首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Several responses of synchronized populations of HeLa S3 cells were measured after irradiation with 220 kev x-rays at selected times during the division cycle. (1) Survival (colony-forming ability) is maximal when cells are irradiated in the early post-mitotic (G1) and the pre-mitotic (G2) phases of the cycle, and minimal in the mitotic (M) and late G1 or early DNA synthetic (S) phases. (2) Markedly different growth patterns result from irradiation in different phases: (a) Prolongation of interphase (division delay) is minimal when cells are irradiated early in G1 and rises progressively through the remainder of the cycle. (b) Cells irradiated while in mitosis are not delayed in that division, but the succeeding division is delayed. (c) Persistence of cells as metabolizing entities does not depend on the phase of the division cycle in which they are irradiated. (3) Characteristic perturbations of the normal DNA synthetic cycle occur: (a) Cells irradiated in M suffer a small delay in the onset of S, a slight prolongation of S, and a slight depression in the rate of DNA synthesis; the major delay occurs in G2. (b) Cells irradiated in G1 show no delay in the onset of S, and essentially no alteration in the duration or rate of DNA synthesis; G2 delay is minimal. (c) Cells irradiated in S suffer an appreciable S prolongation and a decreased rate of DNA synthesis; G2 delay is shorter than S delay.  相似文献   

2.
SYNOPSIS. Relationships between the cell cycle and the beginning of conjugation were analyzed for 3 hypotrichs: Diophrys scutum, Oxytricha bifaria, and Euplotes crassus. The first 2 species enter conjugation with micronuclei in G1; the latter species with a micronucleus in G2. The 1st micronuclear division of conjugating E. crassus is mitotic. Thus meiotic DNA replication occurs when the cells of each species have already entered the mating process. Cells from asynchronous populations start conjugation with their macronuclei primarily in G1 or more rarely at the beginning of the S stage in a percentage significantly different from that expected on the basis of random mating among all cells in the population. Also, macronuclear replication, when already begun, was blocked in cells undergoing conjugation. Therefore only the G1 or the very early S stages of the cell cycle are compatible with conjugation in the 3 analyzed species.  相似文献   

3.
The effect of light on the synchronization of cell cycling was investigated in several strains of the oceanic photosynthetic prokaryote Prochlorococcus using flow cytometry. When exposed to a light-dark (L-D) cycle with an irradiance of 25 μmol of quanta · m−2 s−1, the low-light-adapted strain SS 120 appeared to be better synchronized than the high-light-adapted strain PCC 9511. Submitting L-D-entrained populations to shifts (advances or delays) in the timing of the “light on” signal translated to corresponding shifts in the initiation of the S phase, suggesting that this signal is a key parameter for the synchronization of population cell cycles. Cultures that were shifted from an L-D cycle to continuous irradiance showed persistent diel oscillations of flow-cytometric signals (light scatter and chlorophyll fluorescence) but with significantly reduced amplitudes and a phase shift. Complete darkness arrested most of the cells in the G1 phase of the cell cycle, indicating that light is required to trigger the initiation of DNA replication and cell division. However, some cells also arrested in the S phase, suggesting that cell cycle controls in Prochlorococcus spp. are not as strict as in marine Synechococcus spp. Shifting Prochlorococcus cells from low to high irradiance translated quasi-instantaneously into an increase of cells in both the S and G2 phases of the cell cycle and then into faster growth, whereas the inverse shift induced rapid slowing of the population growth rate. These data suggest a close coupling between irradiance levels and cell cycling in Prochlorococcus spp.  相似文献   

4.
5.
Centrifugal elutriation was used to separate 9L rat brain tumour cells into fractions enriched in the G1, S, or G2/M phases of the cell cycle. Cells enriched in early G1, phase were recultured, grown in synchrony, and harvested periodically for analysis of their DNA distribution and polyamine content. Mathematical analysis of the DNA distributions indicated that excellent synchrony was obtained with low dissersion throughout the cell cycle. Polyamine accumulation began at the time of seeding, and intracellular levels of putrescine, spermidine, and spermine increased continuously during the cell cycle. In cells in the G2/M phase of the cell cycle, putrescine and spermidine levels were twice as high as in cells in the G1, phase. DNA distribution and polyamine levels were also analysed in cells taken directly from the various elutriation fractions enriched in G1, S, or G2/M. Because we did not obtain pure S or G2/M populations by elutriation or by harvesting synchronized cells, a mathematical procedure—which assumed that the measured polyamine levels for any population were linearly related to the fraction of cells in the G1, S, and G2/M phases times the polyamine levels in these phases and that polyamine levels did not vary within these phases—was used to estimate ‘true’ phase-specific polyamine levels (levels to be expected if perfect synchrony were achieved). Estimated ‘true’ phase-specific polyamine levels calculated from the data obtained from cells either sorted by elutriation or obtained from synchronously growing cultures were very similar.  相似文献   

6.
The features of astaxanthin impact (20 μg/mL) in the culture of human blood lymphocytes exposed to γ-radiation (1.0 Gy) on the G0, S, and G2 phases of the cell cycle were studied using Comet assay. Decrease in the level of DNA damages (Tail Moment index) under astaxanthin influence on lymphocytes irradiated in all stages of cell division was established, while, as a result of previous cytogenetic investigations, lack of the modifying action of astaxanthin after irradiation of cells in the G2 stage and radioprotective effect in the G0 stage of the mitotic cycle had been revealed. In G0 phase, the activation of the processes of apoptosis by astaxanthin in irradiated cells with high levels of genomic damages was found. The obtained data demonstrate that astaxanthin has a powerful radioprotective potential, mainly due to its apoptogenic properties.  相似文献   

7.
Mouse embryo fibroblasts growing asynchronously in vitro stained with Feulgen method and their nuclear chromatin was analysed by means of the image analysing computer Quantimet 720D. Cells with 2C, 3C and 4C content of DNA were considered as being in G1, middle S and G2 phase of cell cycle, respectively. It was found that the projected area of nuclei increases during the cell cycle and that the mean optical density of chromatin increases from G1 through S to G2 phase. The curves showing the areas of chromatin at different optical density thresholds are different for cells in G1, S and G2 phase. The results demonstrate cyclic changes in chromatin morphology in the interphase nuclei during the cell cycle.  相似文献   

8.
Populations of Chinese hamster cells, synchronized by selecting for cells at or close to division, were exposed to 250 kvp x-rays and to ultraviolet light at different stages of the cell cycle and colony-forming ability examined thereafter. These cells were found to be most resistant to x-rays during the latter part of the DNA synthetic period (S) and to be about equally sensitive before (G1) and after (G2) this period. Multitarget type curves of the same slope (Do ~ 200 rad) only approximately fitted the survival data at different stages in the cycle. The changes in response were primarily due to variations in the shoulders (or extrapolation numbers) of the curves however. The response to ultraviolet light differed from that to x-rays. Resistance was greatest in G2 and changes in both shoulder and slope of the survival curves occurred throughout the cell cycle. The x-ray and ultraviolet responses for component stages of the cell cycle were respectively compounded into expected survival data for a log phase asynchronous population of hamster cells and found to agree well with direct experiment.  相似文献   

9.
Cultures of Euglena gracilis (strain Z from French CNRS collection) can be made cadmium resistant if grown in a medium with 5x10-4M cadmium chloride. This resistance is reflected by the appearance of a second exponential growth phase. The development of this resistance was studied at the cellular level by determining the relative content of DNA at different stages of the cell cycle in an asynchronously grown culture. The culture was followed until the second, cadmium resistant, growth phase had reached its stationary state. During the first exponential growth phase, cells were mostly in the late period of DNA synthesis (stage S of the cell cycle), or in the gap preceding mitosis (stage G2 of the cell cycle). In addition, some cells contained high multiples of the normal amount of DNA. In the beginning of the second exponential growth phase, a few cells were again in G1 (the post mitotic stage of the cell cycle preceding DNA synthesis). These G1 cells were predominant at the end of the second growth period. During the second stationary phase the DNA content of the cadmium treated cells was similar to the stationary phase of the control culture. Cells had stopped growing in G1 with an unreplicated genome. The implications of these data are discussed.  相似文献   

10.
In the developing anther, archesporial cells that proliferateby mitotic division are converted into meiotic cells duringthe premeiotic interphase. Experiments with explanted microsporocytesof Lilium and Trillium were made to obtain evidence for theconversion of mitotic to meiotic cells during the premeioticperiod. Explanted premeiotic cells were cultured through thedivision cycle at relatively high division frequencies and showeda variety of division types with respect to chromosomal events.The type of division depended on the premeiotic stage at whichthe cells were explanted. Cells in the G1, S and early G2 phasesunderwent mitotic division and formed a diad or binucleate monad.Cells explanted at the late G2 phase were cultured throughoutthe normal meiotic cycle, which resulted in typical tetrad configuration. In microsporocytes explanted during the main part of the G2interval, centromere behavior was meiotic, but chromosome pairingand chiasma formation were disturbed. Thus, she G2 intervalwas shown to be critical for the commitment of mitotic cellsto meiotic division. Detailed analysis showed that the intracellularchanges that commit the cells to meiosis begin shortly aftercompletion of premeiotic DNA synthesis and that these changesare progressive and cumulative. (Received February 2, 1982; Accepted May 24, 1982)  相似文献   

11.
The effect of the cytomegalovirus on the cell cycle was studied autoradiographically in an asynchronous culture of human diploid fibroblasts. The analysis of labeled mitosis showed that some cells infected in the S phase ceased to progress through the cell cycle at one of its phases (S, G 2, or M); at the same time, at least part of the infected cells remained capable of entering mitosis. Beginning from day 2 after infection by cytomegalovirus, the accumulation of pathological mitotic cells blocked at metaphase was observed in the culture. Approximately 50% of these cells contained 3H-thymidine label above chromosomes. This suggested the possibility of pathological mitosis in cells that were infected both at the S and other phases of the cell cycle. The detailed morphological analysis of chromosomes at different stages of infection demonstrated that the degree of their morphological changes increases from slight (stronger condensation) to severe pathology (fragmentation). In the aggregate, the results of the study suggested that abnormal chromosome morphology resulted from irreversible cell division arrest under the effect of the cytomegalovirus.  相似文献   

12.
13.
14.
Nasopharyngeal carcinoma (NPC) occurs frequently in southern China. The circadian rhythm of DNA synthesis of a poorly differentiated NPC human cell line (CNE2) was investigated as an experimental prerequisite for designing chrono-chemotherapy schedules for patients with this disease. Twenty-two nude mice with BALB/c background were synchronized alternatively in 12 h of light and 12 h of darkness (LD12:12) for at least 3 wk prior to the transplantation of a CNE2 tumor fragment into each flank (area of ~2×2 mm2). Ten days later, a tumor sample (area of ~5 mm2) was obtained at 3, 9, 15, and 21 h after light onset (HALO) alternatively from different sites in each mouse. Single-cell suspensions were prepared and stained with propidium iodide. Cellular DNA content was measured with flow cytometry. Data were analyzed by ANOVA and cosinor methods. The average proportion of tumor cells in G1, S or G2-M phase varied according to circadian time with statistical significance. The maximum occurred at 9 HALO for G1, 2 HALO for S and 21 HALO for G2-M phase cells. The approximate average distribution patterns of G1 and G2-M phases of cosine curve was 24 h. This was not the case for S-phase cells, which displayed a bimodal temporal pattern. Inter-individual variability in peak time was large, possibly due to relatively sparse sampling time. Nevertheless, no more than 6% of the time series displayed a maximum at 3 HALO for G1, 21 HALO for S and 15 HALO for G2-M. The cell cycle distribution of this human NPC cell line displayed circadian regulation following implantation into nude mice. The mechanisms involved in this rhythm and its relevance to the chrono-chemotherapy of patients deserve further investigation.  相似文献   

15.
Cloned cultures of the dinoflagellate Gonyaulax polyedra grown in a 12-h light-12-h dark cycle (LD 12:12) were synchronized to the beginning of G1 by a two sequential filtration technique. After the second filtration, with the cultures growing in LD 12:12, not many cells had divided after 1 day, but approximately half underwent cell division after 2 days. Flow cytometric measurements of the cells revealed that there is one unique S phase starting about 12 h prior to cell division and lasting for less than 4 h. A majority of cells in cultures synchronized in the same way but maintained in continuous light (LL) after filtration also divided synchronously after 2 days. Just as for the cultures in LD 12:12, those in LL have a similar discrete DNA synthesis phase prior to division. It is concluded that the circadian control of cell division acts before the S phase, giving rise to a discontinuous DNA synthesis phased by the circadian clock.  相似文献   

16.
Abstract. Methylmercury (MeHg) effects on cell cycle kinetics were investigated to help identify its mechanisms of action. Flow cytometric analysis of normal human fibroblasts grown in vitro in the presence of BrdU allowed quantitation of the proportion of cells in G1, S, G2 and the next G1 phase. This technique provides a rapid and easily performed method of characterizing phase lengths and transition rates for the complete cell cycle. After first exposure to MeHg the cell cycle time was lengthened due to a prolonged G1. At 3, μm MeHg the G1 phase length was 25% longer than the control. the G1/S transition rate was also decreased in a dose-related manner. Confluent cells exposed to MeHg and replated with MeHg respond in the same way as cells which have not been exposed to MeHg before replating. Cells exposed for long times to MeHg lost a detectable G1 effect, and instead showed an increase in the G2 percentage, which was directly related to MeHg concentration and length of exposure. After 8 days at 5 μM MeHg, 45% of the population was in G2. the G2 accumulation was reversible up to 3 days, but at 6 days the cells remained in G2 when the MeHg was removed. Cell counts and viability indicated that there was not a selective loss of cells from the MeHg. MeHg has multiple effects on the cell cycle which include a lengthened G1 and decreased transition probability after short term exposure of cycling cells, and a G2 accumulation after a longer term exposure. There were no detectable S phase effects. It appears that mitosis (the G2 accumulation) and probably synthesis of some macromolecules in G1 (the lengthened G1 and lowered transition probability) are particularly susceptible to MeHg.  相似文献   

17.
Two-color fluorescence in situ hybridization (FISH) with chromosome enumeration DNA probes specific to chromosomes 7, 11, 17, and 18 was applied to CAL-51 breast cancer cells to examine whether the fluorescence intensity of FISH spots was associated with cell cycle progression. The fluorescence intensity of each FISH spot was quantitatively analyzed based on the cell cycle stage determined by image cytometry at the single-cell level. The spot intensity of cells in the G2 phase was larger than that in the G0/1 phase. This increased intensity was not seen during the early and mid S phases, whereas the cells in the late S phase showed significant increases in spot intensity, reaching the same level as that observed in the G2 phase, indicating that alpha satellite DNA in the centromeric region was replicated in the late S phase. Thus, image cytometry can successfully detect small differences in the fluorescence intensities of centromeric spots of homologous chromosomes. This combinational image analysis of FISH spots and the cell cycle with cell image cytometry provides insights into new aspects of the cell cycle. This is the first report demonstrating that image cytometry can be used to analyze the fluorescence intensity of FISH signals during the cell cycle.  相似文献   

18.
The age-dependent, ultraviolet light (UVL) (254 nm)-induced division delay of surviving and nonsurviving Chinese hamster cells was studied. The response was examined after UVL exposures adjusted to yield approximately the same survival levels at different stages of the cell cycle, 60% or 30% survival. Cells irradiated in the middle of S suffered the longest division delay, and cells exposed in mitosis or in G1 had about the same smaller delay in division. Cells irradiated in G2, however, were not delayed at either survival level. It was further established, after exposures that yielded about 30% survivors at various stages of the cycle, that surviving cells had shorter delays than nonsurvivors. This difference was not observed for cells in G2 at the time of exposure; i.e., neither surviving nor nonsurviving G2 cells were delayed in division. The examination of mitotic index vs. time revealed that most cells reach mitosis, but all of the increase in the number of cells in the population can be accounted for by the increase of the viable cell fraction. These observations suggest strongly that nonsurviving cells, although present during most of the experiment, are stopped at mitosis and do not divide. Cells in mitosis at the time of irradiation complete their division, and in the same length of time as unirradiated controls. Division and mitotic delays after UVL are relatively much larger than after X-ray doses that reduce survival to about the same level.  相似文献   

19.
Circadian variations in the proliferative activity of squamous epithelia are well known. However, circadian variations in the duration of the various cell cycle phases (S, G2 and mitosis) have been disputed. the percent labelled mitoses method, which is traditionally used to obtain duration of cell cycle phases, is poorly suited for identification of circadian variations. Therefore methods combining changes in compartment size (cell cycle phase) and cellular flux through the compartments have been used. Three different methods using such data are presented. These incorporate various simplifying assumptions that cause methodological errors. Limits for use of the different methods are indicated. the use of all three methods gives comparable and pronounced circadian variations in the duration of S and G2 phase. These results are also compatible with circadian variations in the mitotic duration, but they may also represent artefacts due to sensitivity to model errors.  相似文献   

20.
The cell cycle (nuclear division cycle) of a multinucleate green alga, Boergesenia forbesii (Harvey) Feldmann was studied using microspectrophotometry and BrdU incorporation techniques. Mitosis was observed frequently 1-4 h after the beginning of the light period, on a 16:8 h LD cycle at 25°C. Mitotic nuclei formed discrete patches. Other nuclei remained in the G1 period. The DNA synthetic phase (S phase) was estimated to last about 12 h from microspectrophotometric study using aphidicolin inhibition just before the S phase and release from it. The G2 period was estimated to be about 2 h, because a labeled prophase nucleus could be detected when the samples were labeled with BrdU continuously over 3 h. The incorporation pattern of BrdU changed through the S phase nucleus. In early S phase, BrdU staining was detected as many dots in the entire nucleus, while in late S phase, it was detected as several discrete regions along the nuclear membrane. Almost all nuclei in B. forbesii were in the G1 stage after nuclear division, and the nuclei in several patches of the cell simultaneously initiated DNA synthesis. Once the nuclei entered into S phase, these nuclei continued into G2 and mitosis. In other words, the cell cycle regulation of entrance into S phase from G1 is an important factor in the growth and morphogenesis in B. forbesii.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号