首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
9.
Sequences were generated for the first, second, and 3'UT regions of DRw8 beta-chain genes from two cell lines differing in their T cell determined allospecificities. Both have second domain sequences homologous to the B1 locus of the DRw52 family (DR3, DR5, and DRw6) and not the B3 locus. However, the 3'UT sequence is homologous to the 3'UT region of the B3 locus of the DRw52 family, and not the B1 locus. The first domain sequences are B1-like as opposed to B3-like and show polymorphism in the region encoding the putative alpha-helical region of the DR beta-chain. The easiest interpretation is that the DRw8 haplotypes constitute a sublineage within the DRw52 group and that this lineage has arisen by a small chromosomal deletion of the region between the B1 locus and the B3 locus. This deletion included the 3'UT region of the B1 locus, the B2 pseudogene, and the 5' end of the B3 locus including the exons encoding the first and second domains. After the deletion, two changes in the first domain arose by a mutational mechanism, possibly gene conversion. One of these changes parallels one seen in the DRw11 lineage.  相似文献   

10.
11.
The Epstein-Barr virus (EBV) latent infection membrane protein 1 (LMP1) has previously been shown to cause EBV-negative B-lymphoma cells to grow in large clumps and to alter expression of surface activation and adhesion molecules (D. Wang, D. Liebowitz, F. Wang, C. Gregory, A. Rickinson, R. Larson, T. Springer, and E. Kieff, J. Virol. 62:1473-4184, 1988; F. Wang, C. Gregory, C. Sample, M. Rowe, D. Liebowitz, R. Murray, A. Rickinson, and E. Kieff, J. Virol. 64:2309-2318, 1990). In order to identify functional elements in the amino-terminal cytoplasmic domain and the first four transmembrane domains which were previously shown to be essential for LMP1 activity, three smaller deletion mutants were constructed and tested for their activity in B-lymphoma cells. The results of the present study indicate that the amino-terminal cytoplasmic domain, the first transmembrane domain, and the third and fourth transmembrane domains each contribute to LMP1's effects on B lymphocytes.  相似文献   

12.
We present here the first structural information for HspBP1, an Hsp70 cochaperone. Using circular dichroism, HspBP1 was determined to be 35% helical. Although HspBP1 is encoded by seven exons, limited proteolysis shows that it has only two structural domains. Domain I, amino acids 1-83, is largely unstructured. Domain II, amino acids 84-359, is predicted to be 43% helical using circular dichroism. Using limited proteolysis we have also shown that HspBP1 association changes the conformation of the ATPase domain of Hsp70. Only domain II of HspBP1 is required to bring about this conformational change. Truncation mutants of HspBP1 were tested for their ability to inhibit the renaturation of luciferase and bind to Hsp70 in reticulocyte lysate. A carboxyl terminal truncation mutant that was slightly longer than domain I was inactive in these assays, but domain II was sufficient to perform both functions. Domain II was less active than full-length HspBP1 in these assays, and addition of amino acids from domain I improved both functions. These studies show that HspBP1 domain II can bind Hsp70, change the conformation of the ATPase domain, and inhibit Hsp70-associated protein folding.  相似文献   

13.
14.
CD229 is a member of the CD150 family of the Ig superfamily expressed on T and B cells. Receptors of this family regulate cytokine production and cytotoxicity of lymphocytes and NK cells. The cytoplasmic tail of CD229 binds to SAP, a protein that is defective in X-linked lymphoproliferative syndrome. To identify the CD229 ligand, we generated a soluble Ig fusion protein containing the two N-terminal extracellular domains of human CD229 (CD229-Ig). CD229-Ig bound to CD229-transfected cells, whereas no binding was detected on cells expressing other CD150 family receptors, showing that CD229 binds homophilically. Both human and mouse CD229 interacted with itself. Domain deletion mutants showed that the N-terminal Ig-domain mediates homophilic adhesion. CD229-CD229 binding was severely compromised when the charged amino acids E27 and E29 on the predicted B-C loop and R89 on the F-G loop of the N-terminal domain were mutated to alanine. In contrast, one mutation, R44A, enhanced the homophilic interaction. Confocal microscopy image analysis revealed relocalization of CD229 to the contact area of T and B cells during Ag-dependent immune synapse formation. Thus, CD229 is its own ligand and participates in the immunological synapse.  相似文献   

15.
16.
Pseudomonas exotoxin A (PE) is a cytotoxin composed of three structural domains. Domain I is responsible for cell binding, domain II for membrane translocation enabling access to the cytosol, and domain III for the catalytic inactivation of protein synthesis, which results in cell death. To investigate the role of the six alpha-helices (A-F) that form the translocation domain, we deleted them successively one at a time. All mutants showed native cell-binding and catalytic activities, indicating that deletions specifically affected translocation activity. This step of the intoxication procedure was examined directly using a cell-free translocation assay, and indirectly by monitoring cytotoxicity. Translocation activity and log(cytotoxicity) were highly correlated, directly indicating that translocation is rate limiting for PE intoxication. Deletion of B, C and D helices resulted in non-toxic and non-translocating molecules, whereas mutants lacking the A or E helix displayed significant cytotoxicity albeit 500-fold lower than native PE. We concluded that B, C and D helices, which make up the core of domain II, are essential, whereas the more peripheral A and E helices are comparatively dispensable. The last helix (F) is inhibitory for translocation because its deletion produced a mutant displaying a translocation activity 60% higher than PE, along with a three- to sixfold increase in cytotoxicity in all tested cell lines. This toxin is the most in vitro active PE mutant obtained until now. Finally, partial duplication of domain II did not give rise to a more actively translocated PE, but rather to a threefold less active molecule.  相似文献   

17.
18.
X Tong  R Yalamanchili  S Harada    E Kieff 《Journal of virology》1994,68(10):6188-6197
Since deletion of region 3 (amino acids [aa] 333 to 425) of Epstein-Barr virus nuclear protein 2 (EBNA-2) results in EBV recombinants which cannot transform primary B lymphocytes (J. I. Cohen, F. Wang, and E. Kieff, J. Virol. 65:2545-2554, 1991), the role of domains of region 3 was investigated. Deletion of the Arg-Gly repeat domain, R-337GQSRGRGRGRGRGRGKG354, results in EBV recombinants that transform primary B lymphocytes with modestly decreased activity. The transformed cells grow slowly and are difficult to expand. EBNA-2 deleted for the Arg-Gly domain does not associate with the nuclear chromatin fraction. The Arg-Gly repeat has an intrinsic ability to bind to histone H1, to other proteins, including EBNA-1, and to nucleic acids, especially poly(G). Two independent deletions of each part of the rest of region 3 (aa 359 to 383 and 385 to 430) have little effect on transformation, while deletion of the rest of region 3 (aa 361 to 425) as a single segment substantially reduces transformation efficiency. EBNA-2 deleted for all of region 3 can still transactivate the LMP1 promoter in transient expression assays but is less active than EBNA-2 in transactivating the BamHI-C promoter. EBNA-2 deleted for the Arg-Gly domain is better than EBNA-2 at transactivating the LMP1 promoter and is as active as EBNA-2 in transactivating the BamHI-C promoter. These data are most compatible with a model in which the Arg-Gly domain of region 3 is a modulator of EBNA-2 interactions and activities, while the rest of region 3 is important in positioning the region 2 J kappa binding domain relative to the region 4 acidic transactivating domain. Despite the null phenotype of the region 3 deletion, region 3 is unlikely to mediate essential interactions with other proteins.  相似文献   

19.
The relationship between EBV infection and sensitivity to death receptor (DR)-induced apoptosis is poorly understood. Using EBV- and EBV+ BJAB cells, we provide the first evidence that EBV can protect latently infected B cell lymphomas from apoptosis triggered through Fas or TRAIL receptors. Caspase 8 activation was impaired and cellular FLIP recruitment was enriched in death-inducing signaling complexes formed in EBV-infected BJAB cells relative to parent BJAB cells. Furthermore, latent membrane protein 1 expression alone could reduce caspase activation and confer partial resistance to DR apoptosis in BJAB cells. This protective effect was dependent on C-terminal activating region 2-driven NF-kappaB activation, which in turn up-regulated cellular FLIP expression in latent membrane protein 1+ BJAB cells. Thus, the ability of latent EBV to block DR apoptosis may help to ensure the survival of host cells during B cell differentiation, and contribute to the development of B cell lymphomas, especially in immunocompromised individuals.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号