首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Devils Lake in northeastern North Dakota (USA) is a terminal lake of glacial origin with a substantial sulfate content. Since 1940, the lake water level has risen over 13.5m and salinity has decreased. Devils Lake consists of a series of interconnected basins with sulfate concentration increasing in an eastward direction from 450mg/l in West Bay to 3000mg/l in East Devils Lake. Using sulfate as a tracer and linking measurements of specific conductance with observed time series of water surface elevations, wind, and water velocity, this paper illustrates the magnitude and dynamics of mass transport and exchange processes between the multiple basins of Devils Lake. Measurements show small horizontal salinity gradients within the lake basins, but large salinity gradients in some of the exchange zones connecting basins. Vertical salinity gradients were observed in small basins and near exchange zones with strong horizontal salinity differentials. These instances of vertical stratification were associated with buoyancy driven exchange flows and wind sheltering. Exchange flow velocities between selected basins were correlated with wind direction and speed. Interbasin exchange flows were found to reverse direction frequently in response to the prevailing wind direction. Flow direction frequencies in one specific exchange zone were 31% west to east, 48% east to west, and 21% bidirectional (stratified). At the lake level observed in 2000, time averaged, measured interbasin exchange flow rates were 30--40m3/s compared to tributary inflow rates to the lake of 3--9m3/s.  相似文献   

2.
The benthic macroinvertebrate community (BMC) of Lake Tecuitlapa Sur, central Mexico, was monitored to determine the structure of the community (i.e. species composition, richness, abundance and biomass), throughout an annual cycle. Tecuitlapa Sur is shallow, seasonally-astatic, warm, mesosaline, and soda-alkaline. The physical, chemical and biological variables were determined monthly for a yearly cycle. Tecuitlapa Sur displayed a seasonal patterns of dilution (June–August) and concentration (September–November) phases. Salinity and pH were the most important parameters explaining environmental variance. The BMC consisted of two species: Culicoides occidentalis sonorensis (Diptera: Ceratopogonidae) and Tanypus Apelopia sp. (Diptera: Chironomidae). C. occidentalis was the most important species both numerically and in biomass (95%). Annual density (mean ± sd) of C. occidentalis (1141082 ± 2765879 ind. m–2, n = 120) was notably higher than other reported for other saline water bodies. However, the mean annual density of T. Apelopia (6782 ± 8310 ind. m–2, n = 120) was similar to other saline lakes. Seasonal abundance and biomass dynamics of the BMC showed an increasing trend until October (T. Apelopia) and November (C. occidentalis), when massive emergence occurred, just before the lake dried out. Contrary to most temporal waters, Tecuitlapa Sur did not show taxonomic or trophic succession. C. occidentalis, a transient detritivore, dominated over T. Apelopia, a resident predator during the wet period.  相似文献   

3.
Temperature, dissolved oxygen and dissolved methane profiles were measured during autumn and summer, in a shallow floodplain lake in south-eastern Australia to determine the effects of water-column stability on methane and oxygen dynamics. The water column was well mixed in autumn. Strong thermal stratification developed in the late afternoon in summer, with top-to-bottom temperature differences of up to 6 °C. Methane concentrations in surface waters varied over a daily cycle by an 18-fold range in summer, but only by a 2-fold range in autumn. The implication of short-term temporal variation is that static chambers deployed on the water surface for short times (less than a day) in summer will significantly underestimate the diffusive component of methane emissions across the water–atmosphere interface. There was a marked diel variation in dissolved oxygen concentrations in summer, with the highest oxygen values (commonly 5–8 mg l–1) occurring in the surface waters in late afternoon; the bottom waters were then devoid of oxygen (< 0.2 mg l–1). Because of high respiratory demands, even the surface water layers could be nearly anoxic by morning in summer. The concentration of dissolved oxygen in the surface waters was always less than the equilibrium value. When the water column became thermally stratified in summer, the dissolved oxygen and methane maxima were spatially separated, and planktonic methanotrophy would be limited to a moving zone, at variable depth, in the water column. In summer the whole-wetland rates of oxygen production and respiration, calculated from long-term (5 h) shifts in dissolved oxygen concentrations over a diel period, were approximately 6–10 and 3–6 mmol m–3 h–1, respectively. These values correspond to net and gross primary production rates of 0.7–1.2 and 1.0–1.9 g C m–3 day–1, respectively.  相似文献   

4.
Wang  R. L.  Williams  W. D. 《Hydrobiologia》2001,457(1-3):17-24
Biogeochemical studies were undertaken of a 65-cm long sediment core from Lake Cantara South, South Australia. 14C determinations indicated that the sediments had been deposited over 2000 years. Changes with sediment depth in the concentration or ratio of the following were determined: (i) total organic carbon, total carbonate (inorganic) carbon, total sulfur, total carbon, total inorganic and organic sulfur, atomic C/N, and sulfate/chloride; (ii) n-alkanes; (iii) a highly branched isoprenoid alkane, and (iv) steroids. Interpretation of the changes with sediment depth indicated the nature of changes that took place when the system changed from a protected marine lagoon to an isolated (athalassic) saline lake. This change took place about 1000 years ago.  相似文献   

5.
SUMMARY 1. We sampled a set of 93 lakes situated in the floodplains of the lower River Rhine in search for morphometric and other factors that explain their variation in clarity.
2. Lakes with a drop in summer water level were less turbid at the time of sampling, mainly because of a lower concentration of inorganic suspended solids (ISS).
3. We also found that older lakes were more turbid than younger lakes and that this was largely because of an increase in phytoplankton.
4. Water clarity was positively related to lake depth and the presence of vegetation.
5. Model calculations indicated that the underwater light climate was strongly affected by chlorophyll and ISS, the latter being the dominant factor affecting Secchi depth. Dissolved organic carbon (DOC) was less important.
6. The high concentration of ISS suggests that intensive resuspension occurs in most of the lakes. Using a simple wave model, and assuming that vegetation protects sediments against resuspension, we could eliminate wind resuspension as an important process in 90% of the lakes, leaving resuspension by benthivorous fish as probably the most important factor determining transparency.
7. Chlorophyll a concentration showed a strong positive correlation to ISS concentration, suggesting that resuspension may also have a positive effect on phytoplankton biomass in these lakes.
8. In conclusion, in-lake processes, rather than river dynamics, seem to be driving the turbidity of floodplain lakes along the lower River Rhine.  相似文献   

6.

Background

Extracellular dissolved DNA has been demonstrated to be present in many terrestrial and aquatic environments, actively secreted, or released by decaying cells. Free DNA has the genetic potential to be acquired by living competent cells by horizontal gene transfer mediated by natural transformation. The aim of this work is to study the persistence of extracellular DNA and its biological transforming activity in extreme environments like the deep hypersaline anoxic lakes of the Mediterranean Sea. The brine lakes are separated from the upper seawater by a steep chemocline inhabited by stratified prokaryotic networks, where cells sinking through the depth profile encounter increasing salinity values and osmotic stress.

Results

Seven strains belonging to different taxonomic groups isolated from the seawater-brine interface of four hypersaline lakes were grown at medium salinity and then incubated in the brines. The osmotic stress induced the death of all the inoculated cells in variable time periods, between 2 hours and 144 days, depending on the type of brine rather than the taxonomic group of the strains, i.e. Bacillaceae or gamma-proteobacteria. The Discovery lake confirmed to be the most aggressive environment toward living cells. In all the brines and in deep seawater dissolved plasmid DNA was substantially preserved for a period of 32 days in axenic conditions. L'Atalante and Bannock brines induced a decrease of the supercoiled form up to 70 and 40% respectively; in the other brines only minor changes in plasmid conformation were observed. Plasmid DNA after incubation in the brines maintained the capacity to transform naturally competent cells of Acinetobacter baylii strain BD413.

Conclusion

Free dissolved DNA is likely to be released by the lysis of cells induced by osmotic stress in the deep hypersaline anoxic lakes. Naked DNA was demonstrated to be preserved and biologically active in these extreme environments, and hence could constitute a genetic reservoir of traits acquirable by horizontal gene transfer.  相似文献   

7.
Pronounced seasonal and daily oxygen concentration changes are characteristic for Amazonian floodplain lakes. Studies on the fish fauna of the Lago Camaleão, Solimões River, Amazonas, Brazil, showed several fish species which are able to survive prolonged periods of heavy hypoxia. Twenty species belonging to eight families were observed in the laboratory in order to determine their respiratory adaptations to hypoxic conditions and oxygen concentrations at which the fish present respiratory adaptations. Finally, the fish species were distributed throughout the habitats of Lake Camaleão according to their adaptation responses. Ten fish species used the surface water for aquatic surface respiration, four species used atmospheric oxygen for aerial respiration, four species used oxygen supplied by the exudation of the roots of floating macrophytes and two exhibited a high tolerance to hypoxic conditions, and well-developed physiological biochemical mechanisms. The fish fauna is well adapted to low oxygen concentrations. The large variety of morpho-anatomical adaptations associated with biochemical and physiological mechanisms to tolerate hypoxic and anoxic conditions enable the 20 fish species to exploit several habitats of Lago Camaleão, such as floating aquatic macrophyte meadows, open water and near the shoreline.  相似文献   

8.
Poyang Lake (Poyang Hu) is located at the junction of the middle and lower reaches of the Yangtze (Changjiang) River, covering an area of 3283 km2. As one of the few lakes that are still freely connected with the river, it plays an important role in the maintenance of the unique biota of the Yangtze floodplain ecosystem. To promote the conservation of Poyang Lake, an investigation of the macrobenthos in the lake itself and adjoining Yangtze mainstream was conducted in 1997–1999. Altogether 58 benthic taxa, including 22 annelids, 8 mollusks, 26 arthropods, and 2 miscellaneous animals, were identified from quantitative samples. The benthic fauna shows a high diversity and a marine affinity. The standing crops of benthos in the lake were much higher than those in the river, being 659 individuals/m2 and 187.3 g/m2 (wet mass) in the main lake, and 549 individuals/m2 and 116.6 g/m2 in the lake outlet, but only 129 individuals/m2 and 0.4 g/m2 in the river. The dominant group in the lake was Mollusca, comprising 63.4% of the total in density and 99.5% in biomass. An analysis of the functional feeding structure indicated that collector-filterers and scrapers were predominant in the lake, up to 42.2% and 24.7% in density and 70.2% and 29.2% in biomass, respectively, while shredders and collector-gatherers were relatively common in the river. The present study was restricted to the northern outlet and the northeast part of Poyang Lake. A scrutiny is required for the remaining areas.  相似文献   

9.
The distribution of fishes in Dauphin Lake, a large, shallow, turbid, prairie lake in west-central Manitoba, was examined using gillnets. Catch per unit effort was used to assess differences in distribution thai may be attributed lo year, season, lake zone (inshore, offshore), substratum, water depth, water temperature, turbidity and presence of other fish species. Although 13 species were caught, only the distributions of the six most abundant was analysed. Variation in number of species caught was attributed mainly to lake zone, water depth and water temperature. White sucker (Catastomus commersoni) distribution can be explained by zone and temperature. Shorthead redhorse (Moxostoma macrolepidotum) catches were related to depth and temperature. Cisco (Coregonus artedii) catches varied with year, zone and temperature. Variances in northern pike (Esox Indus) distribution reflected year and zone. Walleye (Stizostedkm vitreum) varied with year, depth and temperature and differences in the catches of yellow perch (Pertaflurescens) were attributed to year, depth, temperature and turbidity. They were also positively correlated to the numbers of northern pike caught.  相似文献   

10.
Escobar-Briones  Elva  Alcocer  Javier 《Hydrobiologia》2002,477(1-3):93-105
A new species of Caecidotea, an aquatic isopod crustacean is described from Alchichica crater-lake in the state of Puebla, Oriental Basin, central Mexico. This is the first report of an epigean asellid isopod, with cryptic behavior inhabiting inland saline waters in America. Comparisons made with other co-occurring asellid species in the region show that the species Caecidotea pasquinii differs from the new species in lacking eyes, having different features on the male endopod of pleopod 2, a shorter pereiopod 6, and having elongated uropods. The epigean species Caecidotea communis differs from the new species in having pleopod 4 of the A type pattern of Lewis & Bowman (1981) and 5–8 retinacula on pleopod 1 sympod.  相似文献   

11.
Walker Lake is a monomictic, nitrogen-limited, terminal lake located in western Nevada. It is one of only eight large (Area>100 km2, Z { mean}>15 m) saline lakes of moderate salinity (3–20 g l–1) worldwide, and one of the few to support an endemic trout fishery (Oncorhynchus clarki henshawi). As a result of anthropogenic desiccation, between 1882 and 1996 the lake's volume has dropped from 11.1 to 2.7 km3 and salinity has increased from 2.6 to 12–13 g l–1. This study, conducted between 1992 and 1998, examined the effects of desiccation on the limnology of the lake. Increases in salinity over the past two decades caused the extinction of two zooplankton species, Ceriodaphnia quadrangula and Acanthocyclops vernalis. Recent increases in salinity have not negatively affected the lake's dominant phytoplankton species, the filamentous blue-green algae Nodularia spumigena. In 1994 high salinity levels (14–15 g l–1) caused a decrease in tui chub minnow populations, the main source of food for Lahontan cutthroat trout, and a subsequent decrease in the health of stocked trout. Lake shrinkage has resulted in hypolimnetic anoxia and hypolimnetic accumulation of ammonia (800–2000 g-N l–1) and sulfide (15 mg l–1) to levels toxic to trout. Internal loading of ammonia via hypolimnetic entrainment during summer wind mixing (170 Mg-N during a single event), vertical diffusion (225–500 Mg-N year–1), and fall destratification (540–740 Mg-N year–1) exceeds external nitrogen loading (<25 Mg-N year–1). Increasing salinity in combination with factors related to hypolimnetic anoxia have stressed trout populations and caused a decline in trout size and longevity. If desiccation continues unabated, the lake will be too saline (>15–16 g l–1) to support trout and chub fisheries in 20 years, and in 50–60 years the lake will reach hydrologic equilibrium at a volume of 1.0 km3 and a salinity of 34 g l–1.  相似文献   

12.
Yasuo Tanaka 《Hydrobiologia》1991,220(2):119-129
Microbial colonization and its relation to the decomposition of reed (Phragmites communis) leaf litter were studied in the littoral area of a saline lake from autumn to summer using litter bag method. There was considerable fungal population on the leaves at the beginning of submergence. These fungi were probably terrestrial in origin. The fungal population rapidly disappeared few days after submergence, when bacteria, including cellulolytic and xylanolytic types, proliferated. Associated with this rapid colonization of bacteria, decomposition rates of cellulose and xylan increased. The rates declined from day 39 to day 100 with decreasing water temperature, though cellulolytic and xylanolytic bacteria maintained a sizeable population until day 150. A community of cellulolytic and xylanolytic fungi increased steeply after day 150. It coincided with a second increase in decomposition rate. These results suggest that the principal decomposers of reed leaf litter were bacteria in the initial phase and fungi in the later phase of the experiment.  相似文献   

13.
The distributions of the fish species were examined in relation to environmental variables, to evaluate the effects of environmental degradation on the fish community of Batata Lake, a typical Amazonian clearwater lake. From 1979 to 1989, tailings composed of water and clay, extracted from bauxite by water jets, were discharged into Batata Lake. The tailings spread into about 30% of the lake’s area, where the level of the lake bottom rose and turbidity increased. In the present study, multivariate analyses were performed on data for environmental parameters and fish density and biomass. Fish were collected with gillnets during the annual hydrological cycle (filling, flood, drawdown and dry periods), in the silted area, the partly silted area (intermediate) and the natural area. Values of the Shannon index, density and biomass were compared among areas and periods to evaluate the effects of the tailings on community structure. Sediment resuspension, which reduces transparency, is accentuated in shallow water, and was the main factor regulating differences in the community structure between the natural and silted areas. The decrease in transparency occurs mainly during the filling period in the silted area and during the low-water period in the silted and intermediate areas, when sediment resuspension increases concentrations of nutrients and chlorophyll-a. The strong influence of migratory and piscivore species in low-transparency waters is likely associated with the greater bacterioplankton productivity and turnover rate observed by other authors in the silted area, increasing the importance of the heterotrophic food chain in Batata Lake. Reduction of transparency in the silted area was a selective factor for fish species. The death of part of the flooded forest vegetation was decisive in lowering densities of the igapó-associated species in the silted area. The unconsolidated substrate, the death of part of the igapó forest and the negative effects of low transparency – inhibiting resident visually oriented species in the affected areas – are the main factors causing the low diversity in the silted area as a whole. The correlations between CPUEs, conductivity and nutrients and chlorophyll-a concentrations do not appear to reflect cause–effect relationships, indicating that these environmental parameters are poor predictors of fish density in Batata Lake.  相似文献   

14.
The phytoplankton community of Lake Camaleão, a smallfloodplainlake influenced by a large whitewater river, the Solimões, was monthlyinvestigated for the composition and abundance of itsphytoplankton. The seasonal influence of the floodregime on biomass, species richness and diversity, andits relation with physical and chemical factors(temperature, pH, dissolved oxygen, electricalconductivity, total seston and inorganic nutrients)was analyzed and subjected to principal componentanalysis. Diversity was variable along the seasonalcycle: relatively high values were observed at the endof the dry season supported by high nutrientconcentrations. The phytoplankton was comprised of 262 taxa,with strong dominanceof euglenoids (81%). The three sample stations did not differamong each other, except in the dry season, due todata cluster in relation to theprincipal axis (1 and 2), explaining 63% of thevariation. Biomass accumulation as a function of lakearea reduction contributed to theseresults, indicating that the phytoplankton dynamicswere hydrology-driven.  相似文献   

15.
The population behavior of Daphnia gessneri Herbst, 1967 in a floodplain lake (Lago Grande) of the lower Rio Solimões was investigated between April 1979 and March 1980 with regard to 1) predation by the fish called tambaqui (Colossoma macropomum, Characidae), 2) water level fluctuation and 3) water transparency. Zooplankton density samples were collected at two sites near mid-lake, where water depth and Secchi disc transparency were measured. In addition, qualitative samples of zooplankton and fish collections were taken at several sites in the adjacent floodplain areas. The author concludes that fluctuations in Daphnia gessneri populations correlate most with intense predation by fish and water turbidity.  相似文献   

16.
There is increasing evidence that nitrogen limitation is of widespread occurrence in tropical lakes. Nonetheless, data on the deep tropical Lake Alchichica (Mexico) show that dissolved inorganic nitrogen (DIN) to soluble reactive phosphorus (SRP) ratio fluctuates widely. To elucidate further the role of nitrogen and phosphorus limitation on the phytoplankton growth in tropical saline lakes, we present the results of a series of nutrient enrichment experiments with natural assemblages of Lake Alchichica phytoplankton conducted monthly for a year. Our assays indicate that phosphorus and nitrogen alternate in limiting Lake Alchichica phytoplankton biomass. Phosphorous limited phytoplankton growth most (41.7%) of the time, followed by nitrogen (33.3% of the time), and both nutrients for the rest of the time (25.0%). This alternation in nitrogen and phosphorus responsible for phytoplankton growth limitation in Lake Alchichica is attributed to the combination of natural conditions (e.g., young volcanic terrain rich in phosphorus) that would favor nitrogen limitation and anthropogenic impacts (e.g., agricultural nitrogen fertilization) which would cause phosphorus limitation. Guest Editors: J. John & B. Timms Salt Lake Research: Biodiversity and Conservation—Selected papers from the 9th Conference of the International Society for Salt Lake Research  相似文献   

17.
Caecidotea williamsi Escobar-Briones & Alcocer (2002) is the first asellid described from a saline aquatic habitat in America, Alchichica crater-lake, Puebla, Central Mexico. No previous reports exist for asellid isopods from inland saline waters in America in spite of the extensive research undertaken so far on the continent. Differing from other asellids, C. williamsi inhabits saline waters (i.e. 8.5 g l−1) dominated by sodium, magnesium, chloride, and bicarbonate ions and markedly alkaline (pH 9.0 ± 0.1). Water temperature ranges from 14.5°C throughout the water column in winter and in the deep waters for the rest of the year, up to 20°C in the surface waters in summer. C. williamsi occurs in a depth range of surface to 30 m (lake’s maximum depth is 64 m), below which an anoxic layer is found during 9 months of the year. Generally it lives cryptically in tufa crevices and at shallower depths many inhabit empty trichopteran cases embedded within the tufa crevices. Some specimens are heavily covered by epizooic ciliates on the thoracic and abdominal segments of the exoskeleton and the pleopods. Data are presented on the diet, possible predators, saprobity and trophism, and regional distribution of C. williamsi. The continued survival of this unique isopod is threatened by anthropogenic desiccation of its habitat. Guest Editor: John M. Melack Saline Water and their Biota  相似文献   

18.
A simple technique, based on several published studies, is presented to estimate photosynthetically available radiation (PAR: 400–700 nm) at the air/water and ice/water interfaces on freshwater lakes. Grand Traverse Bay of Lake Michigan of the Laurentian Great Lakes before, during, and after ice cover is used as a case study. The technique depends on assigning PAR transmittances to air/water or air/ice surfaces from empirically determined relationships. During ice cover, PAR reaching the water column under the ice exceeded 45% of incoming PAR, on the average, due to the amount of clear ice present on the bay.  相似文献   

19.
The annual variation of the phytoplankton assemblage of deep (64.6 m), hyposaline (8.5 g l–1) Lake Alchichica, central Mexico (19 ° N, 97° W), was analyzed in relation to thermal regime, and nutrients concentrations. Lake Alchichica is warm monomictic with a 3-month circulation period during the dry, cold season. During the stratified period in the warm, wet season, the hypolimnion became anoxic. N–NH3 ranged between non detectable (n.d.) and 0.98 mg l–1, N–NO2 between n.d. and 0.007 mg l–1, N–NO3 from 0.1 to 1.0 mg l–1 and P–PO4 from n.d. to 0.54 mg l–1. Highest nutrient concentrations were found in the circulation period. Chlorophyll a varied from <1 to 19.8 g l–1 but most values were <5 g l–1. The euphotic zone (>1% PAR) usually comprised the top 15–20 m. Nineteen algae species were identified, most of them are typical inhabitants of salt lakes. Diatoms showed the highest species number (10) but the small chlorophyte Monoraphidium minutum, the single-cell cyanobacteria, Synechocystis aquatilis, and the colonial chlorophyte, Oocystis parva, were the numerical dominant species over the annual cycle. Chlorophytes, small cyanobacteria and diatoms dominated in the circulation period producing a bloom comparable to the spring bloom in temperate lakes. At the end of the circulation and at the beginning of stratification periods, the presence of a bloom of the nitrogen-fixing cyanobacteria, N. spumigena, indicated nitrogen-deficit conditions. The well-stratified season was characterized by low epilimnetic nutrients levels and the dominance of small single-cell cyanobacteria and colonial chlorophytes. Phytoplankton dynamics in tropical Lake Alchichica is similar to the pattern observed in some deep, hyposaline, North American temperate lakes.  相似文献   

20.
1. We used high‐frequency in situ dissolved oxygen measurements to investigate the seasonal variability and factors regulating metabolism in a subtropical alpine lake in Taiwan between May 2004 and October 2005, specifically exploring how the typhoon season (from June or July to October) affects lake metabolism. 2. Gross primary production (GPP) and ecosystem respiration (R) both peaked in early summer and mid‐autumn but dropped during the typhoon season and winter. Yuan‐Yang Lake is a net heterotrophic ecosystem (annual mean net ecosystem production ?39.6 μmole O2 m?3). 3. Compared to the summer peaks, seasonal averages of GPP and R decreased by approximately 50% and 25%, respectively, during the typhoon season. Ecosystem respiration was more resistant to external disturbances than GPP and showed strong daily variation during typhoon seasons. 4. Changes in the quality and quantity of dissolved organic carbon controlled the temporal dynamics and metabolic regulation. External disturbances (typhoons) caused increased allochthony, increasing DOC and water colour and influencing lake metabolism. 5. Seasonal winter mixing and typhoon‐induced water mixing in summer and autumn play a key role in determining the extent to which the lake is a seasonal carbon sink or source to the atmosphere.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号