首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
The milk fatty acid (FA) profile is far from the optimal fat composition in regards to human health. The natural sources of variation, such as feeding or genetics, could be used to increase the concentrations of unsaturated fatty acids. The impact of feeding is well described. However, genetic effects on the milk FA composition begin to be extensively studied. This paper summarizes the available information about the genetic variability of FAs. The greatest breed differences in FA composition are observed between Holstein and Jersey milk. Milk fat of the latter breed contains higher concentrations of saturated FAs, especially short-chain FAs. The variation of the delta-9 desaturase activity estimated from specific FA ratios could explain partly these breed differences. The choice of a specific breed seems to be a possibility to improve the nutritional quality of milk fat. Generally, the proportions of FAs in milk are more heritable than the proportions of these same FAs in fat. Heritability estimates range from 0.00 to 0.54. The presence of some single nucleotide polymorphisms could explain partly the observed individual genetic variability. The polymorphisms detected onSCD1 andDGAT1 genes influence the milk FA composition. TheSCD1 V allele increases the unsaturation of C16 and C18. TheDGAT1 A allele is related to the unsaturation of C18. So, a combination of the molecular and quantitative approaches should be used to develop tools helping farmers in the selection of their animals to improve the nutritional quality of the produced milk fat.  相似文献   

5.
6.
7.
A database built from 95 experiments with 303 treatments was used to quantify the ruminal biohydrogenation (BH) of fatty acids (FA), efficiency of microbial protein synthesis (EMPS), duodenal flow and intestinal absorption of total FA and of FA with 12 to 18 C units, in response to variations in dietary FA content, source or technological treatment of fat supplement. Flows of FA were expressed relative to dry matter intake (DMI) to compile data from bovine and ovine species. BH tended to increase curvilinearly with FA intake, whereas dietary FA did not affect EMPS. A linear relationship between FA intake and duodenal flow of total FA was obtained, with a coefficient of 0.75 ± 0.06 g duodenal FA/kg DMI for each g FA intake/kg DMI. Between experiments, positive balances of total FA (intake - duodenum) were related to low EMPS. Relationships between duodenal flows of FA with 12 to 18 C units and their respective intakes were linear, with a coefficient that increased with the number of C units. Duodenal flow of bacterial FA was linearly related to FA intake (coefficient 0.33 ± 0.13), whereas contribution of bacterial lipid to duodenal flow decreased as FA intake increased. For each FA with 12 to 16 C units, prediction of FA absorption from its respective duodenal flow was linear. For total FA and FA with 18 C units, apparent absorption levelled off at high duodenal flows. All these relationships were discussed according to current knowledge on microbial metabolism in the rumen and on the intestinal digestibility of FA in the intestine.  相似文献   

8.
9.
10.
Previously, it was reported that a newly isolated microbial culture, Clavibacter sp. strain ALA2, produced trihydroxy unsaturated fatty acids, diepxoy bicyclic fatty acids, and tetrahydroxyfuranyl fatty acids (THFAs) from linoleic acid (C. T. Hou, J. Am. Oil Chem. Soc. 73:1359-1362, 1996; C. T. Hou and R. J. Forman III, J. Ind. Microbiol. Biotechnol. 24:275-276, 2000; C. T. Hou, H. Gardner, and W. Brown, J. Am. Oil Chem. Soc. 75:1483-1487, 1998; C. T. Hou, H. W. Gardner, and W. Brown, J. Am. Oil Chem. Soc. 78:1167-1169, 2001). In this study, we found that Clavibacter sp. strain ALA2 produced novel THFAs, including 13,16-dihydroxy-12-THFA, 15-epoxy-9(Z)-octadecenoic acid (13,16-dihydroxy-THFA), and 7,13,16-trihydroxy-12, 15-epoxy-9(Z)-octadecenoic acid (7,13,16-trihydroxy-THFA), from alpha-linolenic acid (9,12,15-octadecatrienoic acid). The chemical structures of these products were determined by gas chromatography-mass spectrometry and proton and (13)C nuclear magnetic resonance analyses. The optimum incubation temperature was 30 degrees C for production of both hydroxy-THFAs. 13,16-Dihydroxy-THFA was detected after 2 days of incubation, and the concentration reached 45 mg/50 ml after 7 days of incubation; 7,13,16-trihydroxy-THFA was not detected after 2 days of incubation, but the concentration reached 9 mg/50 ml after 7 days of incubation. The total yield of both 13,16-dihydroxy-THFA and 7,13,16-trihydroxy-THFA was 67% (wt/wt) after 7 days of incubation at 30 degrees C and 200 rpm. In previous studies, it was reported that Clavibacter sp. strain ALA2 oxidized the C-7, C-12, C-13, C-16, and C-17 positions of linoleic acid (n-6) into hydroxy groups. In this case, the bond between the C-16 and C-17 carbon atoms is saturated. In alpha-linolenic acid (n-3), however, the bond between the C-16 and C-17 carbon atoms is unsaturated. It seems that enzymes of strain ALA2 oxidized the C-12-C-13 and C-16-C-17 double bonds into dihydroxy groups first and then converted them to hydroxy-THFAs.  相似文献   

11.
12.
Murine adipocyte and rat heart fatty acid binding proteins (FABP) are closely related members of a family of cytosolic proteins which bind long-chain free fatty acids (ffa). The physical and chemical characteristics of the fatty acid binding sites of these proteins were studied using a series of fluorescent analogues of stearic acid (18:0) with an anthracene moiety covalently attached at seven different positions along the length of the hydrocarbon chain (AOffa). Previously, we used these probes to investigate the binding site of rat liver FABP (L-FABP) [Storch et al. (1989) J. Biol. Chem. 264, 8708-8713]. Here we extend those studies to adipocyte and heart FABP, two members of the FABP family which share a high degree of sequence homology with each other (62% identity) but which are less homologous with L-FABP (approximately 30%). The results show that the fluorescence emission spectra of AOffa bound to adipocyte FABP (A-FABP) are blue-shifted relative to heart FABP (H-FABP), indicating that AOffa bound to A-FABP are held in a more constrained configuration. For both proteins, constraint on the bound ffa probe is highest at the midportion of the acyl chain. Ffa are bound in a hydrophobic environment in both proteins. Excited-state lifetimes and fluorescence quantum yields suggest that the binding site of H-FABP is more hydrophobic than that of A-FABP. Nevertheless, acrylamide quenching experiments indicate that ffa bound to H-FABP are more accessible to the aqueous environment than are A-FABP-bound ffa.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
Leaves from 25 Macaronesian Echium (Boraginaceae) species have been surveyed for hydrocarbon compounds. These plants were previously reported as the major source of gamma-linolenic acid so far found in nature. In addition, six European Echium species and the common Borago officinalis have been analysed for comparative purposes. High squalene amounts were found in all Echium plants from the Macaronesia, ranging from 3.73%, in E. simplex to 20.1% in E. fastousum. Squalene was almost absent from all European Echium species, and the same is true for B. officinalis. The relatively high oil content (2.27%) in leaves of E. fastuosum raises the total squalene amount to about 0.46% within this tissue. The main fatty acid component in the leaf was alpha-linolenic acid (ALA, 18:3omega3), ranging in the Macaronesian Echium from 9.32% in E. acanthocarpum to 54.45% in E. simplex. Possible utilisation of these plants as a commercial source of squalene and hypotheses about its physiological role in the plant are discussed.  相似文献   

14.
15.
16.
17.
p-Aminobenzoic acid was fed to normal and alloxan-induced diabetic rats injected with [omega-14C]labeled and [2-14C]labeled fatty acids. The p-acetamidobenzoic acid that was excreted was hydrolyzed to yield acetate which was degraded. The distribution of 14C in the acetates formed when an [omega-14C]labeled fatty acid was injected was similar to that when a [2-14C]labeled fatty acid was injected. This contrasts with the finding that in acetates from 2-acetamido-4-phenylbutyric acid excreted when 2-amino-4-phenylbutyric acid was fed, there was a difference in the distributions of 14C, a difference attributable to omega-oxidation of the fatty acid. Acetylation of p-aminobenzoic acid is then concluded to occur in a different cellular environment than that of 2-amino-4-phenylbutyric acid, one in which omega-oxidation is not functional. When 2-amino-4-phenylbutyric acid was fed and [6-14C]palmitic acid injected, rather than [16-14C]palmitic acid, the distribution of 14C in acetate was the same as when [2-14C]palmitic acid was injected. This indicates that the dicarboxylic acid formed on omega-oxidation of palmitic acid does not undergo beta-oxidation to form succinyl-CoA. Thus, glucose is not formed via omega-oxidation of long-chain fatty acid.  相似文献   

18.
3-Hydroxydicarboxylic acids are major urinary metabolites derived from fatty acid metabolism. These compounds are produced from the omega-oxidation of 3-hydroxy fatty acids. The production of the precursor 3-hydroxy fatty acids from incomplete beta-oxidation of fatty acids in rat liver mitochondria was investigated. Independent of the chain length or the concentration of fatty acid substrates, the accumulation of 3-hydroxyacyl intermediates was relatively constant at the concentration of 3-5 nmol/mg of mitochondrial protein. The extent of the incomplete oxidation was the same in Percoll gradient-purified mitochondria. Rotenone treatment increased the production of 3-hydroxy fatty acids. 3-Hydroxy fatty acids did not exist as pure L-enantiomer as expected from beta-oxidation. Instead, these metabolites were epimerized to a near racemic mixture of D- and L-isomers with a slightly dominant D-isomer (58 +/- 3%). By using deuterium-isotope labeling, the mechanism of epimerizartion was shown to be a rapid dehydration-rehydration through trans-2-enoyl-CoA. In addition, cis-3 and trans-3 fatty acids were produced; these metabolites were derived from the isomerization of trans-2-enoyl-CoA. Epimerase and isomerase were thought to be enzymes involved in the oxidation of unsaturated fatty acids. Current data have shown that the metabolism of these acids is actually through NADPH-dependent reduction pathways. The activities of epimerase and isomerase detected in rat liver mitochondria possibly function mainly in the metabolism of saturated fatty acids in a reverse role to the conventional concept.  相似文献   

19.
1. Highly purified rat mammary-gland acetyl-CoA carboxylase was inhibited by milk obtained from rats 12h after their young were weaned. 2. All the inhibitory activity was found in the particulate fraction (R(105)) obtained on centrifuging the milk. It could be extracted from milk fraction R(105) with acetone and identified as a complex mixture of non-esterified fatty acids, present in high concentration (nearly 10mm) in the milk. 3. Inhibition of acetyl-CoA carboxylase was observed at low concentrations (0.2-20mum) of several of these fatty acids when fresh fully active enzyme was used. Enzyme that had been partly inactivated by aging, or by storing in the absence of citrate, was stimulated by low concentrations but inhibited by high concentrations of fatty acids. 4. Various experiments suggested that fatty acids produce irreversible inactivation of acetyl-CoA carboxylase. 5. The effects of palmitoyl-CoA on mammary-gland acetyl-CoA carboxylase were found to resemble those of fatty acids, except that palmitoyl-CoA was effective at lower concentration. 6. The effect of milk fraction R(105) was tested on six other enzymes previously shown to decline to various extents after weaning. Although several of these enzymes were affected by unfractionated milk fraction R(105), none was significantly inhibited by the acetone extract or by low concentrations of lauric acid. 7. The findings are consistent, both qualitatively and quantitatively, with a regulatory mechanism whereby milk fatty acids shut off fatty acid synthesis in the mammary gland after weaning by inhibiting acetyl-CoA carboxylase.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号