首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The study of the mechanisms that maintain genetic variation has a long history in population genetics. We analyze a multilocus-multiallele model of frequency- and density-dependent selection in a large randomly mating population. The number of loci and the number of alleles per locus are arbitrary. The n loci are assumed to contribute additively to a quantitative character under stabilizing or directional selection as well as under frequency-dependent selection caused by intraspecific competition. We assume the strength of stabilizing selection to be weak, whereas the strength of frequency dependence may be arbitrary. Density-dependence is induced by population regulation. Our main result is a characterization of the equilibrium structure and its stability properties in terms of all parameters. It turns out that no equilibrium exists with more than two alleles segregating per locus. We give necessary and sufficient conditions on the strength of frequency dependence to ensure the maintenance of multilocus polymorphism. We also give explicit formulas on the number of polymorphic loci maintained at equilibrium. These results are based on the assumption that selection is sufficiently weak compared with recombination, so that linkage equilibrium can be assumed. If additionally the population size is assumed to be constant, we prove that the dynamics of the model form a generalized gradient system. For the model in its general form we are able to derive necessary and sufficient conditions for the stability of the monomorphic equilibria. Furthermore, we briefly analyze a special symmetric two-locus two-allele model for a constant population size but allowing for linkage disequilibrium. Finally, we analyze a single diallelic locus with dominance to illustrate the complications that can occur if the assumption of additivity is relaxed.  相似文献   

2.
Bürger R  Gimelfarb A 《Genetics》2004,167(3):1425-1443
The equilibrium properties of an additive multilocus model of a quantitative trait under frequency- and density-dependent selection are investigated. Two opposing evolutionary forces are assumed to act: (i) stabilizing selection on the trait, which favors genotypes with an intermediate phenotype, and (ii) intraspecific competition mediated by that trait, which favors genotypes whose effect on the trait deviates most from that of the prevailing genotypes. Accordingly, fitnesses of genotypes have a frequency-independent component describing stabilizing selection and a frequency- and density-dependent component modeling competition. We study how the equilibrium structure, in particular, number, degree of polymorphism, and genetic variance of stable equilibria, is affected by the strength of frequency dependence, and what role the number of loci, the amount of recombination, and the demographic parameters play. To this end, we employ a statistical and numerical approach, complemented by analytical results, and explore how the equilibrium properties averaged over a large number of genetic systems with a given number of loci and average amount of recombination depend on the ecological and demographic parameters. We identify two parameter regions with a transitory region in between, in which the equilibrium properties of genetic systems are distinctively different. These regions depend on the strength of frequency dependence relative to pure stabilizing selection and on the demographic parameters, but not on the number of loci or the amount of recombination. We further study the shape of the fitness function observed at equilibrium and the extent to which the dynamics in this model are adaptive, and we present examples of equilibrium distributions of genotypic values under strong frequency dependence. Consequences for the maintenance of genetic variation, the detection of disruptive selection, and models of sympatric speciation are discussed.  相似文献   

3.
Why do populations remain genetically variable despite strong continuous natural selection? Mutation reconstitutes variation eliminated by selection and genetic drift, but theoretical and experimental studies each suggest that mutation‐selection balance insufficient to explain extant genetic variation in most complex traits. The alternative hypothesis of balancing selection, wherein selection maintains genetic variation, is an aggregate of multiple mechanisms (spatial and temporal heterogeneity in selection, frequency‐dependent selection, antagonistic pleiotropy, etc.). Most of these mechanisms have been demonstrated for Mendelian traits, but there is little comparable data for loci affecting quantitative characters. Here, we report a 3‐year field study of selection on intrapopulation quantitative trait loci (QTL) of flower size, a highly polygenic trait in Mimulus guttatus. The QTL exhibit antagonistic pleiotropy: alleles that increase flower size, reduce viability, but increase fecundity. The magnitude and direction of selection fluctuates yearly and on a spatial scale of metres. This study provides direct evidence of balancing selection mechanisms on QTL of an ecologically relevant trait.  相似文献   

4.
Wing length is a key character for essential behaviours related to bird flight such as migration and foraging. In the present study, we initiate the search for the genes underlying wing length in birds by studying a long-distance migrant, the great reed warbler (Acrocephalus arundinaceus). In this species wing length is an evolutionary interesting trait with pronounced latitudinal gradient and sex-specific selection regimes in local populations. We performed a quantitative trait locus (QTL) scan for wing length in great reed warblers using phenotypic, genotypic, pedigree and linkage map data from our long-term study population in Sweden. We applied the linkage analysis mapping method implemented in GridQTL (a new web-based software) and detected a genome-wide significant QTL for wing length on chromosome 2, to our knowledge, the first detected QTL in wild birds. The QTL extended over 25 cM and accounted for a substantial part (37%) of the phenotypic variance of the trait. A genome scan for tarsus length (a body-size-related trait) did not show any signal, implying that the wing-length QTL on chromosome 2 was not associated with body size. Our results provide a first important step into understanding the genetic architecture of avian wing length, and give opportunities to study the evolutionary dynamics of wing length at the locus level.  相似文献   

5.
A previous genome scan that was conducted in Spanish Churra sheep identified a significant quantitative trait locus (QTL) for milk protein percentage (PP) on chromosome 3 (OAR3), between markers KD103 and OARVH34. The aim of this study was to replicate these results and to refine the mapped position of this QTL. To accomplish this goal, we analysed 14 new half‐sib families of Spanish Churra sheep including 1661 ewes from 29 different flocks. These animals were genotyped for 21 microsatellite markers mapping to OAR3. In addition to a classical linkage analysis (LA), a combined linkage disequilibrium and linkage analysis (LDLA) was performed with the aim of enhancing the resolution of the QTL mapping. The LA that was performed in this sheep population identified the presence of a highly significant QTL for PP near marker KD103 (Pc < 0.001; Pexp < 0.001). The phenotypic variance that was owing to the QTL was 2.74%. Two segregating families for the target QTL were identified in this population with QTL effect estimates of 0.47 and 0.95 SD. The LDLA identified the same QTL as the previous analyses with a high level of statistical significance (P = 9.184 E‐11) and narrowed the confidence interval (CI) to a 13 cM region. These results confirm the segregation of the previously identified OAR3 QTL that influences PP in Spanish Churra sheep. Future research will aim to increase the marker density across the refined CI and to analyse the corresponding candidate genes to identify the allelic variant or variants that underlie this genetic effect.  相似文献   

6.
Quantitative genetic theory predicts that variation due to rare alleles at many loci will generate a transient acceleration in the response to directional selection. We have tested this prediction by constructing experimental lines ofDrosophila melanogaster that carry positively selected ethanol resistance alleles at low frequencies, and then subjecting the lines to directional selection for ethanol resistance. Approximately 468,000 files were subjected to artificial selection over 30 generations. The predicted non-linear selection responses were observed in all experimental lines and replicates, on three genetic backgrounds. In contrast, un-selected controls and lines carrying random alleles at low frequencies on the same genetic backgrounds exhibited linear selection responses. These results demonstrate that non-linearities due to rare alleles are detectable and repeatable, provided that experiments are done on a sufficiently large scale. The results suggest that it may be possible to test for rare-alleles as a component of naturally occurring genetic variation by careful examination of selection response curves.  相似文献   

7.
The major histocompatibility complex (MHC) harbours some of the most polymorphic loci in vertebrate genomes. MHC genes are thought to be subject to some form of balancing selection, most likely pathogen‐mediated selection. Hence, MHC genes are excellent candidates for exploring adaptive processes. In this study, we investigated the genetic variation at exon 2 of the DRB class II MHC locus in 191 alpine chamois (Rupicapra rupicapra) from 10 populations in the eastern Alps of Italy. In particular, we were interested in distinguishing and estimating the relative impact of selective and demographic factors, while taking into account the confounding effect of recombination. The extremely high dn/ds ratio and the presence of trans‐species polymorphisms suggest that a strong long‐term balancing selection effect has been operating at this locus throughout the evolutionary history of this species. We analysed patterns of genetic variation within and between populations, and the mitochondrial D‐loop polymorphism patterns were analysed to provide a baseline indicator of the effects of demographic processes. These analyses showed that (i) the chamois experienced a demographic decline in the last 5000–30 000 years, most likely related to the postglacial elevation in temperature; (ii) this demographic process can explain the results of neutrality tests applied to MHC variation within populations, but cannot justify the much weaker divergence between populations implied by MHC as opposed to mitochondrial DNA; (iii) similar sets of divergent alleles are probably maintained with similar frequencies by balancing selection in different populations, and this mechanism is also operating in small isolated populations, which are strongly affected by drift.  相似文献   

8.
It is a long-standing debate in evolutionary biology whether natural selection can generate divergence in the face of gene flow.Comparative studies of quantitative genetic and neutral marker differenti...  相似文献   

9.
The effect of small population size and gene flow on the rate ofinbreeding and loss in fitness in Bicyclus anynana populationswas quantified by means of a pedigree analysis. Laboratorymetapopulations each consisted of four subpopulations with breeding sizeof N = 6 or N = 12 and migration rate of m = 0 or m= 0.33. Pedigrees were established by individually marking about35,000 butterflies. The increase in inbreeding coefficients(F-coefficients) over time was compared to that of simulated populationswith similar N and m. In the seventh generation, the level of inbreedingin larger subpopulations did not deviate significantly from the expectedvalues, but smaller subpopulations were less inbred than expected.Individuals in the small populations still showed considerableinbreeding depression, indicating that only a small proportion of therecessive deleterious alleles had been purged by selection. Two opposingprocesses potentially affected the rate of inbreeding and fitness: (1)Inbreeding depression increased the variance in family size and reducedthe effective population size. This will accelerate the rate ofinbreeding and is expected to selectively purge deleterious recessivealleles. (2) Variance in reproductive success of families was reducedbecause individuals which had a large number of siblings in thepopulation were more likely to mate with a full-sib than individualswith a smaller number of siblings. Subsequent inbreeding depressionreduced the number of viable offspring produced by these full-sibmatings. As a consequence, natural selection purged only some of thedeleterious alleles from the butterfly populations during sevengenerations with inbreeding. These findings emphasise the potentialproblems of using only small numbers of breeding individuals (N10) incaptive populations for conservation purposes.  相似文献   

10.
Whether contemporary human populations are still evolving as a result of natural selection has been hotly debated. For natural selection to cause evolutionary change in a trait, variation in the trait must be correlated with fitness and be genetically heritable and there must be no genetic constraints to evolution. These conditions have rarely been tested in human populations. In this study, data from a large twin cohort were used to assess whether selection will cause a change among women in a contemporary Western population for three life-history traits: age at menarche, age at first reproduction, and age at menopause. We control for temporal variation in fecundity (the "baby boom" phenomenon) and differences between women in educational background and religious affiliation. University-educated women have 35% lower fitness than those with less than seven years education, and Roman Catholic women have about 20% higher fitness than those of other religions. Although these differences were significant, education and religion only accounted for 2% and 1% of variance in fitness, respectively. Using structural equation modeling, we reveal significant genetic influences for all three life-history traits, with heritability estimates of 0.50, 0.23, and 0.45, respectively. However, strong genetic covariation with reproductive fitness could only be demonstrated for age at first reproduction, with much weaker covariation for age at menopause and no significant covariation for age at menarche. Selection may, therefore, lead to the evolution of earlier age at first reproduction in this population. We also estimate substantial heritable variation in fitness itself, with approximately 39% of the variance attributable to additive genetic effects, the remainder consisting of unique environmental effects and small effects from education and religion. We discuss mechanisms that could be maintaining such a high heritability for fitness. Most likely is that selection is now acting on different traits from which it did in pre-industrial human populations.  相似文献   

11.
Summary We tested the adaptive significance of flowering synchrony by means of a quantitative analysis of selection and by flowering induction experiments with the deciduous shrubErythroxylum havanense. Temporal schedules of flower and fruit production were determined for a local population (in three sites) in a Mexican seasonal forest for 2 years (1987–1988). The consequences of natural variation in flowering time (flowering initiation day) on maternal reproductive success (fecundity) were evaluated. We observed high levels of inter- and intraindividual flowering synchrony in 1987, but not in 1988 and this contrast was related to differences in rainfall patterns between the two years. A significant proportion (15.4%) of the phenotypic variation in flowering initiation day was accounted for by environmental variance. The expression of phenotypic variance of flowering time and, consequently, the opportunity for selection to act, are controlled by annual variation in rainfall. Despite the between-year difference in flowering synchrony, we detected a relatively intense directional selection on flowering initiation day in both years, but selection coefficients were of opposite sign (standardized directional gradients were –0.326 and 0.333 for 1987 and 1988, respectively). For both years there was a significant relationship between individual relative fitness and the number of neighbouring flowering plants in a given day, suggesting positive frequency-dependent selection.  相似文献   

12.
Populations of the Caribbean lizard, Anolis roquet, are thought to have experienced long periods of allopatry before recent secondary contact. To elucidate the effects of past allopatry on population divergence in A. roquet, we surveyed parallel transects across a secondary contact zone in northeastern Martinique. We used diagnostic molecular mitochondrial DNA markers to test fine‐scale association of mitochondrial DNA lineage and geological region, multivariate statistical techniques to explore quantitative trait pattern, and cline fitting techniques to model trait variation across the zone of secondary contact. We found that lineages were strongly associated with geological regions along both transects, but quantitative trait patterns were remarkably different. Patterns of morphological and mitochondrial DNA variation were consistent with a strong barrier to gene flow on the coast, whereas there were no indications of barriers to gene flow in the transitional forest. Hence, the coastal populations behaved as would be predicted by an allopatric model of divergence in this complex, while those in the transitional forest did not, despite the close proximity of the transects and their shared geological history. Patterns of geographical variation in this species complex, together with environmental data, suggest that on balance, selection regimes on either side of the secondary contact zone in the transitional forest may be more convergent, while those either side of the secondary contact zone on the coast are more divergent. Hence, the evolutionary consequences of allopatry may be strongly influenced by local natural selection regimes.  相似文献   

13.
The leader protease (Lpro) and capsid-coding sequences (P1) constitute approximately 3 kb of the foot-and-mouth disease virus (FMDV). We studied the phylogenetic relationship of 46 FMDV serotype A isolates of Indian origin collected during the period 1968–2005 and also eight vaccine strains using the neighbour-joining tree and Bayesian tree methods. The viruses were categorized under three major groups — Asian, Euro-South American and European. The Indian isolates formed a distinct genetic group among the Asian isolates. The Indian isolates were further classified into different genetic subgroups (<5% divergence). Post-1995 isolates were divided into two subgroups while a few isolates which originated in the year 2005 from Andhra Pradesh formed a separate group. These isolates were closely related to the isolates of the 1970s. The FMDV isolates seem to undergo reverse mutation or convergent evolution wherein sequences identical to the ancestors are present in the isolates in circulation. The eight vaccine strains included in the study were not related to each other and belonged to different genetic groups. Recombination was detected in the Lpro region in one isolate (A IND 20/82) and in the VP1 coding 1D region in another isolate (A RAJ 21/96). Positive selection was identified at aa positions 23 in the Lpro (P<0.05; 0.046*) and at aa 171 in the capsid protein VP1 (P<0.01; 0.003**).  相似文献   

14.
Zong G  Wang A  Wang L  Liang G  Gu M  Sang T  Han B 《遗传学报》2012,39(7):335-350
1000-Grain weight and spikelet number per panicle are two important components for rice grain yield.In our previous study,eight quantitative trait loci(QTLs)conferring spikelet number per panicle and 1000-grain weight were mapped through sequencing-based genotyping of 150 rice recombinant inbred lines(RILs).In this study,we validated the effects of four QTLs from Nipponbare using chromosome segment substitution lines(CSSLs),and pyramided eight grain yield related QTLs.The new lines containing the eight QTLs with positive effects showed increased panicle and spikelet size as compared with the parent variety 93-11.We further proposed a novel pyramid breeding scheme based on marker-assistant and phenotype selection(MAPS).This scheme allowed pyramiding of as many as 24 QTLs at a single hybridization without massive cross work.This study provided insights into the molecular basis of rice grain yield for direct wealth for high-yielding rice breeding.  相似文献   

15.
Krebs RA  Thompson KA 《Genetica》2006,128(1-3):217-225
To demonstrate how insects may adapt to ecologically relevant levels of heat stress, we performed artificial selection on the ability of Drosophila melanogaster to fly after an exposure to a high but non-lethal thermal stress. Both tolerance and intolerance to heat stress arose very quickly, as only a few generations of selection were necessary to cause significant separation between high and low lines for heat tolerance. Estimates of heritability based on the lines artificially selected for increased flight ability ranged from 0.024 to 0.052, while estimates of heritability based on the lines selected for the inability to fly after heat stress varied between 0.035 and 0.091. Reciprocal F1 crosses among these lines revealed strong additive effects of one or more autosomes and a weaker X-chromosome effect. This variation apparently affected flight specifically; neither survival to a more extreme stress nor knockdown by high temperature changed between lines selected for high and low heat tolerance as measured by flight ability. As the well-studied heat-shock response is associated with heat tolerance as measured by survival and knockdown, the aspects of the stress physiology that actually affect flight ability remains unknown.  相似文献   

16.
Divergent natural selection, adaptive divergence and gene flow may interact in a number of ways. Recent studies have focused on the balance between selection and gene flow in natural populations, and empirical work has shown that gene flow can constrain adaptive divergence, and that divergent selection can constrain gene flow. A caveat is that phenotypic diversification may be under the direct influence of environmental factors (i.e. it may be due to phenotypic plasticity), in addition to partial genetic influence. In this case, phenotypic divergence may occur between populations despite high gene flow that imposes a constraint on genetic divergence. Plasticity may dampen the effects of natural selection by allowing individuals to rapidly adapt phenotypically to new conditions, thus slowing adaptive genetic divergence. On the other hand, plasticity may promote future adaptive divergence by allowing populations to persist in novel environments. Plasticity may promote gene flow between selective regimes by allowing dispersers to adapt to alternate conditions, or high gene flow may result in the selection for increased plasticity. Here I expand frameworks for understanding relationships among selection, adaptation and gene flow to include the effects of phenotypic plasticity in natural populations, and highlight its importance in evolutionary diversification.  相似文献   

17.
BACKGROUND AND AIMS: Flowering phenology is described and the effect of flowering time on pollination success is evaluated in the deceit-pollinated tropical orchid, Myrmecophila christinae. It was expected that, due to this species' deceit pollination strategy and low observed pollinator visit rate, there would be a higher probability of natural selection events favouring individuals flowering away from the population flowering peak. METHODS: The study covers two consecutive years and four populations of M. christinae located along the north coast of the Yucatán Peninsula. For phenological and pollination success data, a total of 110 individuals were monitored weekly in 1998, and 83 individuals in 1999, during all the flowering and fruiting season. KEY RESULTS: The results showed significant differences in the probability of donating and receiving pollen throughout the flowering season. The probability of receiving or donating pollen increased the further an individual flowering was from the flowering peak. Regression analysis showed directional and disruptive phenotypic natural selection gradients, suggesting the presence of selection events unfavourable to flowering during flowering peak, for both male success (pollen removal) and female success (fruit production). However, the intensity and significance of the natural selection events varied between populations from year to year. The variation between seasons and populations was apparently due to variations in the density of reproductive individuals in each population and each season. CONCLUSIONS: As in other deceit-pollinated orchids, natural selection in M. christinae favours individuals flowering early or late in relation to population peak flowering. However, results also suggested a fluctuating regime of selective events act on flowering time of M. christinae.  相似文献   

18.
Zinc (Zn) hyperaccumulation seems to be a constitutive species-level trait in Thlaspi caerulescens. When compared under conditions of equal Zn availability, considerable variation in the degree of hyperaccumulation is observed among accessions originating from different soil types. This variation offers an excellent opportunity for further dissection of the genetics of this trait. A T. caerulescens intraspecific cross was made between a plant from a nonmetallicolous accession [Lellingen (LE)], characterized by relatively high Zn accumulation, and a plant from a calamine accession [La Calamine (LC)], characterized by relatively low Zn accumulation. Zinc accumulation in roots and shoots segregated in the F3 population. This population was used to construct an LE/LC amplified fragment length polymorphism (AFLP)-based genetic linkage map and to map quantitative trait loci (QTL) for Zn accumulation. Two QTL were identified for root Zn accumulation, with the trait-enhancing alleles being derived from each of the parents, and explaining 21.7 and 16.6% of the phenotypic variation observed in the mapping population. Future development of more markers, based on Arabidopsis orthologous genes localized in the QTL regions, will allow fine-mapping and map-based cloning of the genes underlying the QTL.  相似文献   

19.
The application of different substitution models to each gene (a.k.a. mixed model) should be considered in model‐based phylogenetic analysis of multigene sequences. However, a single molecular evolution model is still usually applied. There are no computer programs able to conduct model selection for multiple loci at the same time, though several recently developed types of software for phylogenetic inference can handle mixed model. Here, I have developed computer software named ‘kakusan’ that enables us to solve the above problems. Major running steps are briefly described, and an analysis of results with kakusan is compared to that obtained with other program.  相似文献   

20.
Current advances in genetic analysis are opening up our knowledge of the genetics of species differences, but challenges remain, particularly for out‐bred natural populations. We constructed a microsatellite‐based linkage map for two out‐bred lines of Drosophila montana derived from divergent populations by taking advantage of the Drosophila virilis genome and available cytological maps of both species. Although the placement of markers was quite consistent with cytological predictions, the map indicated large heterogeneity in recombination rates along chromosomes. We also performed a quantitative trait locus (QTL) analysis on a courtship song character (carrier frequency), which differs between populations and is subject to strong sexual selection. Linkage mapping yielded two significant QTLs, which explained 3% and 14% of the variation in carrier frequency, respectively. Interestingly, as in other recent studies of traits which can influence speciation, the strongest QTL mapped to a genomic region partly covered by an inversion polymorphism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号