首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The stabilities of nine rat liver cytosol enzymes were compared at a variety of pH values. The cytosol enzymes studied were (a) those with half-lives in vivo of 3 days or longer: lactate dehydrogenase, arginase, glyceraldehyde phosphate dehydrogenase and alanine aminotransferase, (b) those with half-lives in vivo shorter than 2 days; glucokinase, dihydroorotase, serine dehydratase and tyrosine aminotransferase and (c) catalase, which has an intermediate half-life of 2.5 days for the protein protion. All the enzymes were stable in vitro at neurtal and alkaline pH values. However, at acidic pH values (pH 4): the long-lived enzymes (a) were stable; the short-lived enzymes (b) were completely inactivated with one exception; and catalase was partially inactivated. Tyrosine aminotransferase was the exception in that it is a short-lived enzyme in vivo but stable under all conditions tested in vitro. The finding that long-lived enzymes are stable in an acid milieu and short-lived enzymes are generally unstable was only observed if certain ligands (NAD+, pyridoxal 5'-phosphate, Mn2+, amino acids) were added to the invitro system. Lysosomal extracts did not accelerate the rate of inactivation of any cytosol enzyme in acidic solutions. These results indicate that if degradation of intracellular enzymes occurs in lysosomes, acid inactivation and denaturation of enzymes may be the initial event in determining the functional half-lives of the enzymes in vivo.  相似文献   

2.
The stabilities of nine rat liver cytosol enzymes were compared at a variety of pH values. The cytosol enzymes studied were (a) those with half-lives in vivo of 3 days or longer: lactate dehydrogenase, arginase, glyceraldehyde phosphate dehydrogenase and alanine aminotransferase, (b) those with half-lives in vivo shorter than 2 days; glucokinase, dihydroorotase, serine dehydratase and tyrosine aminotransferase and (c) catalase, which has an intermediate half-life of 2.5 days for the protein portion. All the enzymes were stable in vitro at neutral and alkaline pH values. However, at acidic pH values (pH 4): the long-lived enzymes (a) were stable; the short-lived enzymes (b) were completely inactivated with one exception; and catalase was partially inactivated. Tyrosine aminotransferase was the exception in that it is a short-lived enzyme in vivo but stable under all conditions tested in vitro. The finding that long-lived enzymes are stable in an acid milieu and short-lived enzymes are generally unstable was only observed if certain ligands (NAD+, pyridoxal 5′-phosphate, Mn2+, amino acids) were added to the iv vitro systems. Lysosomal extracts did not accelerate the rate of inactivation of any cytosol enzyme in acidic solutions. These results indicate that if degradation of intracellular enzymes occurs in lysosomes, acid inactivation and denaturation of enzymes may be the initial event in determining the functional half-lives of the enzymes in vivo.  相似文献   

3.
A strain isolated from the feces of takin was identified as Clostridium aminovalericum. In response to various types of chitin used as growth substrates, the bacterium produced a complete array of chitinolytic enzymes: chitinase ('endochitinase'), exochitinase, beta-N-acetylglucosaminidase, chitosanase and chitin deacetylase. The highest activities of chitinase (536 pkat/mL) and exochitinase (747 pkat/mL) were induced by colloidal chitin. Fungal chitin also induced high levels of these enzymes (463 pkat/mL and 502 pkat/mL, respectively). Crab shell chitin was the best inducer of chitosanase activity (232 pkat/mL). The chitinolytic enzymes of this strain were separated from culture filtrate by ion-exchange chromatography on the carboxylic sorbent Polygran 27. At pH 4.5, some isoforms of the chitinolytic enzymes (30% of total enzyme activity) did not bind to Polygran 27. The enzymes were eluted under a stepwise pH gradient (pH 5-8) in 0.1 mol/L phosphate buffer. At merely acidic pH (4.5-5.5), the adsorbed enzymes were co-eluted. However, at pH close to neutral values, the peaks of highly purified isoforms of exochitinases and chitinases were isolated. The protein and enzyme recovery reached 90%.  相似文献   

4.
采用蛋白水解酶复性电泳(G-PAGE)技术对大(Buteo hemilasius)消化系统5种器官腺胃、胰脏、十二指肠、空肠、大肠蛋白水解酶的种类和性质进行了研究,以期为研究野生鸟类的分类地位、系统演化提供基础资料,结果表明,①受pH值的影响和制约,大消化系统蛋白水解酶的活性在碱性、中性与酸性条件下递减;②在酸性条件下,45 ku蛋白水解酶存在于除腺胃外的各受检器官;③pH 7.0时,腺胃、胰脏酶谱相似,均含有683、5、342、0 ku的蛋白水解酶;④pH 8.0时,空肠和十二指肠的蛋白水解酶种类最多、活性最强,分别检出8种和7种蛋白水解酶。总之,pH值对蛋白水解酶的活性有明显的制约作用,46、41ku蛋白水解酶随着pH值的增高而失去活性,为酸性蛋白水解酶,250、2064、5 ku蛋白水解酶随着pH值的增高活性逐渐增强,为碱性蛋白水解酶。十二指肠和空肠的蛋白水解酶种类多、活性强,可能为蛋白质消化的主要场所。  相似文献   

5.
Enzymes I and II, which have a high soymilk-clotting activity, produced from K-295G-7 were purified by chromatographies on Sephadex G-100, CM-cellulose, hydroxylapatite, and 2nd Sephadex G-100.

The two purified enzymes were found to be homogeneous by polyacrylamide gel elec-trophoresis (PAGE) at pH 4.3. The molecular weights of enzymes I and II were 28,000 and 29,500 by SDS-PAGE, and their isoelectric points were 9.22 and 9.45, respectively. Enzymes I and II coagulated soymilk optimally at 65°C and were stable up to 45°C. Both enzymes were most active at pH 5.8, for soymilk coagulation between pH 5.8 to 6.7, and were stable with about 50 ~ 100% of the original activity from pH 5 to 10.

Each of the purified enzymes was a serine protease with an optimum pH of 9.0 for soy protein isolate (SPI) and casein digestions, because these enzymes were inhibited completely by diisopropylfluoro-phosphate (DFP).

The soymilk-clotting activity to proteolytic activity ratio of the enzyme II was 3 times higher than that of enzyme I. Enzymes I and II were more sensitive to the calcium ion concentration in soymilk than bromelain is.  相似文献   

6.
We investigated the effect of copper on liver key enzymes of the anaerobic glucose metabolism (hexokinase, HK; phosphofructokinase, PFK; pyruvate kinase, PK; lactate dehydrogenase, LDH) as well as of the pentose pathway (glycose-6-phosphate dehydrogenase, G6PDH) from the fish Prochilodus lineatus. The fish were acclimated at either 20 degrees C or 30 degrees C at pH 7.0, transferred to water at pH 4.5 or 8.0, and exposed to 96 h-CL(50) copper concentrations. Copper accumulation in liver was higher in fish acclimated at 20 degrees C and maintained in water pH 8.0. Three-way analysis of variance revealed a significant effect of temperature on all enzymes, a significant effect of pH on all enzymes except for PK, and a significant effect of copper on only PFK, and LDH in pH 4.5 at 20 degrees C and, at 30 degrees C, on PFK and PK at pH 4.5 and 8.0, HK at pH 4.5 and G6PDH at pH 8.0. There were significant interactions between treatments for many enzymes. These changes suggest that the activity of enzymes in question is modified by a change in ambient water. At least at 30 degrees C, the overall reduction in the glycolytic enzyme activities of copper-exposed fish seems to reduce energy availability via glucose metabolism, thereby contributing to enhance copper toxic effects.  相似文献   

7.
Degradation of xylan requires several enzymes. Two chimeric enzymes, xyln-ara and xyln-xylo, were constructed by linking the catalytic portion of a xylanase (xyln) to either an arabinofuranosidase (ara) or a xylosidase (xylo) with a flexible peptide linker. The recombinant parental enzymes and chimeras were produced in E. coli at high levels and purified for characterization of their enzymatic and kinetic properties as well as activities on natural substrates. The chimeras closely resemble the parental enzymes or their mixtures with regard to protein properties. They share similar temperature profiles and have similar catalytic efficiencies as the parental enzymes when assayed using substrates 4-nitrophenyl-alpha-L-arabinofuranoside or 2-nitrophenyl- beta-D-xylopyranoside. The chimeras also show unique enzymatic characteristics. In xylanase activity assays using Remazol Brilliant Blue-xylan, while the parental xylanase has a pH optimum of pH 8, the chimeras showed shifted pH optima as a consequence of significantly increased activity at pH 6 (the optimal pH for ara and xylo). Both chimeras exhibited additive effects of the parental enzymes when assayed at wide ranges of pH and temperatures. The xyln-xylo chimera had the same activities as the xyln/xylo mixture in hydrolyzing the natural substrates oat spelt xylan and wheat arabinoxylan. Compared to the xyln/ara mixture, the xyln-ara chimera released the same amounts of xylose from oat spelt xylan and approximately 30% more from wheat arabinoxylan at pH 6. Our results demonstrate the feasibility and advantages of generating bifunctional enzymes for the improvement of xylan bioconversion.  相似文献   

8.
Cyclodextrin glucanotransferase (beta-CGTase) of alkalophilic Bacillus sp. #1011 degrades starch to mainly beta-cyclodextrin (beta-CD). This enzyme is considered to contain an extra-polypeptide in its COOH-terminal region in addition to its NH2-terminal domain which exhibits the starch-degrading activity. To analyze the functions of this extra-polypeptide in the beta-CGTase, two mutated enzymes, in which DNA regions encoding 10 or 13 amino acids from the COOH-terminus were deleted, were obtained. The mutated enzymes degraded starch to glucose, maltooligosaccharides and alpha-CD, in addition to beta-CD. Furthermore, the pH stability of the mutated enzymes in the alkaline pH range (pH 9-11) was reduced.  相似文献   

9.
东北虎幼体消化系统蛋白水解酶的初步研究   总被引:1,自引:0,他引:1  
蛋白水解酶在许多生命活动中是必需的物质(Vassalli and Pepper,1994)。蛋白质的酶解修饰(Xuet al.,1999)、细胞迁移、组织再生与修复、消化系统对蛋白质的消化等均与蛋白水解酶有关(Baimbridgeet al.,1992),且蛋白水解酶功能失调会导致许多疾病(Teichertet al.,1989)。东北虎(  相似文献   

10.
Abstract— The enzymes for the biosynthesis of phosphatidic acid from acyl dihydroxyacetone phosphate were shown to be present in rat brain. These enzymes were mainly localized in the microsomal fraction of 12–14 day old rat brains. The brain microsomal acyl CoA: dihydroxyacetone phosphate acyl transferase (EC 2.3.1.42), exhibited a broad pH optimum between pH 5 and 9 with maximum activity at pH 5.4. K m for DHAP at pH 5.4 was 0.1 m m and V max was 0.86nmol/min/mg of microsomal protein. The corresponding microsomal enzyme for the glycerophosphate pathway (acyl CoA: sn -glycerol-3-phosphate acyl transferase EC 2.3.1.15) was shown to have a different pH optimum (pH 7.6). On the basis of the differences in pH optima, differential effects of sodium cholate in the enzymes and a common substrate competition study, these acyl transferases were postulated to be two different microsomal enzymes.
Acyl DHAP:NADPH oxidoreductase (EC 1.1.1.101) in brain microsomes was found to be quite specific for NADPH as cofactor, being able to utilize NADH only at very high concentrations. This enzyme exhibited a K m of 8.6 μ m with NADPH and V mx of 0.81 nmol/min/mg protein. The presence of these two enzymes and the known presence of l-acyl- sn -glycerol-3-phosphate: acyl CoA acyl transferase in brain (F leming & H ajra , 1977) demonstrated the biosynthesis of phosphatidic acid in brain via acyl dihydroxyacetone phosphate. Phosphatidic acid was shown to form when dihydroxyacetone phosphate, acyl CoA, NADPH and other cofactors were incubated together with brain microsomes. Further properties of the enzymes and the probable importance of the presence of this pathway in brain were discussed.  相似文献   

11.
Two pepsinogens, the contents of which increase with developmental progress, were purified from the gastric mucosa of the adult rat by ammonium sulfate fractionation and chromatography on DEAE-cellulose and DEAE-Sepharose CL-6B columns. The purified zymogens, designated as pepsinogens I and II, were each shown to be homogeneous by polyacrylamide gel disc electrophoresis. Pepsinogen II had a greater electrophoretic mobility toward the anode at pH 8.0 than pepsinogen I. The molecular weights of both zymogens were estimated to be 38,000 by SDS-polyacrylamide gel electrophoresis. The activated enzymes, pepsins I and II, each had the same molecular weight of 32,000. The pH optima for both enzymes were found to be 2.0. The enzymes showed high stabilities at pH 8.0, while they lost their activities within 60 min at pH 10.0. The enzymes were inhibited by pepstatin and diazoacetyl-DL-norleucine methyl ester (DAN). The activities of the enzymes in hydrolyzing N-acetyl-L-phenylalanyl-3,5-diiodo-L-tyrosine (APDT) were about 1/8 of that of porcine pepsin. These results suggest that pepsins I and II are very similar.  相似文献   

12.
Cell extracts of Cenococcum graniforme have been found to contain the following hydrolytic enzymes: protease, esterase, alpha-d-galactopyranosidase, beta-d-galactopyranosidase, alpha-d-mannopyranosidase, beta-d-xylopyranosidase, alpha-d-glucopyranosidase, beta-d-glucopyranosidase, and alkaline phosphatase. Sulfatase, inorganic pyrophosphatase, and beta-d-mannopyranosidase were not detected in the extracts. beta-d-Xylopyranosidase and alpha-d-mannopyranosidase were most active in the neutral pH range, protease and phosphatase were most active in the alkaline pH range, and other enzymes were most active in the acidic pH range. These enzymes showed a high association with cell wall material, and the release of enzymes from the cells into the culture fluid appeared to occur only when the cells were undergoing autolysis. Alkaline phosphatase in C. graniforme is a constitutive enzyme, and examination of the alkaline phosphatase following a purification of 265-fold produced the following characteristics: pH optimum of 9.5, M(r) of 60,000, K(m) of 2.1 x 10 M for p-nitrophenylphosphate, and activation energy for hydrolysis of the substrate at 9.9 kcal (1 cal = 4.184 J)/mol.  相似文献   

13.
The enzymes isolated from two selected cultures of thermophilic actinomycetes-Thermomonospora fusca (A 29) and Thermoactinomyces vulgaris (A 60)-possess proteolytic activity. The enzymes were purified more than 35- to 40-fold and showed three bands each upon cellulose acetate electrophoresis at several pH values. Based upon Sephadex gel filtration, molecular weights of 21,500 and 23,800 were calculated for the active peaks of the enzymes. The purified enzymes lysed heat-killed cells of gram-positive and gram-negative bacteria, mycobacteria, and fungi and also hydrolyzed casein. The enzymes were most active between a temperature range of 60 and 70 C and pH 8.0 and 9.0, and were significantly inhibited by potassium permanganate, potassium ferricyanide, and iodine.  相似文献   

14.
In the present work, co-immobilization of cholesterol oxidase (COD) and horseradish peroxidase (POD) on perlite surface was attempted. The surface of perlite were activated by 3-aminopropyltriethoxysilane and covalently bonded with COD and POD via glutaraldehyde. Enzymes activities have been assayed by spectrophotometric technique. The stabilities of immobilized COD and POD to pH were higher than those of soluble enzymes and immobilization shifted optimum pH of enzymes to the lower pH. Heat inactivation studies showed improved thermostability of the immobilized COD for more than two times, but immobilized POD was less thermostable than soluble POD. Also activity recovery of immobilized COD was about 50% since for immobilized POD was 11%. The K(m) of immobilized enzymes was found slightly lower than that of soluble enzymes. Immobilized COD showed inhibition in its activity at high cholesterol concentration which was not reported for soluble COD before. Co-immobilized enzymes retained 65% of its initial activity after 20 consecutive reactor batch cycles.  相似文献   

15.
Rat and calf adrenal cortex homogenates were found to contain three different malic enzymes. Two were strictly NADP+-dependent and were localized, one each, in the cytosol and the mitochondrial fractions, respectively. These two enzymes appear to be identical to those described by Simpson and Estabrook (Simpson, E. R., and Estabrook, R. W. (1969) Arch. Biochem. Biophys. 129, 384-395). The third was NAD(P)+-linked and was present in the mitochondrial fraction only. All three malic enzymes separated as distinct bands during electrophoresis on 5 percent polyacrylamide slab gels at pH 9.0. Marker enzymes and the mitochondrial malic enzymes migrated together in intact mitochondria during sucrose density gradient centrifugations despite changes in the equilibrium position of the mitochondria promoted by energy-dependent calcium phosphate accumulation. In adrenal cortex mitochondria subfractionated by the method of Sottocasa et al. (SOTTOCASA, G.L., KUYLENSTIERNA, B., ERNSTER, L., and BERGSTAND, A. (1967) J. Cell Biol. 32, 415-438), both malic enzymes were associated with the inner membrane-matrix space. Sonication solubilized the two malic enzymes along with the matrix space marker enzymes. The NAD(P)+-dependent malic enzyme was purified 100-fold from calf adrenal cortex mitochondria. The final preparation was free of malic dehydrogenase, fumarase, the strictly NADP+-linked malic enzyme and adenylate kinase. Either Mn24 orMg2+ was required for activity and 1 mol of pyruvate was formed for each mole of NAD+ and NADP+ reduced. The pH optima with NAD+ and NADP+ were 6.5 tp 7.0 and 6.0 to 6.5, respectively. Michaelis-Menten kinetics were observed on the alkaline side. Fumarate, succinate, and isocitrate were positive and ATP and ADP were negative modulators of the regulatory enzyme. The modulators did not influence the stoichiometry and they were not metabolized during the reaction. Under Vmax conditions the ratios for the rate of NAD+:NADP+ reduction were 1.76 and 1.15 at pH 7.4 and 6.0, respectively. The apparent Michaelis constants also differed depending on the pH and the coenzyme. At pH 7.4 (in the presence of 5 mM fumarate) and at pH 6.0 (no fumarate) the Km values for (-)-malate, NAD+, and Mn2+ were 1.7, 0.16, and 0.15 mM, and 0.31, 0.06, and 0.09 mM, respectively. At pH 7.4 (5MM fumarate) and pH 6.0 (no fumarate), the Km values for (-)-malate, NADP+, and Mn2+ were 6.5, 0.62, and 0.59 mM, and 0.68. 0.12, and 0.31 mM, respectively. The apparent Ki values for ATP with NAD+ and NADP+ as coenzyme were 0.42 and 0.27 mM, respectively.  相似文献   

16.
There was an ionic interaction between acidic polysaccharides (APS) and proteins at the pH range in which APS were negatively charged and proteins were positively charged, and in enzymes the interaction was detected as a change in the enzyme activity. At pH 4.7, acid phosphatase (pI, 5.4), alpha-glucosidase (pI, 5.7), and beta-glucosidase (pI, 7.3) were inhibited by APS to various extents. On the other hand, alpha-glucosidase and alkaline phosphatase (pI, 4.5) were not inhibited by APS at pH 6.8 and 9.8, respectively, most of these two enzymes being negatively charged at the respective pHs. Sulfated polysaccharides combined with hemoglobin (pI, 6.8 to approximately 7.0) by an ionic bond at pH 2 to make hemoglobin unsusceptible to proteolysis by pepsin, but polyuronides which were not charged at this pH did not affect hydrolysis of hemoglobin.  相似文献   

17.
2The immobilization parameters were optimized for the hydantoinase and the L-N-carbamoylase from Arthrobacter aurescens DSM 3747 or 3745, respectively. To optimize activity yields and specific activities for the immobilization to Eupergit C, Eupergit C 250 L, and EAH-Sepharose wild-type, recombinant and genetically modified ('tagged') enzymes were investigated concerning the influence of the protein concentration, the kind of support and the immobilization method. For both enzymes, the use of the recombinant proteins resulted in enhanced specific activities especially when using a hydrophilic support for immobilization such as Sepharose. In the case of a genetically modified hydantoinase carrying a His(6)-tag, affinity coupling led to a loss of activity of higher than 80%. Both enzymes were significantly stabilized by immobilization: In packed bed reactors, Eupergit C 250 L (NH(2))-immobilized hydantoinase and EAH-Sepharose-immobilized L-N-carbamoylase showed half-life times of approx. 14000 and 900 hours, respectively. Together with specific activities of the immobilized enzymes of 2.5 U/g wet carrier (hydantoinase) and 10 U/g wet carrier (L-N-carbamoylase) the newly developed biocatalysts are sufficient to fulfill industrial requirements.In comparison to the free enzymes, temperature and pH-optima were increased by 10 degrees C and one pH unit, respectively, after immobilization. The pH and temperature optima of the hydantoinase (L-N-carbamoylase) were determined to be pH 8.5-10 (pH 9.5) and 45-60 degrees C (60 degrees C).In order to provide sufficient amounts of biocatalyst for the process development in mini plant scale, a 50 fold scale-up of the optimized immobilization procedure was carried out for both enzymes. Because of the overlapping optima, both immobilized enzymes can be operated together in one reactor.  相似文献   

18.
Bacillus circulans IAM1165 produces three major extracellular beta-1,3-glucanases (molecular masses, 28, 42, and 91 kDa) during the stationary phase of growth. The 28- and 42-kDa enzymes were purified to homogeneity from the culture supernatant in this study. The properties of these two enzymes were examined, together with those of the 91-kDa enzyme previously isolated. The enzymatic properties of the 28- and 42-kDa beta-1,3-glucanases closely resemble each other. The enzymes belong to a category of endo type 1,3-beta-D-glucan glucanohydrolases. The enzymes were active at pH 4.0 to 7.0. The optimum temperature of the reactions was 60 degrees C when laminarin (a soluble beta-1,3-glucan) was used as the substrate at pH 7.0. The enzymes hydrolyzed barley glucan and lichenan (beta-1,3-1,4-glucans) more effectively than laminarin. Of the three enzymes, the 42-kDa enzyme lysed fungal cell walls the most effectively.  相似文献   

19.
Cathepsin E (CE), a nonlysosomal, intracellular aspartic proteinase, exists in several molecular forms that are N-glycosylated with high-mannose and/or complex-type oligosaccharides. To investigate the role of N-glycosylation on the catalytic properties and molecular stability of CE, both natural and recombinant enzymes with distinct oligosaccharides were purified from different sources. An N-glycosylation minus mutant, that was constructed by site-directed mutagenesis (by changing asparagine residues to glutamine and aspartic acid residues at positions 73 and 305 in potential N-glycosylation sites of rat CE) and expressed in normal rat kidney cells, was also purified to homogeneity from the cell extracts. The kinetic parameters of the nonglycosylated mutant were found to be essentially equivalent to those of natural enzymes N-glycosylated with either high-mannose or complex-type oligosaccharides. In contrast, the nonglycosylated mutant showed lower pH and thermal stabilities than the glycosylated enzymes. The nonglycosylated mutant exhibited particular sensitivity to conversion to a monomeric form by 2-mercaptoethanol, as compared with those of the glycosylated enzymes. Further, the high-mannose-type enzymes were more sensitive to this agent than the complex-type proteins. A striking difference was found between the high-mannose and complex-type enzymes in terms of activation by ATP at a weakly acidic pH. At pH 5.5, the complex-type enzymes were stabilized by ATP to be restored to the virtual activity, whereas the high-mannose-type enzymes as well as the nonglycosylated mutant were not affected by ATP. These results suggest that N-glycosylation in CE is important for the maintenance of its proper folding upon changes in temperature, pH and redox state, and that the complex-type oligosaccharides contribute to the completion of the tertiary structure to maintain its active conformation in the weakly acidic pH environments.  相似文献   

20.
Three cutaneous propionibacteria, Propionibacterium acnes, Propionibacterium avidum and Propionibacterium granulosum, were grown in chemostats using semi-synthetic medium at various pH values. Growth occurred between pH 4.5 and 7.5 for P. acnes and pH 5.0 and 8.0 for P. avidum and P. granulosum. The highest mumax was at pH 6.0 for the three species. Maximum biomass production was obtained at pH 6.0 for P. acnes and P. avidum and at pH 7.5 for P. granulosum. Extracellular enzyme production occurred over the entire pH growth range when denaturation of the enzymes was taken into account. However, detectable activity of the enzymes was found in a narrower range of pH due to the denaturation of the enzymes at low or high pH values. The highest production of enzymes occurred at pH values between 5.0 and 6.0, apart from the production of hyaluronate lyase of P. granulosum (pH 6.0 to 7.0) and the proteinase of P. acnes and P. avidum (pH 5.0 to 7.5). Propionibacterium acnes produced a lipase, hyaluronate lyase, phosphatase and proteinase activity. Propionibacterium avidum produced a lipase and proteinase activity. Propionibacterium granulosum produced a lipase and hyaluronate lyase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号