首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Expansins in Plant Growth and Development: an Update on an Emerging Topic   总被引:4,自引:0,他引:4  
Abstract: Expansins are a class of proteins identified by their ability to induce the extension of isolated plant cell walls. Expansins are encoded by an extensive multigene family in higher plants, several members of which have been shown to be expressed in a tissue-specific manner. Besides playing an apparently key role in wall expansion, and hence in cell growth, expansins have been implicated in an increasing number of processes during plant growth and development. These include: leaf organogenesis, fruit softening, and wall disassembly. A second class of closely related proteins (referred to as β-expansins) has been identified. Other recent advances in expansin research include the recovery of transgenic plants with altered level of expansins, and the production of recombinant expansins in het-erologous expression systems.  相似文献   

2.
We investigated the involvement of expansin action in determining the growth rate of internodes of floating rice (Oryza sativa L.). Floating rice stem segments in which rapid internodal elongation had been induced by submergence for 2 days were exposed to air or kept in submergence for 2 more days. Both treatments reduced the elongation rate of the internodes, and the degree of reduction was much greater in air-exposed stem segments than in continually submerged segments. These rates of internodal elongation were correlated with acid-induced cell wall extensibility and cell wall susceptibility to expansins in the cell elongation zone of the internodes, but not with extractable expansin activity. These results suggest that the reduced growth rate of internodes must be due, at least in part, to the decrease in acid-induced cell wall extensibility, which can be modulated through changes in the cell wall susceptibility to expansins rather than through expansin activity. Analysis of the cell wall composition of the internodes showed that the cellulosic and noncellulosic polysaccharide contents increased in response to exposure to air, but they remained almost constant under continued submergence although the cell wall susceptibility to expansins gradually declined even under continued submergence. The content of xylose in noncellulosic neutral sugars in the cell walls of internodes was closely and negatively correlated with changes in the susceptibility of the walls to expansins. These results suggest that the deposition of xylose-rich polysaccharides into the cell walls may be related to a decrease in acid-induced cell wall extensibility in floating rice internodes through the modulation of cell wall susceptibility to expansins.  相似文献   

3.
Choi D  Lee Y  Cho HT  Kende H 《The Plant cell》2003,15(6):1386-1398
To investigate the in vivo functions of expansins, we generated transgenic rice plants that express sense and antisense constructs of the expansin gene OsEXP4. In adult plants with constitutive OsEXP4 expression, 12% of overexpressors were taller and 88% were shorter than the average control plants, and most overexpressors developed at least two additional leaves. Antisense plants were shorter and flowered earlier than the average control plants. In transgenic plants with inducible OsEXP4 expression, we observed a close correlation between OsEXP4 protein levels and seedling growth. Coleoptile and mesocotyl length increased by up to 31 and 97%, respectively, in overexpressors, whereas in antisense seedlings, they decreased by up to 28 and 43%, respectively. The change in seedling growth resulted from corresponding changes in cell size, which in turn appeared to be a function of altered cell wall extensibility. Our results support the hypothesis that expansins are involved in enhancing growth by mediating cell wall loosening.  相似文献   

4.
Expansins are wall-loosening proteins that induce wall stress relaxation and irreversible wall extension in a pH-dependent manner. Despite a substantial body of work has been performed on the characterization of many expansins genes in different plant species, the knowledge about their precise biological roles during plant development remains scarce. To yield insights into the expansion process in Petunia hybrida, PhEXPA1, an expansin gene preferentially expressed in petal limb, has been characterized. The constitutive overexpression of PhEXPA1 significantly increased expansin activity, cells size and organ dimensions. Moreover, 35S::PhEXPA1 transgenic plants exhibited an altered cell wall polymer composition and a precocious timing of axillary meristem development compared with wild-type plants. These findings supported a previous hypothesis that expansins are not merely structural proteins involved in plant cell wall metabolism but they also take part in many plant development processes. Here, to support this expansins dual role, we discuss about differential cell wall-related genes expressed in PhEXPA1 expression mutants and gradients of altered petunia branching pattern.  相似文献   

5.
6.
扩展蛋白是一种细胞壁蛋白,可调节细胞壁的松弛和伸展。目前研究表明,扩展蛋白几乎参与调节植物生长发育的整个进程。扩展蛋白还与植物的多种抗性反应有关,在植物对干旱、高盐以及病虫害等生物胁迫和非生物胁迫响应方面起着重要的调节作用。干旱胁迫下扩展蛋白基因的表达与植物的抗旱性有一定的关系;植物的耐盐性受到扩展蛋白基因表达的影响;淹水促进植物的伸长生长与扩展蛋白的表达密切相关;扩展蛋白调节细胞壁松弛为植物抗病性研究提供了新的思路。  相似文献   

7.
Background and Aims Plant stature and shape are largely determined by cell elongation, a process that is strongly controlled at the level of the cell wall. This is associated with the presence of many cell wall proteins implicated in the elongation process. Several proteins and enzyme families have been suggested to be involved in the controlled weakening of the cell wall, and these include xyloglucan endotransglucosylases/hydrolases (XTHs), yieldins, lipid transfer proteins and expansins. Although expansins have been the subject of much research, the role and involvement of expansin-like genes/proteins remain mostly unclear. This study investigates the expression and function of AtEXLA2 (At4g38400), a member of the expansin-like A (EXLA) family in arabidposis, and considers its possible role in cell wall metabolism and growth.Methods Transgenic plants of Arabidopsis thaliana were grown, and lines over-expressing AtEXLA2 were identified. Plants were grown in the dark, on media containing growth hormones or precursors, or were gravistimulated. Hypocotyls were studied using transmission electron microscopy and extensiometry. Histochemical GUS (β-glucuronidase) stainings were performed.Key Results AtEXLA2 is one of the three EXLA members in arabidopsis. The protein lacks the typical domain responsible for expansin activity, but contains a presumed cellulose-interacting domain. Using promoter::GUS lines, the expression of AtEXLA2 was seen in germinating seedlings, hypocotyls, lateral root cap cells, columella cells and the central cylinder basally to the elongation zone of the root, and during different stages of lateral root development. Furthermore, promoter activity was detected in petioles, veins of leaves and filaments, and also in the peduncle of the flowers and in a zone just beneath the papillae. Over-expression of AtEXLA2 resulted in an increase of >10 % in the length of dark-grown hypocotyls and in slightly thicker walls in non-rapidly elongating etiolated hypocotyl cells. Biomechanical analysis by creep tests showed that AtEXLA2 over-expression may decrease the wall strength in arabidopsis hypocotyls.Conclusions It is concluded that AtEXLA2 may function as a positive regulator of cell elongation in the dark-grown hypocotyl of arabidopsis by possible interference with cellulose metabolism, deposition or its organization.  相似文献   

8.
The biochemical mechanisms underlying cell wall expansion in plants have long been a matter of conjecture. Previous work in our laboratory identified two proteins (named "expansins") that catalyze the acid-induced extension of isolated cucumber cell walls. Here we examine the mechanism of expansin action with three approaches. First, we report that expansins did not alter the molecular mass distribution or the viscosity of solutions of matrix polysaccharides. We conclude that expansins do not hydrolyze the major pectins or hemicelluloses of the cucumber wall. Second, we investigated the effects of expansins on stress relaxation of isolated walls. These studies show that expansins account for the pH-sensitive and heat-labile components of wall stress relaxation. In addition, these experiments show that expansins do not cause a progressive weakening of the walls, as might be expected from the action of a hydrolase. Third, we studied the binding of expansins to the cell wall and its components. The binding characteristics are consistent with this being the site of expansin action. We found that expansins bind weakly to crystalline cellulose but that this binding is greatly increased upon coating the cellulose with various hemicelluloses. Xyloglucan, either solubilized or as a coating on cellulose microfibrils, was not very effective as a binding substrate. Expansins were present in growing cell walls in low quantities (approximately 1 part in 5000 on a dry weight basis), suggesting that they function catalytically. We conclude that expansins bind at the interface between cellulose microfibrils and matrix polysaccharides in the wall and induce extension by reversibly disrupting noncovalent bonds within this polymeric network. Our results suggest that a minor structural component of the matrix, other than pectin and xyloglucan, plays an important role in expansin binding to the wall and, presumably, in expansin action.  相似文献   

9.
Expansins are non-enzymatic cell wall proteins that mediate plant growth by catalyzing loosening of cell walls without lysing the wall polymers. Advances in the field of bioinformatics have facilitated the prediction of the members of expansin gene family across several model plants. Expansins constitutes into four sub-families; α-expansin, β-expansin, expansin-like A and expansin-like B. Biological functions of expansin gene family include diverse aspects of plant growth and development, shoot and root elongation, leaf morphogenesis, flower and fruit development, embryogenesis, pollen tube growth, stress tolerance, etc. Recent studies have demonstrated the role of expansins in plant-symbiotic interactions. The present review reveals the factors that govern plant-arbuscular mycorrhizal fungi (AMF) and legume-rhizobia symbioses; and the genes that participate in these diverse symbiont interactions. Further, we focus on the expression profiles and the functions of expansins during plant-AMF and legume-rhizobia interactions. The key roles of expansin proteins during AMF invasion, arbuscule formation, rhizobial infection and nodule organogenesis were uncovered during symbioses. This review summarizes discoveries that support the key and versatile roles of various expansin members in the plant-mycorrhizal and legume-rhizobial symbioses.  相似文献   

10.
Pectins are acidic carbohydrates that comprise a significant fraction of the primary walls of eudicotyledonous plant cells. They influence wall porosity and extensibility, thus controlling cell and organ growth during plant development. The regulated degradation of pectins is required for many cell separation events in plants, but the role of pectin degradation in cell expansion is poorly defined. Using an activation tag screen designed to isolate genes involved in wall expansion, we identified a gene encoding a putative polygalacturonase that, when overexpressed, resulted in enhanced hypocotyl elongation in etiolated Arabidopsis thaliana seedlings. We named this gene POLYGALACTURONASE INVOLVED IN EXPANSION1 (PGX1). Plants lacking PGX1 display reduced hypocotyl elongation that is complemented by transgenic PGX1 expression. PGX1 is expressed in expanding tissues throughout development, including seedlings, roots, leaves, and flowers. PGX1-GFP (green fluorescent protein) localizes to the apoplast, and heterologously expressed PGX1 displays in vitro polygalacturonase activity, supporting a function for this protein in apoplastic pectin degradation. Plants either overexpressing or lacking PGX1 display alterations in total polygalacturonase activity, pectin molecular mass, and wall composition and also display higher proportions of flowers with extra petals, suggesting PGX1’s involvement in floral organ patterning. These results reveal new roles for polygalacturonases in plant development.  相似文献   

11.
Expansins are primary agents inducing cell wall extension, and are therefore obvious targets in biotechnological applications aimed at the modification of cell size in plants. In trees, increased fibre length is a goal of both breeding and genetic engineering programmes. We used an α-expansin Ptt EXPA1 that is highly abundant in the wood-forming tissues of hybrid aspen ( Populus tremula L. ×  P. tremuloides Michx.) to evaluate its role in fibre elongation and wood cell development. Ptt EXPA1 belongs to Subfamily A of α-expansins that have conserved motifs at the N- and C-termini of the mature protein. When PttEXPA1 was over-expressed in aspen, an extract of the cell wall-bound proteins of the transgenic plants exhibited an increased expansin activity on cellulose–xyloglucan composites in vitro , indicating that Ptt EXPA1 is an active expansin. The transgenic lines exhibited increased stem internode elongation and leaf expansion, and larger cell sizes in the leaf epidermis, indicating that Ptt EXPA1 protein is capable of increasing the growth of these organs by enhancing cell wall expansion in planta . Wood cell development was also modified in the transgenic lines, but the effects were different for vessel elements and fibres, the two main cell types of aspen wood. Ptt EXPA1 stimulated fibre, but not vessel element, diameter growth, and marginally increased vessel element length, but did not affect fibre length. The observed differences in responsiveness to expansin of these cell types are discussed in the light of differences in their growth strategies and cell wall composition.  相似文献   

12.
We aimed to evaluate whether changes in maize (Zea mays) leaf expansion rate in response to environmental stimuli or developmental gradients are mediated by common or specific expansins, a class of proteins known to enhance cell wall extensibility. Among the 33 maize expansin or putative expansin genes analyzed, 19 were preferentially expressed at some point of the leaf elongation zone and these expansins could be organized into three clusters related to cell division, maximal leaf expansion, and cell wall differentiation. Further analysis of the spatial distribution of expression was carried out for three expansins in leaves displaying a large range of expansion rates due to water deficit, genotype, and leaf developmental stage. With most sources of variation, the three genes showed similar changes in expression and consistent association with changes in leaf expansion. Moreover, our analysis also suggested preferential association of each expansin with elongation, widening, or both of these processes. Finally, using in situ hybridization, expression of two of these genes was increased in load-bearing tissues such as the epidermis and differentiating xylem. Together, these results suggest that some expansins may be preferentially related to elongation and widening after integrating several spatial, environmental, genetic, and developmental cues.  相似文献   

13.
? Expansins are cell wall proteins required for cell enlargement and cell wall loosening during many developmental processes. The involvement of the Petunia hybrida expansin A1 (PhEXPA1) gene in cell expansion, the control of organ size and cell wall polysaccharide composition was investigated by overexpressing PhEXPA1 in petunia plants. ? PhEXPA1 promoter activity was evaluated using a promoter-GUS assay and the protein's subcellular localization was established by expressing a PhEXPA1-GFP fusion protein. PhEXPA1 was overexpressed in transgenic plants using the cauliflower mosaic virus (CaMV) 35S promoter. Fourier transform infrared (FTIR) and chemical analysis were used for the quantitative analysis of cell wall polymers. ? The GUS and GFP assays demonstrated that PhEXPA1 is present in the cell walls of expanding tissues. The constitutive overexpression of PhEXPA1 significantly affected expansin activity and organ size, leading to changes in the architecture of petunia plants by initiating premature axillary meristem outgrowth. Moreover, a significant change in cell wall polymer composition in the petal limbs of transgenic plants was observed. ? These results support a role for expansins in the determination of organ shape, in lateral branching, and in the variation of cell wall polymer composition, probably reflecting a complex role in cell wall metabolism.  相似文献   

14.
Kwon YR  Lee HJ  Kim KH  Hong SW  Lee SJ  Lee H 《Biotechnology letters》2008,30(7):1281-1288
Expansins are cell wall loosening proteins that appear to permit the microfibril matrix network to slide in growing plant cell walls, thereby enabling the wall to expand. To scrutinize possible impacts on plant growth and development when expansins are over-expressed, we characterized phenotypic alterations of the transgenic plants that constitutively expressed AtEXP3 or AtEXP-beta1 under control of 35S-CaMV promoter. Our results suggest that both AtEXP3-OX and AtXPbeta1-OX are very sensitive to salt stress. However, the mechanisms underlying their enhanced salt sensitivity appear to be different.  相似文献   

15.
Expression of a heterologous expansin in transgenic tomato plants   总被引:2,自引:0,他引:2  
Rochange SF  McQueen-Mason SJ 《Planta》2000,211(4):583-586
  相似文献   

16.
Summary Transgenic tobacco (Nicotiana tabaccum L. cv. Samsun NN) expressing a yeast invertase in the vacuole provides a novel tool for studying the role of turgor, osmotic pressure, and cell wall properties during cell expansion. The plants used showed increased osmolarity and an increased cell size in young leaves. Their advantage is that they allow long-term analysis and undisturbed conditions. Cell expansion rate was maximal in leaf six of the transgenic plants and in leaf eleven of wild-type plants. Turgor rose to 0.52 ± 0.04 MPa (n=45) and 0.35 ± 0.03 MPa (n=45) in transgenic and wild-type plants, respectively. It was maximal where elongation rates were highest. Thus, elevated cell expansion rate was, at least in part, related to an enhancement in turgor. However, comparison between turgor and relative expansion rates showed that higher turgor pressures were required to achieve similar cell expansion rates in transformed plants as in the wild-type. This finding underlines the importance of the yield threshold and, thus, of the cell wall in growth regulation. This conclusion is further supported by the observation that the cell walls of transgenic plants were up to 77% thicker than the wild-type, but not qualitatively modified.  相似文献   

17.
Wu Y  Jeong BR  Fry SC  Boyer JS 《Planta》2005,220(4):593-601
In dark-grown soybean (Glycine max [L.] Merr.) seedlings, exposing the roots to water-deficient vermiculite (w=–0.36 MPa) inhibited hypocotyl (stem) elongation. The inhibition was associated with decreased extensibility of the cell walls in the elongation zone. A detailed spatial analysis showed xyloglucan endotransglucosylase (XET; EC 2.4.1.207) activity on the basis of unit cell wall dry weight was decreased in the elongation region after seedlings were transplanted to low w. The decrease in XET activity was at least partially due to an accumulation of cell wall mass. Since cell number was only slightly altered, wall mass had increased per cell and probably led to increased wall thickness and decreased cell wall extensibility. Alternatively, an increase in cell wall mass may represent a mechanism for regulating enzyme activity in cell walls, XET in this case, and therefore cell wall extensibility. Hypocotyl elongation was partially recovered after seedlings were grown in low-w vermiculate for about 80 h. The partial recovery of hypocotyl elongation was associated with a partial recovery of cell wall extensibility and an enhancement of XET activity in the hypocotyl elongation zone. Our results indicate XTH proteins may play an important role in regulating cell wall extensibility and thus cell elongation in soybean hypocotyls. Our results also showed an imperfect correlation of spatial elongation and XET activity along the hypocotyls. Other potential functions of XTH and their regulation in soybean hypocotyl growth are discussed.  相似文献   

18.
Growing plant cell walls characteristically exhibit a property known as ''acid growth'', by which we mean they are more extensible at low pH (< 5) 1. The plant hormone auxin rapidly stimulates cell elongation in young stems and similar tissues at least in part by an acid-growth mechanism 2, 3. Auxin activates a H+ pump in the plasma membrane, causing acidification of the cell wall solution. Wall acidification activates expansins, which are endogenous cell wall-loosening proteins 4, causing the cell wall to yield to the wall tensions created by cell turgor pressure. As a result, the cell begins to enlarge rapidly. This ''acid growth'' phenomenon is readily measured in isolated (nonliving) cell wall specimens. The ability of cell walls to undergo acid-induced extension is not simply the result of the structural arrangement of the cell wall polysaccharides (e.g. pectins), but depends on the activity of expansins 5. Expansins do not have any known enzymatic activity and the only way to assay for expansin activity is to measure their induction of cell wall extension. This video report details the sources and preparation techniques for obtaining suitable wall materials for expansin assays and goes on to show acid-induced extension and expansin-induced extension of wall samples prepared from growing cucumber hypocotyls.To obtain suitable cell wall samples, cucumber seedlings are grown in the dark, the hypocotyls are cut and frozen at -80 °C. Frozen hypocotyls are abraded, flattened, and then clamped at constant tension in a special cuvette for extensometer measurements. To measure acid-induced extension, the walls are initially buffered at neutral pH, resulting in low activity of expansins that are components of the native cell walls. Upon buffer exchange to acidic pH, expansins are activated and the cell walls extend rapidly. We also demonstrate expansin activity in a reconstitution assay. For this part, we use a brief heat treatment to denature the native expansins in the cell wall samples. These inactivated cell walls do not extend even in acidic buffer, but addition of expansins to the cell walls rapidly restores their ability to extend.Open in a separate windowClick here to view.(58M, flv)  相似文献   

19.
Expansins are a group of proteins that appear to be involved in the disruption of the noncovalent bonds within the cell wall. The distinctly expressed expansin genes can independently regulate cell expansion in place and time, and their diverse expression patterns suggest their distinct effects on plant growth. In this paper, we analyzed the effects of excessive expansin AtEXPA1 on plant growth and plant adaptation to NaCl and ABA stresses by overexpressing its gene in Arabidopsis plants. The AtEXPA1 overexpressing plants exhibited stunted shoot growth, mainly during the early phase of vegetative growth, and the growth of transgenic seedlings was also impaired. Comparing with their growth under normal growth condition, the AtEXPA1 overexpressing plants showed alleviated impairment under salt and ABA stress conditions. These results suggest that, although excessive AtEXPA1 could disturb cell wall organization and lead to growth reduction, it inversely helped enhancing cell wall organization under stress conditions and thus helped plant better to adapt to adverse environment.  相似文献   

20.
Transgenic Arabidopsis thaliana plants constitutively expressing Agrobacterium tumefaciens tryptophan monooxygenase (iaaM) were obtained and characterized. Arabidopsis plants expressing iaaM have up to 4-fold higher levels of free indole-3-acetic acid (IAA) and display increased hypocotyl elongation in the light. This result clearly demonstrates that excess endogenous auxin can promote cell elongation in a whole plant. Interactions of the auxin-overproducing transgenic plants with the phytochrome-deficient hy6-1 and auxin-resistant axrl-3 mutations were also studied. The effects of auxin overproduction on hypocotyl elongation were not additive to the effects of phytochrome deficiency in the hy6-1 mutant, indicating that excess auxin does not counteract factors that limit hypocotyl elongation in hy6-1 seedlings. Auxin-overproducing seedlings are also qualitatively indistinguishable from wild-type controls in their response to red, far-red, and blue light treatments, demonstrating that the effect of excess auxin on hypocotyl elongation is independent of red and blue light-mediated effects. All phenotypic effects of iaaM-mediated auxin overproduction (i.e. increased hypocotyl elongation in the light, severe rosette leaf epinasty, and increased apical dominance) are suppressed by the auxin-resistant axr1-3 mutation. The axr1-3 mutation apparently blocks auxin signal transduction since it does not reduce auxin levels when combined with the auxin-overproducing transgene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号