首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Despite the fact that plasmid stability in the yeastSaccharomyces cerevisiae is influenced by both genetical and physiological parameters most attention has been focussed on the former. Physiological factors affecting the stability of plasmids have been poorly characterized despite the need for such information in order to optimize the use ofS. cerevisiae as a host for recombinant protein production processes. The physiology of wild typeS. cerevisiae differs considerably when grown using different cultivation techniques. A limited amount of phenomenological data has been reported concerning plasmid instability effects under these different conditions and in this article these have been collected together with the intention of providing an overview to instability effects and to try and propose reasons as to how the physiological response to different growth conditions can be manifested as stability/instability effects.  相似文献   

2.
Effects of growth conditions on mitochondrial morphology were studied in livingSaccharomyces cerevisiae cells by vital staining with the fluorescent dye dimethyl-aminostyryl-methylpyridinium iodine (DASPMI), fluorescence microscopy, and confocal-scanning laser microscopy. Cells from respiratory, ethanol-grown batch cultures contained a large number of small mitochondria. Conversely, cells from glucose-grown batch cultures, in which metabolism was respiro-fermentative, contained small numbers of large, branched mitochondria. These changes did not significantly affect the fraction of the cellular volume occupied by the mitochondria. Similar differences in mitochondrial morphology were observed in glucose-limited chemostat cultures. In aerobic chemostat cultures, glucose metabolism was strictly respiratory and cells contained a large number of small mitochondria. Anaerobic, fermentative chemostat cultivation resulted in the large, branched mitochondrial structures also seen in glucose-grown batch cultures. Upon aeration of a previously anaerobic chemostat culture, the maximum respiratory capacity increased from 10 to 70 µmole.min–1.g weight–1 within 10 h. This transition resulted in drastic changes of mitochondrial number, morphology and, consequently, mitochondrial surface area. These changes continued for several hours after the respiratory capacity had reached its maximum. Cyanide-insensitive oxygen consumption contributed ca. 50% of the total respiratory capacity in anaerobic cultures, but was virtually absent in aerobic cultures. The response of aerobic cultures to oxygen deprivation was qualitatively the reverse of the response of anaerobic cultures to aeration. The results indicate that mitochondrial morphology inS. cerevisiae is closely linked to the metabolic activity of this yeast: conditions that result in repression of respiratory enzymes generally lead to the mitochondrial morphology observed in anaerobically grown, fermenting cells.  相似文献   

3.
Nascent -1,3 glucan synthesized by mixed membrane fractions fromSaccharomyces cerevisiae was solubilized by extraction with hot SDS or urea. Nature of the material was analyzed by electrophoresis and gel filtration. As determined by gel filtration, Mr of synthesized glucans exceeded 1,500 kDa, but was below 20,000 kDa. This nascent material served as an acceptor for further glucose transfer reactions, giving rise to glucan molecules over 20,000 kDa. It is suggested that the high Mr precursor components represent protein-bound glucan molecules in transit to the cell surface.  相似文献   

4.
Flow cytometric techniques were used to investigate cell size, protein content and cell cycle behavior of recombinantSaccharomyces cerevisiae strains producing human lysozyme (HLZ). Two different signal sequences, the native yeastMFα1 signal sequence and the rat α-amylase signal sequence, were used for secretion of HLZ. The strain containing the rat α-amylase signal sequence showed a higher level of internal lysozyme and lower specific growth rates. Flow cytometric analysis of the total protein content and cell size showed the strain harboring the native yeast signal sequence had a higher total protein content than the strain containing the rat α-amylase signal sequence. Cell cycle analysis indicated that the two lysozyme producing recombinant strains had an increased number of cells in the G2+M phase of the yeast cell cycle compared with the host strain SEY2102.  相似文献   

5.
Different yeast plasmid systems containing different promoters such as ADH1, PGK, GAPDH and GAL1, and different selectable markers, such as URA3, TRP1 and leu2-d were compared to obtain the yeast expression system that provides high intracellular expression of giant catfish growth hormone (gcGH). The highest level of gcGH expression was observed in a recombinant yeast under the control of PGK promoter (17.1 mg/l or 1.4 g/0.1 OD). The amount of gcGH was increased six-fold (102.5 mg/l) when cells were grown in a rich medium (YEPD) with the inoculum and medium ratio of 1:1, although the amount of gcGH expression per cell density did not increase (1.0 g/0.1 OD). This indicated that the increased yield of gcGH in rich medium was due to the increased cell density. The aim of the study was to produce high level gcGH in the cells of S. cerevisiae in order to use the yeast cells as potential feed additives to promote growth in giant catfish.  相似文献   

6.
Populations of cells suspended anaerobically in buffered (pH 4.5) M ethanol remained viable to a greater extent when their plasma membranes were enriched in linoleyl rather than oleyl residues irrespective of the nature of the sterol enrichment. However, populations with membranes enriched in ergosterol or stigmasterol and linoleyl residues were more resistant to ethanol than populations enriched in campesterol or cholesterol and linoleyl residues. Populations enriched in ergosterol and cetoleic acid lost viability at about the same rate as those enriched in oleyl residues, while populations grown in the presence of this sterol and palmitoleic acid were more resistant to ethanol. Suspending cells in buffered ethanol for up to 24 h did not lower the ethanol concentration.  相似文献   

7.
【目的】基于人类基因文库,构建一个筛选抑制酿酒酵母生长的人类基因的方法,并运用此方法筛选含有生长抑制性人源蛋白质的酿酒酵母,用于分析人类基因的生理功能及其抑制剂的寻找。【方法】利用Gateway~(TM)重组技术将人类蛋白质编码基因构建到酿酒酵母表达质粒中。得到的质粒分别转化酿酒酵母细胞中,分析哪些基因的表达会抑制酿酒酵母的生长,并用绿色荧光蛋白标签对典型候选基因在酿酒酵母中的定位进行观察。【结果与结论】本研究建立了抑制酿酒酵母生长的人类基因的筛选方法,并运用此方法成功地从2991个人类蛋白质编码基因中筛选到29个显著抑制酿酒酵母生长的基因。其中一些是引起人类疾病的致病基因。例如,PDLIM4参与到骨质疏松症和前列腺癌的形成和发展,但其生理功能尚不清楚。我们的研究可能为揭示这些候选基因的功能和调节机制提供新的途径。  相似文献   

8.
Summary Two strains ofSaccharomyces cerevisiae were used to study the synthesis of superoxide dismutase. One strain (cytochromec-deficient) contained 5–10% of the normal amounts of total cytochromec, while the other strain was a wild type. The cytochromec-deficient mutant had lower specific growth rate, growth yield, and oxygen uptake than the wild type. The superoxide dismutase and catalase activities, in both strains, were significantly lower under anaerobic than under aerobic conditions. Furthermore, under aerobic conditions the mutant contained higher levels of superoxide dismutase than the wild type which may be attributed to the higher intracellular flux of superoxide radicals caused by the cytochromec deficiency. The mutant also showed a lower level of catalase which was due to glucose repression.Paper Number 10007 of the Journal Series of the North Carolina Agricultural Research Service, Raleigh, NC 27695, U.S.A. The use of trade names in this publication does not imply endorsement by the North Carolina Agricultural Research Service of the products named, nor criticism of similar ones not mentioned.  相似文献   

9.
Actinobacillus pleuropneumoniae is an important pig pathogen, which is responsible for swine pleuropneumonia, a highly contagious respiratory infection. To develop subunit vaccines forA. pleuropneumoniae infection, the Apx toxin genes,apxI andapxII, which are thought to be important for protective immunity, were expressed inSaccharomyces cerevisiae, and the induction of immune responses in mice was examined. TheapxI andapxII genes were placed under the control of a yeast hybridADH2-GPD promoter (AG), consisting of alcohol dehydrogenase II (ADH2) and theGPD promoter. Western blot analysis confirmed that both toxins were successfully expressed in the yeast. The ApxIA and ApxIIA-specific IgG antibody response assays showed dose dependent increases in the antigen-specific IgG antibody titers. The challenge test revealed that ninety percent of the mice immunized with ApxIIA or a mixture of ApxIA and ApxIIA, and sixty percent of mice immunized with ApxIA survived, while none of those in the control groups survived longer than 36 h. These results suggest that vaccination of the yeast expressing the ApxI and ApxII antigens is effective for the induction of protective immune responses againstA. pleuropneumoniae infections in mice.  相似文献   

10.
Human lipocortin-I was expressed as a secretory product bySaccharomyces cerevisiae harboring an expression system consisting ofGAL10 promoter, inulinase signal sequence and lipocortin-I terminator. Fed-batch fermentation was carried out to overproduce recombinant human lipocortin-I. The culture medium was desalted and concentrated by ultrafiltration, and then subjected to hydroxyapatite column chromatography. The lipocortin-I was purified to >98% purity by single-step hydroxyapatite column chromatography. However, it was found that the purified lipocortin-I was a proteolytically-cleaved form which was cleaved immediately after the basic amino acid Lys26.  相似文献   

11.
A lipid hydroperoxide-resistant mutant was isolated from a strain ofSaccharomyces cerevisiae. The mutant was resistant to 1.5mm tert-butylhydroperoxide and 1.0mm linoleic acid hydroperoxide. It flocculated in a Ca2+-dependent manner and the resistance against lipid hydroperoxide was suppressed by mannose, which also inhibited flocculation. A positive relationship between the acquirement of, the flocculent phenotype and resistance against lipid hydroperoxide is suggested. A protein with a molecular weight of 33 kDa was found on the surface of the mutant cell.  相似文献   

12.
A vector system has been developed to express isoenzyme A1 of sweet potato peroxidase (POD) and was introduced into Saccharomyces cerevisiae. The system contains the signal sequence of Aspergillus oryzae -amylase to facilitate the extracellular secretion of peroxidase under the control of constitutive glyceraldehyde-3-phosphate dehydrogenase (GPD) promoter. In a batch culture using YNBDCA medium (yeast nitrogen base without amino acids 6.7 g l–1, Casamino acids 5 g l–1 and glucose 20 g l–1), the recombinant strain expressed the swpa1 gene giving a secretion yield of POD activity of ca. 90% of total expressed peroxidase. Supplementation with PMSF (0.05 mM) and Casamino acids (5 g/50 ml) increased extracellular POD activity to nearly 10 kU ml–1, equivalent to 1.5 kU g–1 cell dry wt. This is 9 fold higher than that obtained in medium without PMSF. From SDS-PAGE and native-PAGE analyses POD has an M r of 53 kDa.  相似文献   

13.
The first tobacco cDNA encoding phytochelatin synthase (NtPCS1) has been cloned by complementing the YCF1 (vacuolar ABC type transporter)-depleting yeast mutant DTY167 with an expression library fromNicotiana tabacum. When NtPCSI was over-expressed in DTY165 (WT) and DTY167 (mutant), tolerance to and the accumulation of cadmium (Cd) were enhanced. Interestingly, its expression promoted these responses as well to arsenic (As), but only in DTY167. We conclude thatNtPCS1 plays a role in tolerance to and the accumulation of both toxic metals inSaccharomyces cerevisiae. These authors contributed equally to the work.  相似文献   

14.
Mannoproteins from cell walls of Saccharomyces cerevisiae synthesized at successive stages of the population growth cycle have been solubilized with Zymolyase and subsequently analyzed. The major change along the population cycle concerned a large size mannoprotein material; the size of the newly-synthesized molecules varied from 120,000–500,000 (mean of about 200,000) at early exponential phase to 250,000–350,000 (mean of about 300,000) at late exponential phase. These differences are due to modifications in the amount of N-glycosidically linked mannose residues, since the size of the peptide moiety was 90,000–100,000 at all growth stages and the level of O-glycosylation changed only slightly. After, incubation of the purified walls with concanavalin A-ferritin and subsequent analysis by electron microscopy, labelling was localized at the external and internal faces of the walls. The middle space of these was labelled after digestion of the glucan network with Zymolyase, which demonstrate the presence of mannoproteins in close contact with the structural glucan molecules throughout the wall.Abbreviations BSA bovine serum albumin - Con A concanavalin A - SDS sodium dodecyl sulphate  相似文献   

15.
Mature human growth hormone (hGH) cDNA was cloned by homologous recombination into the yeast Pichia pastoris genome. The hGH gene expression was placed under the control of the methanol-inducible alcohol oxidase 1 (AOX1) gene promoter and the Saccharomyces cerevisiae -factor signal sequence to direct the secretion of recombinant human growth hormone (rhGH) into the growth medium. O2-limited induction of recombinant yeast strains in shake tubes with 3 ml of culture medium produced up to 11 mg rhGH l–1, while high cell density cultures using a 2-l bioreactor produced about 49 mg rhGH l–1 achieving 40% of total protein of the culture medium supernatant.  相似文献   

16.
Yeast viability can be accurately quantified using BacLight, a kit which so far has been used only for bacterial analysis. Upon staining, viable cells can be differentiated from non-viable ones by either confocal laser scanning microscopy (CLSM), epifluorescence microscopy, or flow cytometry. Using Saccharomyces cerevisiae as a model, viabilities quantified by CLSM deviated an average of 1.7% from the actual data, and those determined by flow-cytometry by 1.4%.  相似文献   

17.
Summary A comparative study has been made of different laboratory and industrial wild-type strains ofSaccharomyces cerevisiae in relation to their flocculation behavior. All strains were inhibited by mannose and only one by maltose. In regard to the stability of these characters in the presence of proteases and high salt concentrations, a relevant degree of variation was found among the strains. This was to such an extent that it did not allow their inclusion in the Flol or NewFlo phenotypes. Genetic characterization of one wild-type strain revealed that the flocculation-governing gene was allelic toFLO1 found in genetic strains.This paper is dedicated to Professor Herman Jan Phaff in honor of his 50 years of active research which still continues.  相似文献   

18.
The efficacy of immobilized Saccharomyces cerevisiae (biomatrix) for the sorption of different metal ions and its potential applications in nuclear waste treatment were investigated. The sorption of radionuclides such as 233U, 241Am, 144Ce, 137Cs and 90Sr was studied under different experimental conditions. More than 95% sorption of UO2 2+, Pu4+, Am3+ and Ce3+ could be obtained in the pH range 1 to 2 of the aqueous solutions. However the sorption of Cs+ and Sr2+ were negligible under the similar experimental conditions. The infrared spectra and scanning electron microscopic images of the control and uranium-bearing biomatrix were studied to understand the chemistry of metal uptake by this biomatrix.  相似文献   

19.
Global gene expression of two strains of Saccharomyces cerevisiae, one recombinant (P+), accumulating large amounts of an intracellular protein Superoxide Dismutase (SOD) and one non-recombinant (P−) which does not contain the recombinant plasmid, were compared in batch culture during diauxic growth when cells were growing exponentially on glucose, when they were growing exponentially on ethanol, and in the early stationary phase when glycerol was being utilized.When comparing the gene expression for P− (and P+) during growth on ethanol to that on glucose (Eth/Gluc), overexpression is related to an increase in consumption of glycerol, activation of the TCA cycle, degradation of glycogen and metabolism of ethanol. Furthermore, 97.6% of genes (80 genes) involved in the central metabolic pathway are overexpressed. This is similar to that observed by DeRisi et al. [DeRisi, J.L., Iyer, V.R. & Brown, P.O. 1997. Exploring the metabolic and genetic control of gene expression on a genomic scale. Science 278:680–686.] but very different from was observed for Metabolic Flux Analysis (MFA), where the specific growth rate is lowered to ca. 40%, the fluxes in the TCA cycle are reduced to ca. 40% (to 30% in P+), glycolysis is reduced to virtually 0 and protein synthesis to ca. 50% (to 40% in P+). Clearly it is not possible to correlate in a simple or direct way, quantitative mRNA expression levels with cell function which is shown by the Metabolic Flux Analysis (MFA).When comparing the two strains in the 3 growth stages, 4 genes were found to be under or overexpressed in all cases. The products of all of these genes are expressed at the plasma membrane or cell wall of the yeast. While comparing the strains (P+/P−) when growing on glucose, ethanol and in the early stationary phase, many of the genes of the central metabolic pathways are underexpressed in P+, which is similar to the behaviour of the metabolic fluxes of both strains (MFA). Comparing the gene expression for P− (and to some extent P+) during the early stationary phase to growth on ethanol (Stat/Eth), underexpression is generalized. This shows that the switch in metabolism between ethanol and early stationary phases has an almost instantaneous effect on gene expression but a much more retarded effect on metabolic fluxes and that the “early stationary” phase represents a “late ethanol” phase from the metabolic analysis point of view since ethanol is still present and being consumed although at a much slower rate.  相似文献   

20.
Summary The fitness distribution of new mutations inSaccharomyces cerevisiae strain Montrachet was determined for cells on agar irradiated for four periods of time with ultraviolet light. The fitness distributions were obtained by converting a large number of colony diameters into relative fitnesses. The distributions were then used to perform a computer simulation with the purpose of predicting the potential of a stock culture to increase in general fitness through selection, given a frequency and magnitude of mutations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号