首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Previous studies have shown that certain peptides of the secretin-glucagon family stimulate tyrosine hydroxylase activity in sympathetic neurons of the superior cervical ganglion and three of its end organs, i.e., the iris, pineal gland, and submaxillary gland. To determine whether a similar regulation occurs in other sympathetic neurons, the effects of two of these peptides, secretin and vasoactive intestinal peptide, were examined in the right cardiac ventricle of the rat, a tissue innervated primarily by the middle and inferior cervical ganglia. Both peptides stimulated tyrosine hydroxylase activity, measured in situ, in this tissue. In addition, several second messenger systems were investigated as possible mediators of this peptidergic stimulation of tyrosine hydroxylase activity in autonomic end organs. 8-Bromoadenosine 3',5'-cyclic monophosphate and forskolin elevated tyrosine hydroxylase activity in slices of both the right ventricle and the submaxillary gland. 8-Bromoguanosine 3',5'-cyclic monophosphate also stimulated tyrosine hydroxylase activity in both tissues, whereas nitroprusside stimulated activity only in the submaxillary slices. Furthermore, the phosphodiesterase inhibitors 3-isobutyl-1-methylxanthine and/or Ro 20-1724 potentiated the stimulation by secretin, as well as the stimulations by forskolin and nitroprusside. Phorbol 12,13-dibutyrate also stimulated tyrosine hydroxylase activity in cardiac and submaxillary slices; however, no potentiation of these effects was seen following addition of either phosphodiesterase inhibitor. These data, taken together with those of previous studies, suggest a role for a cyclic nucleotide, probably adenosine 3',5'-cyclic monophosphate, in the peptidergic stimulation of tyrosine hydroxylase activity in sympathetic nerve terminals.  相似文献   

2.
Neuroanatomy of morphine-modulating peptides   总被引:2,自引:0,他引:2  
Antisera against two mammalian peptides related to the molluscan cardioexcitatory peptide Phe-Met-Arg-Phe-NH2 were used to locate immunoreactive neurons in the rat brain, nerve fibres and terminals in the spinal cord, sympathetic ganglion cells and adrenal chromaffin cells. Immunoreactivity for the newly characterised octa- and octadecapeptide was detected in nerve cell bodies in the hypothalamic area, including parts of the dorsomedial, periventricular and paraventricular nuclei, and in the nucleus tractus solitarii. Nerve terminals in the superficial laminae of the spinal cord were also immunoreactive for these peptides, while the sensory ganglia were nonreactive. Some principal ganglion cells in the superior cervical ganglia exhibited bright immunofluorescence for the peptides, and a few adrenal medullary cells were immunoreactive. The presence of these peptides in the substantia gelatinosa of the spinal cord suggests that they may be involved in sensory neurotransmission, especially in the mechanisms mediating pain. In the hypothalamo-hypophysial system these peptides may be involved in the regulation of hormonal systems. They may also act as co-transmitters in the sympathetic nervous system.  相似文献   

3.
Localization and development of chick heart peptidergic innervation (Substance P, VIP and Somatostatin) were investigated by means of immunofluorescence technique. The peptidergic component of the heart innervation was observed, for the first time, in older than 11 day chick embryos, i.e., subsequently to the appearance of the cholinergic component. The peptidergic structures achieve nearly full development in about 16-17 day embryos. Substance P is the most represented of the three peptides. It is localized both in nerve bundle fibers and in isolated fibers within the myocardium, the pericardium, the vessel walls; it is also present in fibers of some heart base ganglia. VIP is mostly contained in some thick single fibers travelling along the vessel walls of the heart base, the myocardium and the pericardium. Some VIP immunoreactive cells were also observed in the base ganglia. Somatostatin is mostly contained in some ganglia cells, whilst thin Somatostatin-immunoreactive fibers form a rich plexus among the atrial and ventricular myofibers, without contacting the vessel walls.  相似文献   

4.
Immunocytochemical studies habe shown that many peptides which profoundly affect the endocrine and exocrine functions of the pancreas are localized to neurons. In the cat, such peptidergic nerves appear to innervate ganglia, islets and blood vessels of the pancreas, whereas their contributions to exocrine cells are minor. Our studies suggest that pancreatic ganglia represent one major site of action of the peptides and that, in addition, nerves containing the vasoactive intestinal polypeptide and gastrin/CCK-related peptides profoundly affect pancreatic blood flow and insulin secretion, respectively.  相似文献   

5.
J Fontaine-Perus 《Peptides》1984,5(2):195-200
The distribution of the VIP containing structures was studied in the gut and in the paravertebral sympathetic ganglia of the quail and chick embryos by immunocytochemistry. In the gut, development of peptidergic nerves followed a craniocaudal gradient. Immunoreactive fibres were first visible in the oesophagus at day 9 in the quail and day 10 in the chick, at 12 days they extended over the whole length of the gut. Cell bodies were localized at day 9 in the foregut and observed in the mid- and hind-gut just before hatching. Transplantations on the chorioallantoic membrane of fragments of various parts of the digestive tract clearly demonstrated that VIP nerve cell bodies belonged to the intrinsic innervation of the gut. Besides the gut, sympathetic paravertebral ganglia contained cells with VIP immunoreactivity detected at day 9 and 10 in quail and chick respectively. In order to find out whether VIP containing neurons differentiated normally in chick embryos in which quail neural crest cells had been implanted at an early stage of development we looked for the appearance of peptidergic neurones in the following situations: when the quail neural primordium had been grafted orthotopically and isochronically into chick host (1) at the adrenomedullary (somites 18-24) and (2) at the vagal (somites 1-7) levels of the neural axis. In all conditions VIP immunoreactivity was observed in quail cells located either in the sympathetic paravertebral ganglia of the trunk at the level of the graft or in the enteric ganglia according to the graft was made at the adrenomedullary and vagal levels respectively.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
The distribution of—still chemically undefined—peptide epitopes in subclasses of peptidergic neurons in the Colorado potato beetle, Leptinotarsa decemlineata (Coleoptera : Chrysomelidae) was studied in preparation for peptide isolation by immunological methods. Two monoclonal antibodies, MAC-13 and MAC-3, were selected for their capacity to reveal selected neuron populations by immunohistochemical methods. They partially mimic the immunostaining pattern of a polyclonal anti-FMRFamide antiserum. Immunoreactive neurons, containing FMRFamide-related antigens, were demonstrated with high specificity in the CNS as well as in the visceral and peripheral nervous system. Their total number is large, compared with other subclasses of peptidergic neurons, approximately 230 (peripheral neurons not included). Axons of these neurons run either to the corpora cardiaca for release of peptides into the bloodstream, or to distant target organs, such as the digestive tract, reproductive organs, and somatic muscles. Large, isolated peripheral neurons occur in the vicinity of the ventral nerve cord and release products through terminals located in or on the sheath of nerves emanating from the thoracic ganglia. Different antigens may be colocalized in neuron subclass-specific combinations and then always in the same secretory granules. These observations make clear that groups of peptidergic neurons, considered earlier as a homogeneous population, are much more diversified than hitherto suspected. We may anticipate the occurrence, in subsequent isolation procedures, of at least 3 classes of FMRFamide-related peptides. Compartments in the central nervous system containing high concentrations of single or mixed antigens have been identified.  相似文献   

7.
Y N Jan  L Y Jan 《Federation proceedings》1983,42(12):2929-2933
Both acetylcholine (ACh) and a peptide that resembles luteinizing hormone-releasing hormone (LHRH) serve as transmitters in sympathetic ganglia of the bullfrog. Although ACh is contained and released from both preganglionic B fibers, which form synaptic contacts with only B cells in the ganglia, and preganglionic C fibers, which are in synaptic contact with C cells only, the LHRH-like peptide is contained and released exclusively from preganglionic C fibers. The same preganglionic C fibers appear to supply both ACh and the LHRH-like peptide because the thresholds for the cholinergic fast excitatory postsynaptic potential (EPSP) correlate well with the thresholds for the peptidergic late slow EPSP recorded in the same C cell. Further, anatomical studies showed that almost all nerve terminals on C cells contained the LHRH-like peptide. Some of these same terminals must also contain and release. ACh, mediating the cholinergic fast EPSPs with millisecond synaptic delays. Therefore at least some, if not all, terminals of preganglionic C fibers contain and release both cholinergic and peptidergic transmitters.  相似文献   

8.
Summary In colchicine-pretreated cells of sympathetic ganglia, intensely NPY-immunoreactive material was localized within vacuoles and vesicles of the disorganized, widely dispersed Golgi apparatus. Intensely positive large granular vesicles, which are known to be one of major storage sites of various peptides in the autonomic nerve endings, were essentially unobserved in the perikaryal cytoplasm. The present finding provides evidence that one pool of NPY-like immunoreactivity is localized in the Golgi apparatus of colchicine-pretreated as well as normal sympathetic ganglion cells. It is also clear that visualization of NPY-immunoreactive somata by colchicine-pretreatment in the sympathetic ganglia is due to the accumulation of the neuropeptide in the disorganized Golgi stacks instead of increased amount of the large granular vesicles containing NPY.  相似文献   

9.
The distribution of galanin (Gal) in sympathetic vascular neurons of adult and juvenile brush-tailed possums (Trichosurus vulpecula), was examined using double-labelling immunohistochemistry. This was compared with the distribution of neuropeptide Y (NPY) in the same tissues. Immunoreactivity (IR) to galanin was present in the majority (64-99%) of nerve cell bodies in paravertebral sympathetic ganglia, where it mostly co-existed with IR to the catecholamine-synthesizing enzyme, tyrosine hydroxylase (TH). Gal-IR also was present in most, if not all, TH-IR perivascular axons supplying systemic arteries and veins. NPY-IR was less common than Gal-IR in all sympathetic ganglia and perivascular axons examined. Some sympathetic, TH-IR axons supplying the abdominal aorta and renal artery contained both Gal-IR and NPY-IR, while TH-IR axons supplying cephalic and thoracic vessels contained Gal-IR but not NPY-IR. Limited observations on sympathetic neurons in two species of wallabies indicated that Gal-IR also was more common than NPY-IR in other marsupial species, but the incidence of NPY-IR was higher in these wallabies than in the brush-tailed possum. Together with previous studies, this work suggests that the coexistence of galanin and NPY may be the primitive condition for sympathetic neurons in tetrapods. The differential expression of these peptides in specific populations of sympathetic neurons may have important functional consequences in the autonomic control of the circulation.  相似文献   

10.
Histochemistry and function of bombesin-like peptides   总被引:1,自引:0,他引:1  
P Panula 《Medical biology》1986,64(4):177-192
Bombesin-like peptides are a group of brain-gut peptides found in several neuronal groups in the central nervous system and in peripheral intrinsic gut neurons and sensory neurons. The SIF cells (small intensely fluorescent cells) of the sympathetic ganglia also contain immunoreactivity for these peptides. These peptides are present in some pulmonary endocrine cells and tumors originating from these cells. Chromatographic studies suggest that several different peptides, possibly originating from at least two different precursors, are present in mammalian tissues. Authentic amphibian peptide bombesin does not appear to be found in mammalian tissues. Functional studies indicate that these peptides may be involved in many important functions, including sensory transmission, regulation of central autonomic pathways, thermoregulation, secretion of pituitary hormones, gastric and pancreatic secretion, food intake and satiety.  相似文献   

11.
The possibility that proteins reaching the abdominal ganglion of Aplysia by axonal transport from the circumesophageal ganglia might be subject to secretion in that structure was examined. Transported labeled protein was found to be released from the abdominal ganglion; such release was enhanced by exposure to a high K+ medium and by electrical stimulation of the transporting axons. Stimulation of release was inhibited by lowering the Ca2+/Mg2+ ratio of the medium. The released material is predominantly of 1--2000 daltons in molecular weight and appears to have been derived from a group of transported peptides of about the same size. The possibility is raised that these data may reflect the existence of a peptidergic second-order neurosecretory pathway in this nervous system.  相似文献   

12.
The buccal ganglia of the marine mollusc Tritonia control a variety of movements associated with feeding, including gut motility. The buccal ganglia and gut contain a class of peptides termed small cardioactive peptides (SCPs). Cobalt backfilling of the nerve which innervates the gut stains several buccal neurons including two pairs of reidentifiable cells, B11 and B12. Both appear white under epiillumination, a characteristic of peptidergic neurons in gastropods. Enzymatic and biochemical analyses of extracts from microdissected B11 cell bodies demonstrate that this neuron contains two species of SCPs. Labeling in organ culture followed by dissection and extraction of cell bodies indicates that these peptides were synthesized in B11. One of these peptides appears to be identical to SCPB, one of two SCPs that have been sequenced. The other SCP present in these neurons is novel. Less extensive analyses of extracts of B12 somata suggest that it also contains the same SCPs. In addition to the peptides, B11 also contains large quantities of acetylcholine (ACh) as determined by a radioenzymatic assay of cell body extracts. B12 does not contain measureable ACh. The concentration of the two peptides and ACh in the B11 cytoplasm is approximately 1 mM. Neuron B11 appears to be an appropriate model system for studying the biochemical and physiological properties of multiple transmitter neurons.  相似文献   

13.
Summary The peptidergic system in the optic ganglia of Astacus leptodactylus is characterized by the immunocytochemical application of 15 antisera raised against biologically active peptides of vertebrates and invertebrates. Positive reactions were found with anti-FMRFamide, antiMSH, anti-vasotocin, anti-gastrin, anti-CCK, anti-oxytocin, anti-secretin, anti-glucagon and anti-GIP. Based on immunochemical reaction and localization it is possible to distinguish 30 cell groups. Only part of these cell groups is found in the known classical neurosecretory cell regions. This observation demonstrates a more extensive peptidergic system than formerly recognized. The morphology of this peptidergic system suggests that one part is neurohormonal and the other part neurotransmitter-like or neuromodulatory.  相似文献   

14.
Previous studies from this and other laboratories demonstrated that many embryonic sensory ganglion cells in the rat transiently express the catecholamine synthesizing enzyme tyrosine hydroxylase (TH), a trait not expressed by most mature sensory neurons. We, therefore, sought to determine whether transient expression was uniquely associated with catecholaminergic traits, or, alternatively, whether embryonic ganglion cells transiently expressed peptidergic properties as well. Of the four peptides examined (somatostatin [somatotropin release inhibiting factor] (SRIF), galanin (Gal), calcitonin gene-related peptide (CGRP), and substance P (SP)), only SRIF was found to be transiently expressed during early stages of sensory gangliogenesis. Surprisingly, SRIF immunoreactivity was observed in virtually all cranial and spinal sensory ganglion cells on embryonic day (E) 12.5. In addition to perikaryal labeling, intense SRIF immunoreactivity was also observed in the central and peripheral processes of E12.5 sensory neurons, suggesting the peptide may be released from nerve endings. The time course of SRIF appearance in cranial ganglion cells paralleled that previously described for TH, and double-labeling studies revealed extensive co-localization of these two phenotypes. By E16.5, however, the number of neurons expressing SRIF had diminished markedly, indicating that SRIF is only transiently expressed by most sensory neurons during early stages of ganglion development. An unexpected finding was that transient expression of SRIF is also a prominent feature of sympathetic ganglion cells; however, the temporal pattern of staining in the sympathetic and sensory ganglia differed substantially. Whereas virtually no SRIF staining was observed in E12.5 sympathetics, the vast majority of cells in the E16.5 superior cervical ganglion (SCG) were labeled. This contrasted sharply with the adult SCG, in which only low levels of SRIF expression were found. These findings demonstrate that SRIF peptide is transiently expressed at high levels in peripheral sensory and sympathetic neurons during embryogenesis. The time course and widespread distribution of SRIF expression indicates that the peptide may play a role in early stages of ganglion cell growth and development. Moreover, these data, in conjunction with previous studies demonstrating SRIF immunoreactivity in developing central neurons, suggest that transient expression of this peptide is a common property of diverse neuronal cell types.  相似文献   

15.
异丙肾上腺素是临床常用的心脏骤停的抢救药物。为了研究该药对心内神经节中肽能递质的影响,本文在大鼠皮下注射异丙肾上腺素5mg/kg,连续三天,后固定取心房后壁,用免疫组化结合图像分析,观察心内神经节中肽能递质VIP的变化。对照组大鼠心内神经节中含有VIP免疫反应(VIP-IR)阳性神经纤维和胞体;实验组大鼠心内神经节中含有VIP-IR阳性神经纤维和胞体呈不同程度增多。其中VIP-IR阳性神经纤维积分光密度较对照组增加25.3%,而神经胞体积分光密度只增加8.1%。结果提示:1.大鼠心内神经节中VIP-IR阳性神经纤维可能有两个来源:即心内VIP-IR阳性神经节细胞和心外副交感神经元;2.异丙肾上腺素对心脏的作用并非单一的直接作用,其中部分是通过影响心内神经节中肽能递质的变化而发挥间接作用。  相似文献   

16.
Among bone morphogenetic proteins (BMPs), the decapentaplegic (Dpp; BMP2, BMP4) and glass bottom boat (Gbb/60A; BMP5, BMP6, BMP7) subgroups have well-described functions guiding autonomic and sensory neuronal development, fiber formation and neurophenotypic identities. Evaluation of rat superior cervical ganglia (SCG) post-ganglionic sympathetic neuron developmental regulators identified that selected BMPs of the transforming growth factor beta superfamily have reciprocal effects on neuronal pituitary adenylate cyclase-activating polypeptide (PACAP) and vasoactive intestinal peptide (VIP) expression. Dpp and Gbb/60A BMPs rapidly down-regulated PACAP expression, while up-regulating other sympathetic neuropeptides, including PACAP-related VIP. The suppressive effects of BMP on PACAP mRNA and peptide expression were potent, efficacious and phosphorylated mothers against decapentaplegic homolog (Smad) signaling-dependent. Axotomy of SCG dramatically increases PACAP expression, and the possibility that abrogation of inhibitory retrograde target tissue BMP signaling may contribute to this up-regulation of sympathetic neuron PACAP was investigated. Replacement of BMP6 to SCG explant preparations significantly blunted the injury-induced elevated PACAP expression, with a concomitant decrease in sympathetic PACAP-immunoreactive neuron numbers. These studies suggested that BMPs modulate neuropeptide identity and diversity by stimulating or restricting the expression of specific peptidergic systems. Furthermore, the liberation of SCG neurons from target-derived BMP inhibition following axotomy may be one participating mechanism associated with injury-induced neuropeptidergic plasticity.  相似文献   

17.
The anatomy and innervation of the mammalian pineal gland   总被引:8,自引:0,他引:8  
The parenchymal cells of the mammalian pineal gland are the hormone-producing pinealocytes and the interstitial cells. In addition, perivascular phagocytes are present. The phagocytes share antigenic properties with microglial and antigen-presenting cells. In certain species, the pineal gland also contains neurons and/or neuron-like peptidergic cells. The peptidergic cells might influence the pinealocyte by a paracrine secretion of the peptide. Nerve fibers innervating the mammalian pineal gland originate from perikarya located in the sympathetic superior cervical ganglion and the parasympathetic sphenopalatine and otic ganglia. The sympathetic nerve fibers contain norepinephrine and neuropeptide Y as neurotransmitters. The parasympathetic nerve fibers contain vasoactive intestinal peptide and peptide histidine isoleucine. Recently, neurons in the trigeminal ganglion, containing substance P, calcitonin gene-related peptide, and pituitary adenylate cyclase-activating peptide, have been shown to project to the mammalian pineal gland. Finally, nerve fibers originating from perikarya located in the brain containing, for example, GABA, orexin, serotonin, histamine, oxytocin, and vasopressin innervate the pineal gland directly via the pineal stalk. Biochemical studies have demonstrated numerous receptors on the pinealocyte cell membrane, which are able to bind the neurotransmitters located in the pinealopetal nerve fibers. These findings indicate that the mammalian pinealocyte can be influenced by a plethora of neurotransmitters.  相似文献   

18.
Standard enzyme cytochemical and indirect immunocytochemical techniques have been used in conjunction with light and confocal scanning laser microscopy (CSLM) to visualize cholinergic, serotoninergic and peptidergic nerve elements in whole-mount preparations of the amphibian urinary-bladder fluke, Gorgoderina vitelliloba. Cholinesterase (ChE) activity was localized in paired anterior ganglia, a connecting dorsal commissure and in the origins of the ventral nerve cords. Cholinergic ganglia were also evident in shelled embryos in the uterus. Serotonin-immunoreactivity (IR) was more extensive than ChE activity and was identified in both the central and peripheral nervous systems. Serotoninergic nerve fibres were associated with the somatic musculature and female reproductive ducts. Antisera to nine mammalian peptides and one invertebrate (FMRFamide) peptide have been used to investigate the peptidergic nervous system in the parasite. Immunoreactivity was obtained to five peptides, namely pancreatic polypeptide (PP), peptide YY (PYY), neuropeptide Y (NPY), substance P (SP) and FMRFamide. Peptidergic nerve fibres were found to be more abundant than demonstrable cholinergic or serotoninergic nerve fibres. NPY-IR was identified only in the main components of the central nervous system. However, PP- and PYY-IR occurred in the anterior ganglia, dorsal commissure, main nerve cords and in numerous small varicose fibres that ramified throughout the worm. Additionally, PP-immunoreactive nerve fibres were found to innervate the musculature of the female reproductive tracts. Six sites of IR were found in the acetabulum, using antisera directed towards the C-terminal end of PP and PYY, and these matched with the distribution of six non-ciliated rosette-like papillae observed by scanning electron microscopy. SP- and FMRFamide-IR were identified in the CNS, and FMRFamide-immunopositive nerve fibres were also evident in association with the gonopore cirrus region and with the terminal excretory pore. Results are discussed with respect to possible roles for each of the neurochemical types.  相似文献   

19.
The possibility that proteins reaching the abdominal ganglion of Aplysia by axonal transport from the circumesophageal ganglia might be subject to secretion in that structure was examined. Transported labeled protein was found to be released from the abdominal ganglion; such release was enhanced by exposure to a high K+ medium and by electrical stimulation of the transporting axons. Stimulation of release was inhibited by lowering the Ca2+/Mg2+ ratio of the medium. The released material is predominantly of 1–2000 daltons in molecular weight and appears to have been derived from a group of transported peptides of about the same size. The possibility is raised that these data may reflect the existence of a peptidergic second-order neurosecretory pathway in this nervous system.  相似文献   

20.
The chicken carotid body receives numerous branches from the vagus nerve, especially distal (nodose) ganglion, and the recurrent laryngeal nerve. Dense networks of peptidergic nerve fibers immunoreactive for substance P, calcitonin gene-related peptide (CGRP), galanin, vasoactive intestinal peptide (VIP) and neuropeptide Y are distributed in and around the carotid body. Substance-P- and CGRP-immunoreactive fibers projecting to the chicken carotid body mainly come from the vagal ganglia. In the present study, various types of denervation experiments were performed in order to clarify the origins of VIP-, galanin- and neuropeptide-Y-immunoreactive fibers in the chicken carotid bodies. After nodose ganglionectomy, midcervical vagotomy or excision of the recurrent laryngeal nerve, VIP-, galanin- and neuropeptide-Y-immunoreactive fibers were unchanged in the carotid body region. Furthermore, these peptidergic fibers remained unaffected even by removal of the nodose ganglion in conjunction with severance of the recurrent laryngeal nerve that induced a marked decrease in TuJ1-immunoreactive fibers in the carotid body region. VIP-, galanin- and neuropeptide-Y-immunoreactive fibers are densely distributed around the arteries supplying the carotid body in normal chickens. The peptidergic fibers around the arteries were also unaffected after the denervation experiments. However, after removal of the 14th cervical ganglion of the sympathetic trunk, which lies close to the vertebral artery on the root of the brachial plexus and issues prominent branches to the artery, VIP-, galanin- and neuropeptide-Y-immunoreactive fibers almost disappeared in the carotid body region. The ganglion contained many VIP-, galanin- and neuropeptide-Y-immunoreactive neurons. Thus it is clear that VIP-, galanin- and neuropeptide-Y-immunoreactive fibers in the chicken carotid body region are mainly derived from the 14th cervical sympathetic ganglion via the vertebral artery.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号