首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Conventional methods, such as gastric biopsy, enzyme-linked immunosorbent assay (ELISA), culture, require a long time for the determination of Helicobacter pylori infections. This study reports an amperometric immunoreactor for rapid and sensitive quantification of human serum immunoglobulin G (IgG) antibodies to H. pylori. Antibodies in the serum sample are allowed to react immunologically with the purified H. pylori antigens that are immobilized on a rotating disk. The bound antibodies are quantified by horseradish peroxidase (HRP) enzyme-labeled second antibodies specific to human IgG. HRP in the presence of hydrogen peroxide catalyzes the oxidation of hydroquinone to p-benzoquinone. The electrochemical reduction back to hydroquinone is detected on a glassy carbon electrode surface at -0.15 V. The electrochemical detection can be done within 1 min, and the analysis time does not exceed 30 min. The calculated detection limits for amperometric detection and the ELISA procedure are 0.6 and 1.9 U ml-1, respectively. The amperometric immunoreactors showed higher sensitivity and lower time consumed than did the standard spectrophotometric detection ELISA method. It can also be used for rapid analysis in conventional and field conditions in biological, physiological, and analytical practices.  相似文献   

2.
C-Reactive Protein (CRP) is an acute phase reactant routinely used as a biomarker to assess either infection or inflammatory processes such as autoimmune diseases. CRP also has demonstrated utility as a predictive marker of future risk of cardiovascular disease. A new method of immunoassay for the detection of C-Reactive Protein has been developed using Resonant Acoustic Profiling™ (RAP™) with comparable sensitivity to a high sensitivity CRP ELISA (hsCRP) but with considerable time efficiency (12 minutes turnaround time to result). In one method, standard solutions of CRP (0 to 231 ng/mL) or diluted spiked horse serum sample are injected through two sensor channels of a RAP™ biosensor. One contains a surface with sheep antibody to CRP, the other a control surface containing purified Sheep IgG. At the end of a 5-minute injection the initial rate of change in resonant frequency was proportional to CRP concentration. The initial rates of a second sandwich step of anti-CRP binding were also proportional to the sample CRP concentration and provided a more sensitive method for quantification of CRP. The lower limit of detection for the direct assay and the homogenous sandwich assay were both 20 ng/mL whereas for the direct sandwich assay the lower limit was 3 ng/mL. In a step towards a rapid clinical assay, diluted horse blood spiked with human CRP was passed over one sensor channel whilst a reference standard solution at the borderline cardiovascular risk level was passed over the other. A semi-quantities ratio was thus obtained indicative of sample CRP status. Overall, the present study revealed that CRP concentrations in serum that might be expected in both normal and pathological conditions can be detected in a time-efficient, label-free immunoassay with RAP™ detection technology with determined CRP concentrations in close agreement with those determined using a commercially available high sensitivity ELISA.  相似文献   

3.
We tested the hypothesis that membrane depolarization may initiate oxidant generation in the endothelial cell. Depolarization was produced in bovine pulmonary arterial endothelial cells (BPAEC) in monolayer culture with varying external K+, or with glyburide (10 μM), tetraethylammonium (TEA, 10 mM), gramicidin (1 μM), or nigericin (2 μM). Evaluation of bisoxonol fluorescence of BPAEC indicated concentration-dependent depolarization by high K+ (2% change in fluorescence/mV change in membrane potential in the 5.9–48 mM range of K+) and essentially complete depolarization with glyburide. Generation of oxidants was assessed with o-phenylenediamine dihydrochloride (o-PD) oxidation in the presence of horseradish peroxidase (HRP). There was a time-dependent increase in o-PD oxidation with 24 mM K+, nigericin, and gramicidin over 2 hours compared with control. In 1 hour o-PD oxidation increased 2.8-fold for 24 mM and 3.7-fold for 48 mM K+ compared with control. Catalase reduced 24 mM K+-induced o-PD oxidation by 50%, while Cu/Zn-superoxide dismutase (SOD) abolished the increase. Oxidation of o-PD was reduced by 57% in the absence of HRP in the system. With K+ channel blockade, o-PD oxidation increased 3.8-fold with glyburide and 4.6-fold with TEA compared with control. These data indicate formation of H2O2 and possibly other oxidants with depolarization and suggest involvement of K+-channels in this process. © 1996 Wiley-Liss, Inc.  相似文献   

4.
In this article, a novel sandwich-type electrochemical immunosensor based on the signal amplification strategy of diazotization-coupling concept for ultrasensitive detection of carcinoembryonic antigen (CEA) was reported. It operates through physisorption of monoclonal anti-CEA on 4-aminothiophenol (4Atp) functionalized gold electrode interface as the detection platform. Diazo-4Atp-coupled-thionine (Thi)-conjugated gold nanoparticles (GNPs) were prepared for immobilization of horseradish peroxidase (HRP) and secondary anti-CEA to form core-shell bioconjugates that were used as electrochemical signal amplification reagent. The sensitivity of the immunosensor was greatly amplified by a dual amplification: one is that a large number of thionine and HRP was introduced on the electrode surface through sandwich immunoreaction, the other is that HRP as enhancer could catalyze the oxidation reaction of thionine by H(2)O(2), which results in great enhancement of the reduction peak current. Thus, the bioconjugates-based assay provided an amplification approach for detecting CEA at trace levels and led to a detection limit as low as 0.7 pg/mL (at a three times signal-to-noise ratio) that is well-below the threshold value of 2.5 ng/mL for clinical diagnosis. The assay was evaluated for clinical serum samples with various CEA concentrations and received in excellent accordance with the results obtained from the referenced enzyme-linked immunosorbent assay (ELISA).  相似文献   

5.
A novel probe based on colloidal gold nanoparticles (AuNPs) modified with goat anti-mouse IgG and horseradish peroxidase (HRP) was synthesized and an enhanced enzyme-linked immunosorbent assay (ELISA) based on the probe was developed. In the assay, the synthesized probe is bound with a monoclonal antibody (McAb) which is competitively bound by coated BSA-ITCBE-Pb(II) on plate and Pb(II) in samples. The HRP, used here for signal amplification catalytically oxidize the substrate and generate optical signals that is related to the concentration of Pb(II) and can be measured spectrophotometrically. For the monodisperse AuNPs having high surface areas, it can be conjugated with more amount of HRP than that of IgG. Therefore, compared with traditional ELISA, the signal amplification of catalytically oxidized substrate was enhanced. The detection limit for this novel modified AuNPs probe-based assay was 9 pg mL(-1). The recoveries obtained by standard Pb(II) addition to real samples, including a commercial mineral water, tap water, and lake water were all from 94.9% to 102.9%. And the coefficient of variation (CV) value of all samples was less than 10%. The results indicated that the enhanced assay gave higher sensitivity and reliable reproducibility. It could provide a general detection format for low-molecular weight contaminants.  相似文献   

6.
Electrochemical detection has been developed and assay performances studied for the CombiMatrix oligonucleotide microarray platform that contains 12,544 individually addressable microelectrodes (features) in a semiconductor matrix. The approach is based on the detection of redox active chemistries (such as horseradish peroxidase (HRP) and the associated substrate TMB) proximal to specific microarray electrodes. First, microarray probes are hybridized to biotin-labeled targets, second, the HRP-streptavidin conjugate binds to biotin, and enzymatic oxidation of the electron donor substrate then occurs. The detection current is generated due to electro-reduction of the HRP reaction product, and it is measured with the CombiMatrix ElectraSense Reader. Performance of the ElectraSense platform has been characterized using gene expression and genotyping assays to analyze: (i) signal to concentration dependence, (ii) assay resolution, (iii) coefficients of variation, (CV) and (iv) array-to-array reproducibility and data correlation. The ElectraSense platform was also compared to the standard fluorescent detection, and good consistency was observed between these two different detection techniques. A lower detection limit of 0.75 pM was obtained for ElectraSense as compared to the detection limit of 1.5 pM obtained for fluorescent detection. Thus, the ElectraSense platform has been used to develop nucleic acid assays for highly accurate genotyping of a variety of pathogens including bio-threat agents (such as Bacillus anthracis, Yersinia pestis, and other microorganisms including Escherichia coli, Bacillus subtilis, etc.) and common pathogens of the respiratory tract (e.g. influenza A virus).  相似文献   

7.
A biotinyl-6 alpha-estradiol derivative (Bio-E2) was synthesized and used as the key component in antigen- and antibody-immobilized ELISA techniques, and the relative merits of the two methods were compared. A precise and reproducible antigen-immobilization was achieved in avidin-coated microtiter plates with Bio-E2. This assay, when completed by the incubation with primary antibody and second antibody-peroxidase conjugate, has a very low detection limit (6 pg/ml estradiol) but required a long incubation time with primary antibody to reach equilibrium. At non-equilibrium conditions, using a high antibody concentration, the assay could be very fast and sensitive. In the antibody-immobilized assay, the Bio-E2 was added to compete with the estradiol present in the calibrator or sample and visualized with a streptavidin-peroxidase conjugate. The detection limit is higher (34 pg/ml), but the specificity was superior and the incubation time to reach equilibrium shorter as compared to the antigen-immobilized assay. Therefore, the antibody-immobilized assay appeared to be ideal for the classical ELISA technique, whereas the antigen-immobilized method seemed to be best suited for automated assay systems using antibody in excess.  相似文献   

8.
Among the methods used to detect pathogenic bacteria, enzyme linked immunosorbent assay (ELISA) is one of the most widely used techniques in routine sample analysis. For Salmonella enterica serovar Typhimurium detection, a typical ELISA yields a sensitivity of 10(6)-10(7)CFU/ml. To enhance the detection sensitivity, single-walled carbon nanotubes (SWCNTs) was employed in this study as a labelling platform for antibody and horseradish peroxidase (HRP) co-immobilizing. With high proteins recovery after the coupling process, the resulting Ab/SWCNTs/HRP bioconjugate was used in the proof-of-concept ELISA experiments. Limit of detection (LOD) was found to be 10(3) and 10(4)CFU/ml for direct and sandwich ELISA, respectively, when Ab/HRP at 1:400 ratio was used. This figure accounts for 1000-time greater in detection sensitivity when compared to a commercial Ab-HRP conjugate. The Ab/SWCNTs/HRP bioconjugate was tested further in real samples and found a superior activity over the commercial Ab-HRP by showing 100-time greater detection limit.  相似文献   

9.
The occurrence of many diseases is closely related to the high expression of DNA methyltransferase 1 (DNMT1). However, most studies are focused on the detection of DNMT1 activity, a few are concerned with the detection of DNMT1 content. In this study, we developed a simple and highly sensitive chemiluminescence (CL) assay for the detection of DNMT1 content. In this method, anti‐DNMT1 monoclonal antibody was coated on a polystyrene microplate to capture DNMT1. Then anti‐DNMT1 polyclonal antibody and goat anti‐rabbit immunoglobulin G with horseradish peroxidase (IgG‐HRP) were respectively added to combine with captured DNMT1 to form a sandwich structure. Finally, the HRP could catalyze CL substrate and achieve CL signal response. Based on this novel sensitive strategy, the recovery percents were in the ranges from 71.5% to 91.0%. The precision of intra‐assays and inter‐assays were 5.45%–11.29% and 7.03%–11.25%, respectively. The method was successfully applied for the determination of DNMT1 in human serum. The detection results of serum samples showed that the proposed assay had a high correlation with enzyme‐linked immunosorbent assay (ELISA) kit. Compared with the ELISA kit (limit of detection = 0.1 ng/mL), the method has a lower limit of detection of 0.042 ng/mL. Therefore, our method has the potential for the detection of DNMT1 content in clinical diagnosis.  相似文献   

10.
Bioactivity of horseradish peroxidase entrapped in silica nanospheres   总被引:1,自引:0,他引:1  
Interest in the fabrication of micro/nanoreactors for evaluation of the function of biomolecules in biological processes, enzymatic reaction kinetics occurring inside the nanospace is rapidly increasing. With a simple reverse-micelle microemulsion method, horseradish peroxidase (HRP), a model biomolecule, was herein skillfully confined in silica nanoshells (HRP@SiO(2)) and its biocatalytical behaviors were investigated in detail. Spectroscopic measurements showed that the entrapped HRP molecules retained their native structure and had high enzymatic activity toward 3,3',5,5'-tetramethylbenzidine (TMB) with Michaelis constant (K(m)) of 3.02 × 10(-5) mol L(-1). The entrapped HRP displayed a good direct electron transfer behavior and sensitive electrocatalytic response toward the reduction of H(2)O(2), which could be enhanced using thionine and o-phenylenediamine (o-PD) as electron mediators. When using thionine as mediator, the mass transport between the substrates in electrolyte and HRP confined in silica nanospheres through the mesoporous tunnels was slower than that of o-PD, which slowed down the electron transfer between heme in HRP in the confined nanospace and the electrode, and resulted in low sensitivity to H(2)O(2) with thionine as mediator when compared to o-PD.  相似文献   

11.
The effects of various boronate compounds, 4-biphenylboronic acid, 4-bromobenzeneboronic acid, trans-4-(3-propionic acid)phenylboronic acid and 4-iodophenylboronic acid, on the horseradish peroxidase (HRP) catalysed chemiluminescent oxidation of pyrogallol and purpurogallin by peroxide were investigated. trans-4-(3-Propionic acid)phenylboronic acid produced a 13.7-fold enhancement in the peak light emission from the chemiluminescent HRP catalysed pyrogallol reaction (detection limit for HRP < 1.25 fmol). At low enhancer concentration a single peak of light emission was observed and as the enhancer concentration increased the time to peak light emission became progressively longer. The chemiluminescence showed two peaks at higher concentrations (> 54.3 μmol/L) and the individual peak times depended upon the concentration of the enhancer. All of the boronates enhanced peak light emission in the chemiluminescent HRP catalysed purpurogallin reaction. 4-Biphenylboronic acid was the most effective and it enhanced peak light emission 314-fold. The practical detection limit for HRP (Type VIA) using this enhancer was 4.18 pmol (peak emission at 20 minutes). This compound also enhanced peak light emission 232-fold from a chemiluminescent HRP-purpurogallin reaction in which molecular oxygen replaced peroxide as the oxidant.  相似文献   

12.
A highly sensitive and specific method for the assay of dipeptidyl-aminopeptidase II (DAP II) in crude enzyme preparations such as serum and tissue homogenates has been established by using a newly synthesized fluorogenic substrate, 7-Lys-Ala-4-methylcoumarinamide. The enzymatically formed 7-amino-4-methylcoumarin was determined by high-performance liquid chromatography with fluorescence detection. The activities of other aminopeptidases in human serum and rat brain homogenates were completely inhibited by o-phenanthroline without any effect on DAP II activity to permit specific determination of DAP II. The limit of sensitivity for DAP II activity was about 300 fmol/30 min. DAP II activity was found to be increased in sera from cancer patients, in contrast to the decrease in serum DAP IV activity. DAP II activity was found to be unequally distributed in rat brain regions, and the highest activity was found in the hypothalamus.  相似文献   

13.
This paper describes the development of an immunosensor coupled to glassy carbon electrode (GCE) modified with multiwall carbon nanotubes (MWCNT) (CNT-GCE) integrated with microfluidic systems for rapid and sensitive quantification of prostate specific antigen (PSA) in human serum samples. Mouse monoclonal (5G6) to PSA antibodies were immobilized on a rotating disk. PSA in the serum sample are allowed to react immunologically with the immobilized anti-tPSA and horseradish peroxidase (HRP) enzyme-labeled second antibodies specific to PSA. HRP, in the presence of hydrogen peroxide (H(2)O(2)) catalyzes the oxidation of 4-tert-butylcatechol (4-TBC), whose back electrochemical reduction was detected on CNT-GCE at -0.15 V. The electrochemical detection can be done within 1 min and total assay time was 30 min. The calculated detection limits for electrochemical detection and the ELISA procedure are 0.08 and 0.5 microg L(-1), respectively and the intra- and inter-assay coefficients of variation were below 4.5%. The electrochemical immunosensor showed higher sensitivity and lower time consumed than the standard spectrophotometric detection ELISA method, which shows potential for detecting PSA in clinical diagnosis.  相似文献   

14.
In this study, we applied tyramide signal amplification (TSA) to fluorescence enzyme-linked immunosorbent assay (ELISA) employing horseradish peroxidase (HRP) as the detection enzyme. When used with a human epidermal growth factor ELISA kit, the TSA method led to a >100-fold increase in fluorescence signal intensity in comparison to an unamplified method. It also showed wider dynamic range and better sensitivity compared to a conventional method using tetramethylbenzidine as the HRP substrate.  相似文献   

15.
Anti-α-chymotrypsinogen A antibody was assayed by both enzyme-linked immunosorbent assay (ELISA) and liposome immune lysis assay (LILA). The detection limit was slightly affected by the measurement conditions in ELISA; however, it was possible to control the detection limit and to achieve a lower level by adapting the measurement conditions in LILA. LILA is believed to offer a simple and highly sensitive method for measuring the concentration of antibody in serum.  相似文献   

16.
Herein we report a new strategy for highly sensitive and selective colorimatric assay for genotyping of single-nucleotide polymorphisms (SNPs). It is based on the use of a specific gap ligation reaction, horseradish peroxidase (HRP) for signal amplification, and magnetic beads for the easy separation of the ligated product. Briefly, oligonucleotide capture probe functionalized magnetic beads are first hybridized to a target DNA. Biotinylated oligonucleotide detection probes are then allowed to hybridize to the already captured target DNA. A subsequent ligation at the mutation point joins the two probes together. The introduction of streptavidin-conjugated HRP and a simple magnetic separation allow colorimetric genotyping of SNPs. The assay is able to discriminate one copy of mutant in 1000 copies of wild-type KRAS oncogene at 30 picomolar. The detection limit of the assay is further improved to 1 femtomolar by incorporating a ligation chain reaction amplification step, offering an excellent opportunity for the development of a simple and highly sensitive diagnostic tool.  相似文献   

17.
The mutagenicity of o- and m-phenylenediamine (PD) was remarkedly enhanced by oxidation; their major mutagenic oxidation products were 2,3- and 2,7-diaminophenazine, respectively. In order to evaluate the modulation effect of p-PD on the oxidation of m- or o-PD, p-PD and mixtures of m- and p-PD (m-PD/p-PD) and o- and p-PD (o-PD/p-PD) were oxidized with hydrogen peroxide and their mutagenicity was tested in Salmonella typhimurium TA98 in the presence or absence of a mammalian metabolic activation system (S9 mix). The H2O2-oxidized m-PD/p-PD and o-PD/p-PD were potent mutagens with S9 mix, whereas H2O2-oxidized p-PD was slightly mutagenic. The major mutagenic oxidation products of m-PD/p-PD and o-PD/p-PD were identified as 2,7- and 2,3-diaminophenazine, respectively, by TLC and HPLC. 2,8-Diaminophenazine was also found as a reaction product in oxidized m-PD/p-PD, and it was weakly mutagenic. The mutagenic potency of oxidized m-PD/p-PD or o-PD/p-PD was lower than that of singly oxidized m-PD or o-PD. The yield of 2,7- and 2,3-diaminophenazine was obviously decreased with increases in p-PD, and it was concluded that the declined mutagenic potency of oxidized m-PD/p-PD or o-PD/p-PD was due to the decrease in diaminophenazines. But the formation of diaminophenazines was not completely inhibited by the addition of a 9-fold molar ratio of p-PD to m-PD or o-PD, 8.6 nmole of 2,7-diaminophenazine and 1882.4 nmole of 2,3-diaminophenazine were formed from 1 mmole of m-PD and o-PD, respectively.  相似文献   

18.
Isoenzyme c of horseradish peroxidase (HRP‐C) is widely used in enzyme immunoassay combined with chemiluminescence (CL) detection. For this application, HRP‐C activity measurement is usually based on luminol oxidation in the presence of hydrogen peroxide (H2O2). However, this catalysis reaction was enhancer dependent. In this study, we demonstrated that Jatropha curcas peroxidase (JcGP1) showed high efficiency in catalyzing luminol oxidation in the presence of H2O2. Compared with HRP‐C, the JcGP1‐induced reaction was enhancer independent, which made the enzyme‐linked immunosorbent assay (ELISA) simpler. In addition, the JcGP1 catalyzed reaction showed a long‐term stable CL signal. We optimized the conditions for JcGP1 catalysis and determined the favorable conditions as follows: 50 mM Tris buffer (pH 8.2) containing 10 mM H2O2, 14 mM luminol and 0.75 M NaCl. The optimum catalysis temperature was 30°C. The detection limit of JcGP1 under optimum condition was 0.2 pM. Long‐term stable CL signal combined with enhancer‐independent property indicated that JcGP1 might be a valuable candidate peroxidase for clinical diagnosis and enzyme immunoassay with CL detection. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

19.
Nanospheres lithographic (NSL) method has been used to fabricate nano-structured arrays (NAs) of hexagonally close-packed gold (Au) using polystyrene beads [PS, diameter ~300 nm] as mask. The developed NA was incorporated with a customized and cheap microfluidics system to demonstrate its applicability as an alternative easy and efficient platform for multiplex analysis and Lab-on-a-Chip applications. The chip functionality was demonstrated with horseradish peroxidase (HRP) and anti-HRP antibody as model for recognition system. The enzyme-linked immunosorbent assay (ELISA) performed on fabricated protein biochip had a detection limit 100 pg/mL for HRP. The antibody chip was also checked for the shelf-life and it was found that these chips could be stored for 50 days when stored at 4°C without any significant loss of activity. Therefore, NAs based protein biochip with the correct microfluidics could find huge potential application in diagnostics and biosensing technology.  相似文献   

20.
The use of Bacillus anthracis as a biological weapon in 2001 heightened awareness of the need for validated methods for the inactivation of B. anthracis spores. This study determined the gamma irradiation dose for inactivating virulent B. anthracis spores in suspension and its effects on real-time PCR and antigen detection assays. Strains representing eight genetic groups of B. anthracis were exposed to gamma radiation, and it was found that subjecting spores at a concentration of 10(7) CFU/ml to a dose of 2.5 x 10(6) rads resulted in a 6-log-unit reduction of spore viability. TaqMan real-time PCR analysis of untreated versus irradiated Ames strain (K1694) spores showed that treatment significantly enhanced the detection of B. anthracis chromosomal DNA targets but had no significant effect on the ability to detect targets on the pXO1 and pXO2 plasmids of B. anthracis. When analyzed by an enzyme-linked immunosorbent assay (ELISA), irradiation affected the detection of B. anthracis spores in a direct ELISA but had no effect on the limit of detection in a sandwich ELISA. The results of this study showed that gamma irradiation-inactivated spores can be tested by real-time PCR or sandwich ELISA without decreasing the sensitivity of either type of assay. Furthermore, the results suggest that clinical and public health laboratories which test specimens for B. anthracis could potentially incorporate gamma irradiation into sample processing protocols without compromising the sensitivity of the B. anthracis assays.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号