首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Polygalacturonase (PG) and pectin methylesterase (PME) activities were analyzed in ripening fruits of two tabasco pepper (Capsicum frutescens) lines that differ in the extent of pectin degradation (depolymerization and dissolution). Ripe 'Easy Pick' fruit is characterized by pectin ultra-degradation and easy fruit detachment from the calyx (deciduous trait), while pectin depolymerization and dissolution in ripe 'Hard Pick' fruit is limited. PG activity in protein extracts increased similarly in both lines during fruit ripening. PME activity in vivo assessed by methanol production, however, was detected only in fruit of the 'Easy Pick' line and was associated with decreased pectin methyl-esterification. In contrast, methanol production in vivo was not detected in fruits of the 'Hard Pick' line and the degree of pectin esterification remained the same throughout ripening. Consequently, a ripening specific PME that is active in vivo appears to enhance PG-mediated pectin ultra-degradation resulting in cell wall dissolution and the deciduous fruit trait. PME activity in vitro, however, was detected in protein extracts from both lines at all ripening stages. This indicates that some PME isozymes are apparently inactive in vivo, particularly in green fruit and throughout ripening in the 'Hard Pick' line, limiting PG-mediated pectin depolymerization which results in moderately difficult fruit separation from the calyx.  相似文献   

2.
Pectin methylesterase (PME; EC 3.1.1.11) activities are widespread in bacteria, fungi, and plants. PME-mediated changes in cell wall pectin structure play important roles in plant development. Genome sequencing projects have revealed the existence of large PME multigene families in higher plants. Additional complexity for PME regulation arises from the presence of specific PME inhibitor proteins (PMEI) in plant cells. Several assay procedures for the determination of PME activity have been reported. However, previous protocols suffered from various limitations. Here we report a protocol for a coupled enzyme assay based on methanol oxidation via alcohol oxidase (AO; EC 1.1.3.13) and subsequent oxidation of formaldehyde by formaldehyde dehydrogenase (FDH; EC 1.2.1.3). This simple and robust assay allows the continuous monitoring of PME activity in the neutral pH range. Furthermore, as plant PMEIs do not interfer with AO and FDH activities, this assay is suitable for the characterization of the inhibition kinetics of PMEI.  相似文献   

3.
4.
5.
6.
Ribosome-inactivating proteins (RIPs, EC 3.2.2.22) are plant enzymes that can inhibit the translation process by removing single adenine residues of the large rRNA. These enzymes are known to function in defense against pathogens, but their biological role is unknown, partly due to the absence of work on RIPs in a model plant. In this study, we purified a protein showing RIP activity from Arabidopsis thaliana by employing chromatography separations coupled with an enzymatic activity. Based on N-terminal and internal amino acid sequencing, the RIP purified was identified as a mature form of pectin methylesterase (PME, At1g11580). The purified native protein showed both PME and RIP activity. PME catalyzes pectin deesterification, releasing acid pectin and methanol, which cause cell wall changes. We expressed the full-length and mature form of cDNA clones into an expression vector and transformed it in Escherichia coli for protein expression. The recombinant PME proteins (full-length and mature) expressed in E. coli did not show either PME or RIP activity, suggesting that post-translational modifications are important for these enzymatic activities. This study demonstrates a new function for an old enzyme identified in a model plant and discusses the possible role of a protein's conformational changes corresponding to its dual enzymatic activity.  相似文献   

7.
Recently, we demonstrated that leaf wounding results in the synthesis of pectin methylesterase (PME), which causes the plant to release methanol into the air. Methanol emitted by a wounded plant increases the accumulation of methanol-inducible gene mRNA and enhances antibacterial resistance as well as cell-to-cell communication, which facilitates virus spreading in neighboring plants. We concluded that methanol is a signaling molecule involved in within-plant and plant-to-plant communication. Methanol is considered to be a poison in humans because of the alcohol dehydrogenase (ADH)-mediated conversion of methanol into toxic formaldehyde. However, recent data showed that methanol is a natural compound in normal, healthy humans. These data call into question whether human methanol is a metabolic waste product or whether methanol has specific function in humans. Here, to reveal human methanol-responsive genes (MRGs), we used suppression subtractive hybridization cDNA libraries of HeLa cells lacking ADH and exposed to methanol. This design allowed us to exclude genes involved in formaldehyde and formic acid detoxification from our analysis. We identified MRGs and revealed a correlation between increases in methanol content in the plasma and changes in human leukocyte MRG mRNA levels after fresh salad consumption by volunteers. Subsequently, we showed that the methanol generated by the pectin/PME complex in the gastrointestinal tract of mice induces the up- and downregulation of brain MRG mRNA. We used an adapted Y-maze to measure the locomotor behavior of the mice while breathing wounded plant vapors in two-choice assays. We showed that mice prefer the odor of methanol to other plant volatiles and that methanol changed MRG mRNA accumulation in the mouse brain.We hypothesize that the methanol emitted by wounded plants may have a role in plant-animal signaling. The known positive effect of plant food intake on human health suggests a role for physiological methanol in human gene regulation.  相似文献   

8.
Pectin was de-esterified with purified recombinant Aspergillus aculeatus pectin methyl esterase (PME) during isothermal-isobaric treatments. By measuring the release of methanol as a function of treatment time, the rate of enzymatic pectin conversion was determined. Elevated temperature and pressure were found to stimulate PME activity. The highest rate of PME-catalyzed pectin de-esterification was obtained when combining pressures in the range 200-300 MPa with temperatures in the range 50-55 degrees C. The mode of pectin de-esterification was investigated by characterizing the pectin reaction products by enzymatic fingerprinting. No significant effect of increasing pressure (300 MPa) and/or temperature (50 degrees C) on the mode of pectin conversion was detected.  相似文献   

9.
人三叶因子3在毕赤酵母中表达条件的研究   总被引:1,自引:0,他引:1  
为提高人三叶因子 3 (HumanTrefoilfactor 3 ,hTFF3 )在毕赤酵母中的表达量 ,研究了转化子生长的培养条件 ,包括不同碳源对转化子生长的影响和接种量、甲醇浓度、pH值、摇瓶转速及不同诱导时间对人三叶因子 3表达的影响。结果表明转化子在生长阶段加入葡萄糖生长旺盛 ,培养 14h后OD600 就可达到 50。在 100mL生长培养基上的菌液以 1∶1接入诱导培养基时蛋白表达量最高 ;转化子在 1%的甲醇、pH60、摇瓶转速240r/min的条件下诱导4 8h ,菌体密度OD600为 15 ,目的蛋白表达量达到 20mg L。用 5L发酵罐进行了高密度发酵 ,经2%甲醇32h诱导 ,最终菌体密度OD600 达到 120 ,每升发酵液中含目的蛋白100mg。  相似文献   

10.
Ribosome-inactivating proteins (RIPs, EC 3.2.2.22) are plant enzymes that can inhibit the translation process by removing single adenine residues of the large rRNA. These enzymes are known to function in defense against pathogens, but their biological role is unknown, partly due to the absence of work on RIPs in a model plant. In this study, we purified a protein showing RIP activity from Arabidopsis thaliana by employing chromatography separations coupled with an enzymatic activity. Based on N-terminal and internal amino acid sequencing, the RIP purified was identified as a mature form of pectin methylesterase (PME, At1g11580). The purified native protein showed both PME and RIP activity. PME catalyzes pectin deesterification, releasing acid pectin and methanol, which cause cell wall changes. We expressed the full-length and mature form of cDNA clones into an expression vector and transformed it in Escherichia coli for protein expression. The recombinant PME proteins (full-length and mature) expressed in E. coli did not show either PME or RIP activity, suggesting that post-translational modifications are important for these enzymatic activities. This study demonstrates a new function for an old enzyme identified in a model plant and discusses the possible role of a protein's conformational changes corresponding to its dual enzymatic activity.  相似文献   

11.
The effects of aqueous methanol solutions applied as a foliar spray or via irrigation were investigated in Arabidopsis, tobacco, and tomato plants. Methanol applied to roots leads to phytotoxic damage in all three species tested. Foliar application causes an increase of fresh and dry weight in Arabidopsis and tobacco plants, but not in tomato plants. The increase in fresh and dry weight of Arabidopsis plants does not correlate with increased levels of soluble sugars, suggesting that increased accumulation of other products is responsible for the differences in the methanol-treated leaves. Foliar application of methanol can induce pectin methylesterase (PME) gene expression in Arabidopsis and tomato plants, activating specific PME genes.  相似文献   

12.
Plant production of methanol (MeOH) is a poorly understood aspect of metabolism, and understanding MeOH production in plants is crucial for modeling MeOH emissions. Here, we have examined the source of MeOH emissions from mature and immature leaves and whether pectin methylesterase (PME) activity is a good predictor of MeOH emission. We also investigated the significance of below-ground MeOH production for mature leaf emissions. We present measurements of MeOH emission, PME activity, and MeOH concentration in mature and immature tissues of tomato (Lycopersicon esculentum). We also present stable carbon isotopic signatures of MeOH emission and the pectin methoxyl pool. Our results suggest that below-ground MeOH production was not the dominant contributor to daytime MeOH emissions from mature and immature leaves. Stable carbon isotopic signatures of mature and immature leaf MeOH were similar, suggesting that they were derived from the same pathway. Foliar PME activity was related to MeOH flux, but unexplained variance suggested PME activity could not predict emissions. The data show that MeOH production and emission are complex and cannot be predicted using PME activity alone. We hypothesize that substrate limitation of MeOH synthesis and MeOH catabolism may be important regulators of MeOH emission.  相似文献   

13.
目的:研究重组人小分子抗体ScFv-Fc在毕赤酵母中分泌表达的最佳条件,以及ScFv-Fc的纯化方法。方法:分别从甲醇浓度、pH、诱导时间等方面对毕赤酵母重组菌株产生ScFv-Fc的发酵过程进行了优化;通过硫酸铵沉淀结合protein A亲和层析柱,对ScFv-Fc的纯化方法进行了研究。结果:确定ScFv-Fc在毕赤酵母中分泌表达的最佳条件为:在pH5.2的条件下,以0.5%甲醇诱导72 h。经过protein A亲和层析柱纯化后,ScFv-Fc纯度可达94%以上。结论:确定了ScFv-Fc在毕赤酵母中分泌表达的最佳条件以及纯化方法,为重组抗体分子诊断、治疗试剂的开发以及抗体的人源化奠定了物质基础。  相似文献   

14.
Plant leaves undergo a sink-source modification of intercellular macromolecular transport during the transition from carbon import to carbon export. After assessing the role of metabolite signaling in gene regulation in Nicotiana tabacum sink and source leaves, we observed increased pectin methylesterase (PME)-mediated methanol generation in immature leaves. Using suppression subtractive hybridization (SSH), we identified a number of genes whose activity changes from sink to source leaves. The most abundant SSH-identified genes appeared to be sensitive to methanol. We hypothesize that tobacco leaf maturation and the sink-source transition are accompanied by a change in mRNA levels of genes that function in methanol-dependent cell signaling.  相似文献   

15.
Protein methylesterase (PME) amino acid composition and substrate specificity towards methylated normal and deamidated protein substrates were investigated. The enzyme contained 23% acidic and 5% basic residues. These values are consistent with a pI of 4.45. The product formed from methylated protein by PME was confirmed as methanol by h.p.l.c. The kcat. and Km values for several methylated protein substrates ranged from 20 x 10(-6) to 560 x 10(-6) s-1 and from 0.5 to 64 microM respectively. However, the kcat./Km ratios ranged within one order of magnitude from 11 to 52 M-1.s-1. Results with the irreversible cysteine-proteinase inhibitor E-64 suggested that these low values were in part due to the fact that only one out of 25 molecules in the PME preparations was enzymically active. When PME was incubated with methylated normal and deamidated calmodulin, the enzyme hydrolysed the latter substrate at a higher rate. The Km and kcat. for methylated normal calmodulin were 0.9 microM and 31 x 10(-6) s-1, whereas for methylated deamidated calmodulin values of 1.6 microM and 188 x 10(-6) s-1 were obtained. The kcat./Km ratios for methylated normal and deamidated calmodulin were 34 and 118 M-1.s-1 respectively. By contrast, results with methylated adrenocorticotropic hormone (ACTH) substrates indicated that the main difference between native and deamidated substrates resides in the Km rather than the kcat. The Km for methylated deamidated ACTH was 5-fold lower than that for methylated native ACTH. The kcat./Km ratios for methylated normal and deamidated ACTH were 43 and 185 M-1.s-1 respectively. These results indicate that PME recognizes native and deamidated methylated substrates as two different entities. This suggests that the methyl groups on native calmodulin and ACTH substrates may not be on the same amino acid residues as those on deamidated calmodulin and ACTH substrates.  相似文献   

16.
Lewis KC  Selzer T  Shahar C  Udi Y  Tworowski D  Sagi I 《Phytochemistry》2008,69(14):2586-2592
Pectin methyl esterases (PMEs) and their endogenous inhibitors are involved in the regulation of many processes in plant physiology, ranging from tissue growth and fruit ripening to parasitic plant haustorial formation and host invasion. Thus, control of PME activity is critical for enhancing our understanding of plant physiological processes and regulation. Here, we report on the identification of epigallocatechin gallate (EGCG), a green tea component, as a natural inhibitor for pectin methyl esterases. In a gel assay for PME activity, EGCG blocked esterase activity of pure PME as well as PME extracts from citrus and from parasitic plants. Fluorometric tests were used to determine the IC50 for a synthetic substrate. Molecular docking analysis of PME and EGCG suggests close interaction of EGCG with the catalytic cleft of PME. Inhibition of PME by the green tea compound, EGCG, provides the means to study the diverse roles of PMEs in cell wall metabolism and plant development. In addition, this study introduces the use of EGCG as natural product to be used in the food industry and agriculture.  相似文献   

17.
Many plants release airborne volatile compounds in response to wounding due to pathogenic assault. These compounds serve as plant defenses and are involved in plant signaling. Here, we study the effects of pectin methylesterase (PME)-generated methanol release from wounded plants (“emitters”) on the defensive reactions of neighboring “receiver” plants. Plant leaf wounding resulted in the synthesis of PME and a spike in methanol released into the air. Gaseous methanol or vapors from wounded PME-transgenic plants induced resistance to the bacterial pathogen Ralstonia solanacearum in the leaves of non-wounded neighboring “receiver” plants. In experiments with different volatile organic compounds, gaseous methanol was the only airborne factor that could induce antibacterial resistance in neighboring plants. In an effort to understand the mechanisms by which methanol stimulates the antibacterial resistance of “receiver” plants, we constructed forward and reverse suppression subtractive hybridization cDNA libraries from Nicotiana benthamiana plants exposed to methanol. We identified multiple methanol-inducible genes (MIGs), most of which are involved in defense or cell-to-cell trafficking. We then isolated the most affected genes for further analysis: β-1,3-glucanase (BG), a previously unidentified gene (MIG-21), and non-cell-autonomous pathway protein (NCAPP). Experiments with Tobacco mosaic virus (TMV) and a vector encoding two tandem copies of green fluorescent protein as a tracer of cell-to-cell movement showed the increased gating capacity of plasmodesmata in the presence of BG, MIG-21, and NCAPP. The increased gating capacity is accompanied by enhanced TMV reproduction in the “receivers”. Overall, our data indicate that methanol emitted by a wounded plant acts as a signal that enhances antibacterial resistance and facilitates viral spread in neighboring plants.  相似文献   

18.
Distillery effluent, a rich source of potassium, is used for irrigation at many places in the world. A laboratory experiment was conducted to study the influence of potassium salts present in post-methanation distillery effluent (PME) along with two other salts, KCl and K2SO4, on mineralization of carbon in soil. PME oxidized with H2O2, raw PME, KCl and K2SO4 solutions containing K equivalent to 10%, 20%, 40% and 100% of K present in PME were added to the soil separately, maintaining four replications for each treatment and control. Addition of salts up to a certain concentration stimulated C mineralization but a decline was noticed at higher concentrations. All the levels of salts caused higher CO2 evolution than the control suggesting that the presence of K salts enhanced the microbial activity resulting in increased CO2 evolution. The influence of K2SO4 was significantly higher than KCl in stimulating C mineralization in soil. Oxidized effluent had a higher stimulating effect than inorganic salts, showing the influence of other salts accompanying K in the PME. Raw PME, which contained excess organic C, increased CO2 evolution even at the highest salt level (100% PME) signifying the effect of added C on alleviating the salt stress on microbial activity.  相似文献   

19.
20.
汉森酵母表达载体的构建和人血管生成抑制素基因的表达   总被引:1,自引:0,他引:1  
汉森酵母(H.polymorpha)是一类能以甲醇为唯一碳源和能源的甲基营养酵母,具有高表达外源基因、易于高密度发酵和产业化的特点。应用PCR技术扩增汉森酵母甲醇氧化酶(Methanol oxidase MOX)基因启动子和转录终止序列,并与汉森酵母Leu基因(Hpleu2)和人血管生成抑制素基因一起重组进大肠杆菌质粒pSP72,构建了整合型表达载体pSMA17,采用LiAc法将pSMA17转入汉森酵母A16(leu),筛选出阳性转化子H.polymorpha A16(pSMA17)。转化子在YPGE培养基中培养至对数生长后期,用甲醇进行诱导表达。ELISA和SDSPAGE分析结果证明人血管生成抑制素已获表达,表达产物分泌至培养基中。Western blot结果显示重组的人血管生成抑制素能与抗人纤溶酶原抗血清特异结合,具有免疫原性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号