首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The plasma of the crayfish Pacifastacus leniusculus contains a protein which is able to bind to laminarin (a soluble beta-1,3-glucan) and which has been isolated by two independent methods, affinity precipitation with a beta-1,3-glucan or immunoaffinity chromatography. The purified beta-1,3-glucan binding protein was homogenous as judged by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. It is a monomeric glycoprotein with a molecular mass of approximately 100,000 Da and an isoelectric point of approximately 5.0. Amino acid analysis showed a very high similarity with the amino acid composition of beta-1,3-glucan binding proteins recently purified from two insects, the cockroach Blaberus craniifer and the silkworm Bombyx mori. The N-terminal amino acid sequence was determined to be: H2N-Asp-Ala-Gly-X-Ala-Ser-Leu-Val-Thr-Asn-Phe-Asn-Ser-Ala-Lys-Leu-X-X-Ly s--- Using monospecific rabbit polyclonal antibodies, the presence of this protein has also been shown within the blood cells. The purified beta-1,3-glucan binding protein did not show any peptidase or phenoloxidase activity but was able to enhance the activation of hemocyte-derived peptidase and prophenoloxidase only in the presence of the beta-1,3-glucan, laminarin, whereas mannan, dextran (alpha-glucan), or cellulose (beta-1,4-glucan) incubated with the beta-1,3-glucan binding protein had no effect on these enzyme activities. The beta-1,3-glucan binding protein could only be affinity-precipitated from crayfish plasma by the beta-1,3-glucans laminarin or curdlan (an insoluble beta-1,3-glucan), while mannan or dextran did not bind to the beta-1,3-glucan binding protein. No hemagglutinating activity of the purified beta-1,3-glucan binding protein could be detected.  相似文献   

2.
《Insect Biochemistry》1991,21(4):363-373
A prophenoloxidase was purified from blood cells of the crayfish Pacifastacus leniusculus. The purified proenzyme was homogeneous on sodium dodecyl sulfate polyacrylamide gel electrophoresis, and had a molecular mass of 76 kDa under both non-reducing and reducing conditions. The crayfish prophenoloxidase was a glycoprotein, with an isoelectric point of about 5.4.A 36 kDa serine proteinase, isolated and purified from crayfish blood cells (Aspán et al., 1990b, Insect Biochem.20, 709–718), could convert the 76 kDa prophenoloxidase to phenoloxidase by an apparent proteolytic cleavage, since the molecular masses of two active enzymes, phenoloxidases, were 60 and 62 kDa. A commercial serine proteinase, trypsin, activated prophenoloxidase to phenoloxidase, and as a result a 60 kDa protein was produced.In the blood cells of crayfish four serine proteinases or 3H-DFP binding proteins are present, with masses of 36, 38, 50 and 67 kDa. However, 3H-DFP labelling of proteins in blood cells lysate, prepared in its inactive form, only yielded labelled bands of 50 and 67 kDa, whereas addition of an elicitor to prophenoloxidase system activation, a β-1,3-glucan, resulted in the appearance of four 3H-DFP labelled proteins, with molecular masses of 67, 50, 38 and 36 kDa, respectively. Thus, the 36 kDa endogenous serine proteinase, the prophenoloxidase activating enzyme, ppA, may be present as an inactive precursor in crayfish blood cells. The 38 and 36 kDa proteinases could both cleave the chromogenic peptide S-2337 [Bz-Ile-Glu-(γ-O-Piperidyl)-Gly-Arg-p-nitroaniline], and specifically bind prophenoloxidase.These results show that crayfish prophenoloxidase, the terminal enzyme of the prophenoloxidase activating cascade, a proposed defence pathway in arthropod blood, can be converted to active enzyme by an apparent proteolytic cleavage, not only by a commercial proteinase, but also by an endogenous serine type proteinase.  相似文献   

3.
Invertebrates, like vertebrates, utilize pattern recognition proteins for detection of microbes and subsequent activation of innate immune responses. We report structural and functional properties of two domains from a beta-1,3-glucan recognition protein present in the hemolymph of a pyralid moth, Plodia interpunctella. A recombinant protein corresponding to the first 181 amino-terminal residues bound to beta-1,3-glucan, lipopolysaccharide, and lipoteichoic acid, polysaccharides found on cell surfaces of microorganisms, and also activated the prophenoloxidase-activating system, an immune response pathway in insects. The amino-terminal domain consists primarily of an alpha-helical secondary structure with a minor beta-structure. This domain was thermally stable and resisted proteolytic degradation. The 290 residue carboxyl-terminal domain, which is similar in sequence to glucanases, had less affinity for the polysaccharides, did not activate the prophenoloxidase cascade, had a more complicated CD spectrum, and was heat-labile and susceptible to proteinase digestion. The carboxyl-terminal domain bound to laminarin, a beta-1,3-glucan with beta-1,6 branches, but not to curdlan, a beta-1,3-glucan that lacks branching. These results indicate that the two domains of Plodia beta-1,3-glucan recognition protein, separated by a putative linker region, bind microbial polysaccharides with differing specificities and that the amino-terminal domain, which is unique to this class of pattern recognition receptors from invertebrates, is responsible for stimulating prophenoloxidase activation.  相似文献   

4.
Coelomic fluid of Eisenia foetida earthworms (Oligochaeta, Annelida) contains a 42-kDa defense molecule named CCF for coelomic cytolytic factor. By binding microbial antigens, namely the O-antigen of lipopolysaccharide (LPS), beta-1,3-glucans, or N,N'-diacetylchitobiose present, respectively, on Gram-negative bacteria or yeast cell walls, CCF triggers the prophenoloxidase activating pathway. We report that CCF recognizes lysozyme-predigested Gram-positive bacteria or the peptidoglycan constituent muramyl dipeptide as well as muramic acid. To identify the pattern recognition domains of CCF, deletion mutants were tested for their ability to reconstitute the prophenoloxidase cascade in E. foetida coelomic fluid depleted of endogenous CCF in the presence of LPS, beta-1,3-glucans, N,N'-diacetylchitobiose, and muramic acid. In addition, affinity chromatography of CCF peptides was performed on immobilized beta-1,3-glucans or N,N'-diacetylchitobiose. We found that the broad specificity of CCF for pathogen-associated molecular patterns results from the presence of two distinct pattern recognition domains. One domain, which shows homology with the polysaccharide and glucanase motifs of beta-1,3-glucanases and invertebrate defense molecules located in the central part of the CCF polypeptide chain, interacts with LPS and beta-1,3-glucans. The C-terminal tryptophan-rich domain mediates interactions of CCF with N,N'-diacetylchitobiose and muramic acid. These data provide evidence for the presence of spatially distinct carbohydrate recognition domains within this invertebrate defense molecule.  相似文献   

5.
A lipopolysaccharide- and beta-1,3-glucan-binding protein (LGBP) was isolated and characterized from blood cells (hemocytes) of the freshwater crayfish Pacifastacus leniusculus. The LGBP was purified by chromatography on Blue-Sepharose and phenyl-Sepharose, followed by Sephacryl S-200. The LGBP has a molecular mass of 36 kDa and 40 kDa on 10% SDS-polyacrylamide gel electrophoresis under reducing and nonreducing conditions, respectively. The calculated mass of LGBP is 39,492 Da, which corresponds to the native size of LGBP; the estimated pI of the mature LGBP is 5.80. LGBP has binding activity to lipopolysaccharides as well as to beta-1,3-glucans such as laminarin and curdlan, but peptidoglycan could not bind to LGBP. Cloning and sequencing of LGBP showed significant homology with several putative Gram-negative bacteria-binding proteins and beta-1, 3-glucanases. Interestingly, LGBP also has a structure and functions similar to those of the coelomic cytolytic factor-1, a lipopolysaccharide- and glucan-binding protein from the earthworm Eisenia foetida. To evaluate the involvement of LGBP in the prophenoloxidase (proPO) activating system, a polyclonal antibody against LGBP was made and used for the inhibition of phenoloxidase (PO) activity triggered by the beta-1,3-glucan laminarin in the hemocyte lysate of crayfish. The PO activity was blocked completely by the anti-LGBP antibody. Moreover, the PO activity could be recovered by the addition of purified LGBP. These results suggest that the 36-kDa LGBP plays a role in the activation of the proPO activating system in crayfish and thus seems to play an important role in the innate immune system of crayfish.  相似文献   

6.
Phenoloxidase in the hemolymph of Sarcophaga bullata larvae is present as an inactive proenzyme form. Localization studies indicate that the majority of the prophenoloxidase is present in the plasma fraction whereas only a minor fraction (about 4%) is present in the cellular compartments (hemocytes). Inactive prophenoloxidase can be activated by zymosan, not by either endotoxin or laminarin. This activation process is inhibited by the serine protease inhibitors, benzamidine and p-nitrophenyl-p~-guanidobenzoate. Exogenously added proteases, such as chymotrypsin and subtilisin, also activated the prophenoloxidase in the whole hemolymph but failed to activate the partially purified proenzyme. However, an activating enzyme isolated from the larval cuticle, which exhibits trypsinlike specificity, activated the partially purified prophenoloxidase. Inhibition studies and activity measurements also revealed the presence of a similar activating enzyme in the hemolymph. Thus, the phenoloxidase system in Sarcophaga bullata larval hemolymph seems to be comprised of a cascade of reactions. An endogenous protease inhibitor isolated from the larvae inhibited chymotrypsin-mediated prophenoloxidase activation but failed to inhibit the cuticular activating enzyme-catalyzed activation. Based on these studies, the roles of prophenoloxidase, endogenous activating proteases, and protease inhibitor in insect immunity are discussed.  相似文献   

7.
Isolated granular haemocytes (blood cells) from the crayfish Pacifastacus leniusculus attached and spread in vitro on coverslips coated with a lysate of crayfish haemocytes. No cell adhesion activity was detected in crayfish plasma. The cell adhesion activity was only present in haemocyte lysates in which the prophenoloxidase (proPO) activating system (Soderhall and Smith, 1986a, b) had been activated; either by lipopolysaccharide (LPS), the beta-1,3-glucan laminarin, or by preparing the lysate in 5 mM Ca2+. Both lysates of granular or of semigranular haemocytes could mediate adhesion. After A23187-induced exocytosis of the granular cells, cell adhesion activity could be generated in the secreted material if it was incubated with laminarin. The factor responsible for cell adhesion was isolated from an active haemocyte lysate and purified by ammonium sulfate precipitation, cation exchange chromatography and Con A-Sepharose; it had a molecular mass of approximately 76 kD on an SDS-polyacrylamide gel. An antibody to this 76-kD band inhibited cell adhesion. Ca2+ was necessary in the medium for the cells to adhere to the adhesion factor. With cyanide or azide, the cells attached but failed to spread. It is suggested that in vivo the cell adhesion factor is stored in the secretory granules of the semigranular and the granular cells in a putative inactive pro-form, which can be released during exocytosis and, in the presence of beta- 1,3-glucans or LPS, be activated outside the cells to mediate cell attachment and spreading, processes of essential importance in arthropod host defense.  相似文献   

8.
Prophenoloxidase has been successfully obtained from the haemolymph of the cockroach Periplaneta americana using cane sugar saline solution. The proenzyme was activated by various exogenously added proteases such as chymotrypsin, trypsin, subtilisin and thermolysin. Thermolysin was found to be the greatest activator, followed by chymotrypsin and subtilisin. Chymotrypsin activation showed a lag period when compared with the other proteases tested, indicating that activation by chymotrypsin followed an indirect path, whereas, subtilisin and thermolysin activated the proenzyme directly.Exogenously added protease inhibitor showed inhibition towards protease-mediated prophenoloxidase activation. Benzamidine inhibited chymotrypsin and trypsin activation, whereas soybean trypsin inhibitor inhibited trypsin. In situ inhibitor isolated from the haemocytes of Periplaneta americana inhibited the prophenoloxidase activation and showed evidence for the presence of a built-in inhibition system for the release of the components of the prophenoloxidase activating system of P. americana. Electrophoretic localization of activated phenoloxidase showed two bands, suggesting the dimeric condition of high mol. wt prophenoloxidase.  相似文献   

9.
Experiments indicate that the prophenoloxidase activating system, which is responsible for melanin production, is also involved in immunorecognition in insects. Using haemocyte monolayer preparations of Blaberus craniifer, Galleria mellonella and Leucophae maderae, it was shown that laminarin, a β 1,3-glucan extracted from fungal cell walls and an activator of the prophenoloxidase system, enhanced the phagocytosis of test bacteria.Scanning electron microscopy of haemocyte monolayers showed that incubation of test bacteria with laminarin significantly increased the number of microorganisms attached to both the plasmatocytes and the granular cells. Furthermore with the granular cells, these bacteria became entrapped in an amorphous matrix. This material probably consists of the “sticky” proteins previously reported to be produced by crustacean haemocytes following prophenoloxidase activation. Pretreatment of haemocytes with laminarin abolished the stimulatory effect on ingestion, indicating that these “sticky” proteins are opsonic, since they would have been discharged from the haemocytes onto the glass monolayer leaving few molecules available for subsequent coating of the test particles.Preliminary biochemical studies on the G. mellonella prophenoloxidase system demonstrated that it was activated by trypsin, laminarin and laminarin G, a highly purified β 1,3-glucan, but not by dextran. Serine protease activities were also enhanced by adding laminarin to a haemocyte lysate supernatant, suggesting that the stimulatory mechanism may involve the proteolytic activity of such enzymes.  相似文献   

10.
Studies on prophenoloxidase activation in the mosquito Aedes aegypti L   总被引:5,自引:0,他引:5  
This study, the first of its kind in a mosquito vector species, demonstrates the feasibility of studying prophenoloxidase activation in an insect containing not more than a few microliters of hemolymph. Mosquito phenoloxidase was found to be in an inactive proenzyme form, prophenoloxidase. Mosquito prophenoloxidase required bivalent cation for its activation; Ca2+ was found to be the most efficient for activation. Concomitant amidase activity was also observed prior to phenoloxidase activity. Through Western blotting, using a cross-reactive silkworm antiprophenoloxidase antibody, our results strongly suggest that mosquito prophenoloxidase activation resulted from limited proteolysis. Protease inhibitor studies reinforced this contention showing the involvement of (a) serine protease(s) with trypsin-like activity in the activation of mosquito prophenoloxidase.  相似文献   

11.
12.
A beta-1,3-glucan binding protein (betaGBP) specific for laminarin (a beta-1,3-glucan) was detected for the first time in a mollusc, Perna viridis. betaGBP was isolated and purified from the plasma using laminarin precipitation and affinity chromatography on laminarin-Sepharose 6B, respectively. It agglutinated bakers yeast, bacteria, and erythrocytes and enhanced prophenoloxidase (proPO) activity of the plasma in a dose-dependent manner. The purified betaGBP appeared as a single band in native-PAGE and the purity was conformed by HPLC. The protein has a molecular weight estimate of 510kDa as determined by SDS-PAGE and in isoelectric focusing the purified betaGBP was focused as a single band at pI 5.3. betaGBP was found to possess inherent serine protease activity but lacked beta-1,3-glucanase activity and all these results suggest that plasma betaGBP of P. viridis functions as a recognition molecule for beta-1,3-glucan on the surface of microbial cell walls. This recognition and binding lead to the activation of the prophenoloxidase cascade mediated by the inherent serine protease activity of betaGBP. Presence of agglutinating activity and serine protease activity shows that betaGBP is a bifunctional protein. The findings are discussed in light of the importance of this protein in the innate immune response of P. viridis, and they implicate evolutionary link with similar proteins found in other invertebrates.  相似文献   

13.
Yeast exo-beta-1,3-glucanase gene (EXG1) was expressed in Escherichia coli and the recombinant enzyme (Exg1p) was characterized. The recombinant Exglp had an apparent molecular mass of 45 kDa by SDS-PAGE and the enzyme has a broad specificity for beta-1,3-linkages as well as beta-1,6-linkages, and also for other beta-glucosidic linked substrates, such as cellobiose and pNPG. Kinetic analyses indicate that the enzyme prefers small substrates such as laminaribiose, gentiobiose, and pNPG rather than polysaccharide substrates, such as laminaran or pustulan. With a high concentration of laminaribiose, the enzyme catalyzed transglucosidation forming laminarioligosaccharides. The enzyme was strongly inhibited with high concentrations of laminaran.  相似文献   

14.
Upon wounding or infection, a serine proteinase cascade in insect hemolymph leads to prophenoloxidase (proPO) activation and melanization, a defense response against invading microbes. In the tobacco hornworm Manduca sexta, this response is initiated via hemolymph proteinase 14 (HP14), a mosaic protein that interacts with bacterial peptidoglycan or fungal beta-1,3-glucan to autoactivate. In this paper, we report the expression, purification, and functional analysis of M. sexta HP21 precursor, an HP14 substrate similar to Drosophila snake. The recombinant proHP21 is a 51.1 kDa glycoprotein with an amino-terminal clip domain, a linker region, and a carboxyl-terminal serine proteinase domain. HP14, generated by incubating proHP14 with beta-1,3-glucan and beta-1,3-glucan recognition protein-2, activated proHP21 by limited proteolysis between Leu(152) and Ile(153). Active HP21 formed an SDS-stable complex with M. sexta serpin-4, a physiological regulator of the proPO activation system. We determined the P1 site of serpin-4 to be Arg(355) and, thus, confirmed our prediction that HP21 has trypsin-like specificity. After active HP21 was added to the plasma, there was a major increase in PO activity. HP21 cleaved proPO activating proteinase-2 precursor (proPAP-2) after Lys(153) and generated an amidase activity, which activated proPO in the presence of serine proteinase homolog-1 and 2. In summary, we have discovered and reconstituted a branch of the proPO activation cascade in vitro: beta-1,3-glucan recognition--proHP14 autoactivation--proHP21 cleavage--PAP-2 generation--proPO activation--melanin formation.  相似文献   

15.
At least three extracellular laminaran hydrolases which hydrolyzed laminaran (beta-1,3:1,6-glucan) from Eisenia bicyclis were secreted in wheat bran solid medium by Trichoderma viride U-1. These three enzymes, lam AI, AII, and B, were purified to electrophoretic homogeneity. Their molecular masses were estimated to be 70.1, 70.4, and 45.0 kDa for lam AI, AII, and B, respectively, by SDS-PAGE. Whereas both lam AI and AII could hydrolyze laminarin from Laminaria digitata, lam AII showed higher activity against Laminaria laminarin rather than Eisenia laminaran. On the other hand, lam B preferentially hydrolyzed pustulan, a beta-1,6-glucan. Laminarioligosaccharide was hydrolyzed by lam AI and AII but not B, whereas gentiooligosaccharide was hydrolyzed by only lam B. It showed that lam AI and AII were specific for beta-1,3-linkages, but lam B was specific for beta-1,6-linkages. These results indicated that T. viride U-1 has a multiple glucanolytic enzyme system.  相似文献   

16.
Summary Lipopolysaccharides (LPS) and the -1,3-glucan laminarin G, both of which specifically activate the prophenoloxidase (proPO) activating system of crayfish haemocyte lysate, were found to induce degranulation (exocytosis) and subsequent lysis in vitro of monolayers of semigranular haemocytes from the crayfish,Pacifastacus leniusculus, (Table 1, Fig. 1 b), whereas the granular cells were unaffected (Fig. 1 c).Exocytosis of isolated semigranular or granular cells in vitro could also be evoked by the Ca2 ionophore A23187 (Table 2, Fig. 1 d). In this case, the whole proPO system was released from the cellular vesicles in its inactive form, since the secreted material contained protease and prophenoloxidase as inactive proenzymes, which could be activated if LPS or -1,3-glucans were added (Table 3). The anion channel blocker SITS, which inhibits exocytosis in several systems, prevented degranulation triggered by -1,3-glucan, LPS, or ionophore.It is concluded that, in arthropods, LPS serve as an indicator of Gram negative bacteria and -1,3-glucan as an indicator of fungi. These non-self molecules elicit both the exocytotic release of the proPO system from the semigranular cells and the subsequent biochemical activation of this system.Abbreviations CFS crayfish saline - DMSO dimethyl sulfoxide - LDH lactate dehydrogenase - LPS lipopolysaccharide - proPO prophenoloxidase - SITS 4-acetamido-4-isothiocyanato-stilbene-2,2-disulfonic acid, disodium salt  相似文献   

17.
The phenoloxidase system, which is involved in encapsulation and melanization of foreign objects in crustacean, is found to be present in an inactive proenzyme form in the hemocytes of the lobster, Homarus americanas. Activation of the enzyme could be achieved either by treatment with an anionic detergent such as sodium dodecyl sulfate, or by a cationic detergent such as cetylpyridinium chloride, but not by either nonionic detergent or zwitterionic detergent. In addition, a number of fatty acids also activated the proenzyme. However, phospholipids, especially lysolecithin proved to be the most potent activator of prophenoloxidase. Therefore, it is proposed that apart from the well established proteolytic mode of activation, prophenoloxidase can also be activated by this alternative mode involving lipids.  相似文献   

18.
19.
Antitumor mAb bind to tumors and activate complement, coating tumors with iC3b. Intravenously administered yeast beta-1,3;1,6-glucan functions as an adjuvant for antitumor mAb by priming the inactivated C3b (iC3b) receptors (CR3; CD11b/CD18) of circulating granulocytes, enabling CR3 to trigger cytotoxicity of iC3b-coated tumors. Recent data indicated that barley beta-1,3;1,4-glucan given orally similarly potentiated the activity of antitumor mAb, leading to enhanced tumor regression and survival. This investigation showed that orally administered yeast beta-1,3;1,6-glucan functioned similarly to barley beta-1,3;1,4-glucan with antitumor mAb. With both oral beta-1,3-glucans, a requirement for iC3b on tumors and CR3 on granulocytes was confirmed by demonstrating therapeutic failures in mice deficient in C3 or CR3. Barley and yeast beta-1,3-glucan were labeled with fluorescein to track their oral uptake and processing in vivo. Orally administered beta-1,3-glucans were taken up by macrophages that transported them to spleen, lymph nodes, and bone marrow. Within the bone marrow, the macrophages degraded the large beta-1,3-glucans into smaller soluble beta-1,3-glucan fragments that were taken up by the CR3 of marginated granulocytes. These granulocytes with CR3-bound beta-1,3-glucan-fluorescein were shown to kill iC3b-opsonized tumor cells following their recruitment to a site of complement activation resembling a tumor coated with mAb.  相似文献   

20.
A B Boraston  R A Warren  D G Kilburn 《Biochemistry》2001,40(48):14679-14685
The C-terminal 155 amino acids of the putative laminarinase, Lam16A, from T. maritima comprise a highly thermostable family 4 CBM that binds beta-1,3- and beta-(1,3)(1,4)-glucans. Laminarin, a beta-1,3-glucan, presented two classes of binding sites for TmCBM4-2, one with a very high affinity (3.5 x 10(7) M(-1)) and one with a 100-fold lower affinity (2.4 x 10(5) M(-1)). The affinities for laminarioligosaccharides and beta-(1,3)(1,4)-glucans ranged from approximately 2 x 10(5) to approximately 2.5 x 10(6) M(-1). Cellooligosaccharides and laminariobiose were bound only very weakly (K(a)s approximately 5 x 10(3) M(-1)). Spectroscopic and mutagenic studies implicated the involvement of three tryptophan residues (W28, W58, and W99) and one tyrosine residue (Y23) in ligand binding. Binding was enthalpically driven and associated with large negative changes in heat capacity. Temperature and osmotic conditions profoundly influenced binding. For the first time in solution, the direct uptake and release of water in CBM binding are demonstrated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号