulation of the intrinsic pathway of apoptosis at a relatively late stage.  相似文献   

19.
Cytochrome c release from mitochondria is essential for apoptosis. Using human myelogenous leukemia ML-1a, its respiration-deficient and reconstituted cells, we demonstrated that respiratory function is essential for tumor necrosis factor-induced cytochrome c release. In a cell free system using mitochondrial fraction from ML-1a, initiation of respiration by substrates for complexes I, II, and III but not IV released cytochrome c, suggesting that reduction of coenzyme Q or complex III is essential for cytochrome c release. In the same system, disruption of mitochondrial outer membrane was neither enough nor the cause for cytochrome c release by succinate. These observations define an early pathway in which a change in respiration releases cytochrome c.  相似文献   

20.
Nitrosylation of cytochrome c during apoptosis   总被引:7,自引:0,他引:7  
Cytochrome c released from mitochondria into the cytoplasm plays a critical role in many forms of apoptosis by stimulating apoptosome formation and subsequent caspase activation. However, the mechanisms regulating cytochrome c apoptotic activity are not understood. Here we demonstrate that cytochrome c is nitrosylated on its heme iron during apoptosis. Nitrosylated cytochrome c is found predominantly in the cytoplasm in control cells. In contrast, when cytochrome c release from mitochondria is inhibited by overexpression of the anti-apoptotic proteins B cell lymphoma/leukemia (Bcl)-2 or Bcl-X(L), nitrosylated cytochrome c is found in the mitochondria. These data suggest that during apoptosis, cytochrome c is nitrosylated in mitochondria and then rapidly released into the cytoplasm in the absence of Bcl-2 or Bcl-X(L) overexpression. In vitro nitrosylation of cytochrome c increases caspase-3 activation in cell lysates. Moreover, the inhibition of intracellular cytochrome c nitrosylation is associated with a decrease in apoptosis, suggesting that cytochrome c nitrosylation is a proapoptotic modification. We conclude that nitrosylation of the heme iron of cytochrome c may be a novel mechanism of apoptosis regulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号