首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ca2+ inhibits (-)[3H]desmethoxyverapamil, d-cis-[3H]diltiazem and (+/-)[3H]bepridil binding to skeletal muscle transverse-tubule membranes with a half-maximum inhibition constant, K0.5 = 5 +/- 1 microM. This value is close to that of the high affinity Ca2+ binding site which controls the ionic selectivity of the Ca2+ channel found in electrophysiological experiments suggesting that the Ca2+ coordination site which regulates the ionic selectivity is also the one which alters binding of the Ca2+ channel inhibitors investigated here. Ca2+ and (-)D888 bind to distinct sites. Occupation of the Ca2+ coordination site decreases the affinity of (-)D888 for its receptor by a factor of 5. Other divalent cations have the same type of inhibition behavior with the rank order of potency Ca2+ (K0.5 = 5 microM) greater than Sr2+ (K0.5 = 25 microM) greater than Ba2+ (K0.5 = 50 microM) greater than Mg2+ (K0.5 = 170 microM).  相似文献   

2.
(-)-[3H]Desmethoxyverapamil (2,7-dimethyl-3-(3,4-dimethoxyphenyl)-3-cyan- 7-aza-9-(3-methoxyphenyl)-nonanhydrochloride) was used to label putative Ca2+ channels in guinea pig skeletal muscle. The binding sites for (-)-[3H]desmethoxyverapamil co-purified with t-tubule membrane markers in an established subcellular fractionation procedure. (-)-[3H]Desmethoxyverapamil bound to partially purified t-tubule membranes with a KD of 2.2 +/- 0.1 nM and a Bmax of 18 +/- 4 pmol/mg membrane protein at 25 degrees C. Binding was stereoselectively inhibited by phenylalkylamine Ca2+ antagonists and in a mixed, non-competitive fashion by the benzothiazepine Ca2+ antagonist d-cis-diltiazem and the 1,4-dihydropyridine Ca2+ antagonist (+)-PN 200-110. Target size analysis of the (-)-[3H]desmethoxyverapamil drug receptor site revealed a molecular mass of 107 +/- 2 kDa. In contrast, the target size of the allosterically coupled benzothiazepine drug receptor site, labelled by d-cis-[3H]diltiazem, was 130.5 +/- 4 kDa (p less than 0.01) and of the 1,4-dihydropyridine binding site 179 kDa, when labelled with [3H]nimodipine. It is concluded that (-)-[3H]desmethoxyverapamil is an extremely useful radioligand for the phenylalkylamine-selective receptor site of the t-tubule localized Ca2+ channel which is allosterically linked to two other distinct drug receptor sites.  相似文献   

3.
The calcium channel blockers verapamil and diltiazem have been shown to reverse multidrug resistance, but the mechanism of action of these agents is still unknown. We measured [3H]verapamil, [3H]desmethoxyverapamil, [3H]diltiazem, and [3H]nitrendipine binding to membrane vesicles made from drug-sensitive (KB-3-1), multidrug-resistant (KB-C4 and KB-V1), and revertant (KB-V1-R2) cells. Membrane vesicles from KB-V1 cells bound 10-20-fold more [3H]verapamil and [3H]diltiazem and about 30-fold more [3H]desmethoxyverapamil than did vesicles from the parental KB-3-1 or revertant KB-V1-R2 cell lines. These drugs reverse the multidrug resistance phenotype by increasing accumulation of drugs in the resistant cells. No difference in binding of [3H]nitrendipine, which did not reverse drug resistance, was observed. The binding of vinblastine, desmethoxyverapamil, and diltiazem to KB-V1 vesicles was specific and saturable and was inhibited by desmethoxyverapamil and quinidine greater than vinblastine and diltiazem much greater than daunomycin. In addition, verapamil and diltiazem inhibited the vinblastine photoaffinity labeling of P170, the protein previously shown to be a marker of multidrug resistance.  相似文献   

4.
Photoaffinity labeling of isolated triads and purified dihydropyridine receptor with [3H]azidopine and (+)-[3H]PN200-110 has been used to identify and characterize the dihydropyridine-binding subunit of the 1,4-dihydropyridine receptor of rabbit skeletal muscle. The 1,4-dihydropyridine receptor purified from rabbit skeletal muscle triads contains four protein subunits of 175,000, 170,000, 52,000, and 32,000 Da (Leung, A., Imagawa, T., and Campbell, K. P. (1987) J. Biol. Chem. 262, 7943-7946). Photoaffinity labeling of isolated triads with [3H]azidopine resulted in specific and covalent incorporation of [3H]azidopine into only the 170,000-Da subunit of the dihydropyridine receptor and not into the 175,000-Da glycoprotein subunit of the receptor. The [3H]azidopine-labeled 170,000-Da subunit was separated from the 175,000-Da glycoprotein subunit by sequential elution from a wheat germ agglutinin-Sepharose column with 1% sodium dodecyl sulfate followed by 200 mM N-acetylglucosamine. Photoaffinity labeling of purified dihydropyridine receptor with [3H]azidopine or (+)-[3H]PN200-110 also resulted in the specific and covalent incorporation of either ligand into only the 170,000-Da subunit. Therefore, our results show that the dihydropyridine-binding subunit of the skeletal muscle 1,4-dihydropyridine receptor is the 170,000-Da subunit and not the 175,000-Da glycoprotein subunit.  相似文献   

5.
The dihydropyridine receptor was purified from rabbit skeletal muscle microsomes in the presence of [3H]nitrendipine plus diltiazem or [3H](+)PN 200-110 to an apparent density of 1.5-2 nmol binding sites/mg protein. Sodium dodecyl sulfate gel electrophoresis in the absence of reducing agents yielded three peptide bands of 142, 56 and 30 kDa in a relative ratio of 11:1:1.3, whereas in the presence of 40 mM dithiothreitol bands of 142, 122, 56, 31, 26 and 22 kDa were obtained in a relative ratio of 5.5:2.2:1:0.9:14:0.09. This gel pattern was observed regardless of whether the receptor was purified as a complex with nitrendipine plus diltiazem or with (+)PN 200-110. cAMP-dependent protein kinase phosphorylated preferentially the 142-kDa band up to a stoichiometry of 0.82 +/- 0.07 (15) mol phosphate/mol peptide. The 56-kDa band was phosphorylated only in substoichiometric amounts. [3H]PN 200-110 bound at 4 degrees C to one site with apparent Kd and Bmax values of 9.3 +/- 1.7 nM and 2.2 +/- 0.3 (3) nmol/mg protein, respectively. The binding was stereospecific and was not observed in the presence of 1 mM EGTA. Desmethoxyverapamil interfered with the binding of [3H]PN 200-110 in an apparent allosteric manner. (-)Desmethoxyverapamil inhibited the binding of [3H]PN 200-110 at 37 degrees C and stimulated it at 18 degrees C. In agreement with these results, (-)desmethoxyverapamil increased the dissociation rate of [3H]PN 200-110 from 0.29 min-1 to 0.38 min-1 at 37 degrees C and decreased it threefold from 0.046 min-1 to 0.017 min-1 at 18 degrees C. The (+)isomer of desmethoxyverapamil inhibited PN 200-110 binding at all temperatures tested. d-cis-Diltiazem stimulated the binding of [3H]PN 200-110 at 37 degrees C with an apparent EC50 of 1.4 microM and decreased the dissociation rate from 0.29 min-1 to 0.11 min-1. The stimulatory effect of d-cis-diltiazem was temperature-dependent and was seen only at temperatures above 18 degrees C. These results suggest that the purified dihydropyridine receptor retains the basic properties of the membrane-bound receptor and contains separate sites for at least dihydropyridines and phenylalkylamines.  相似文献   

6.
The interaction of putative Ca2+ channels of Drosophila head membranes with molecules of the phenylalkylamine series was studied from binding experiments using (-)-[3H]D888 and (+/-)-[3H]verapamil. These ligands recognize a single class (Kd = 0.1-0.4 nM; Bmax = 1600-1800 fmol/mg of protein) of very high affinity binding sites. The most potent molecule in the phenylalkylamine series was (-)-verapamil with a Kd value as exceptionally low as 4.7 pM. Molecules in the benzothiazepine and diphenylbutylpiperidine series of Ca2+ channel blockers as well as bepridil inhibited (-)-[3H]D888 binding in a competitive way with Kd values between 12 and 190 nM, suggesting a close correlation, as in the mammalian system, between these receptor sites and those recognizing phenylalkylamines. A tritiated (arylazido)phenylalkylamine with high affinity for the Drosophila head membranes, phenylalkylamine receptor Kd = 0.24 nM), was used in photoaffinity experiments. A protein of Mr 135,000 +/- 5,000 was specifically labeled after ultraviolet irradiation.  相似文献   

7.
C Cremo  M I Schimerlik 《Biochemistry》1984,23(15):3494-3501
The synthesis of a tritiated photoaffinity analogue of the muscarinic antagonist atropine, [3H]-p-azidoatropine methyl iodide is described. The compound appeared to bind to a single class of sites in membrane-bound, solubilized, and partially purified preparations of muscarinic receptor from porcine atria with a dissociation constant (determined by competition vs. [3H]-L-quinuclidinyl benzilate) of about 1.0 X 10(-7) M. This value was in agreement with the apparent dissociation constant (8.5 X 10(-8)M) determined by measuring the concentration dependence of covalent incorporation into a partially purified receptor preparation. Competition experiments indicated that the specific covalent labeling could be blocked by the muscarinic agonist carbamylcholine and the antagonists L-quinuclidinyl benzilate and atropine. An apparent molecular weight of 75 000 +/- 5000 was found for specifically labeled peptide(s) in a solubilized, partially purified receptor preparation by sodium dodecyl sulfate-polyacrylamide gel electrophoresis.  相似文献   

8.
The Ca2+ channel antagonists receptor from rabbit skeletal muscle was purified to homogeneity. Following reconstitution into phosphatidylcholine vesicles, binding experiments with (+)[3H]PN 200-110, (-)[3H]D888 and d-cis-[3H]diltiazem demonstrated that receptor sites for the three most common Ca2+ channel markers copurified with binding stoichiometries close to 1:1:1. Sodium dodecyl sulfate gel analysis of the purified receptor showed that it is composed of only one protein of Mr 170,000 under non-reducing conditions and of two polypeptides of Mr 140,000 and 32,000 under disulfide-reducing conditions. Iodination of the protein of Mr 170,000 and immunoblots experiments with antisera directed against the different components demonstrated that the Ca2+ channel antagonists receptor is a complex of Mr 170,000 composed of a polypeptide chain of Mr 140,000 associated to one polypeptide chain of Mr 32,000 by disulfide bridges. One of the problems concerning this subunit structure of the putative Ca2+ channel was the presence of smaller polypeptide chains of Mr 29,000 and 25,000. Peptide mapping of these polypeptide chains and analysis of their cross-reactivity with sera directed against the proteins of Mr 170,000 and 32,000 demonstrated that they were degradative products of the Mr 32,000 component. Both the large (140 kDa) and the small (32 kDa) component of the putative Ca2+ channel are heavily glycosylated. At least 20-22% of their mass were removed by enzymatic deglycosylation. Finally the possibility that both the 140-kDa and 32-kDa components originate from a single polypeptide chain of Mr 170,000 which is cleaved by proteolysis upon purification is discussed.  相似文献   

9.
Two distinct and interdependent binding sites for inhibitors of voltage-dependent Ca2+ channels have been identified. They include one site for molecules of the 1,4-dihydropyridine serie such as nitrendipine, nifedipine or PN200-110 and one site for a chemically heterogenous group of compounds comprising verapamil, D600 and desmethoxyverapamil, bepridil and diltiazem. Ca2+ binds to its own coordination site which is distinct from the receptor site for organic Ca2+ channel inhibitors. The molecular size of the native [3H] nitrendipine receptor of transverse tubule membrane, brain and heart, have been determined using the radiation inactivation technique. The [3H] nitrendipine receptor is found to have a Mr of 210,000 +/- 20,000. CHAPS solubilization and purification indicate that the dihydropyridine receptor contains polypeptides of apparent molecular weights of 142,000, 32,000 and 33,000 which copurifie with (+) [3H] PN200-110 binding activity. Two stages in which there is an increased binding of [3H]nitrendipine have been observed during chick myogenesis. The first one occurs during embryonic life and has the same properties as in the in vitro development. The second stage occurs near hatching and corresponds to a large increase in the number of nitrendipine receptors. This increase is accompanied by a decrease in the affinity of nitrendipine for its receptor by a factor of 4 to 10. The second stage of development is partly under innervation control and its expression is modulated by the intracellular cyclic AMP content. The two dihydropyridines Bay K8644 and CGP 28932 work preferentially on polarized membranes. 45Ca2+ flux experiments yielded results which are in good agreement with electrophysiological, contraction and binding data obtained with rat cardiac cells and skeletal muscle cells.  相似文献   

10.
Binding characteristics of a new, conformationally constrained, halogenated enkephalin analogue, [3H]-[D-penicillamine2, pCl-Phe4, D-penicillamine5]enkephalin ([3H]pCl-DPDPE), were determined using homogenized rat brain tissue. Saturation binding studies at 25 degrees C determined a dissociation constant (Kd) of 328 +/- 27.pM and a receptor density (Bmax) of 87.2 +/- 4.2 fmol/mg protein. Kinetic studies demonstrated biphasic association for [3H]pCl-DPDPE, with association rate constants of 5.05 x 10(8) +/- 2.5 x 10(8) and 0.147 +/- 10(8) +/- 0.014 x 10(8) M-1 min-1. Dissociation was monophasic with a dissociation rate constant of 2.96 x 10(-3) +/- 0.25 x 10(-3) min-1. The average Kd values determined by these kinetic studies were 8.4 +/- 2.7 pM and 201 +/- 4 pM. Competitive inhibition studies demonstrated that [3H]pCl-DPDPE has excellent selectively for the delta opioid receptor. [3H]pCl-DPDPE binding was inhibited by low concentrations of ligands selective for delta opioid receptor relative to the concentrations required by ligands selective for mu and kappa sites. These data show that [3H]pCl-DPDPE is a highly selective, high affinity ligand which should be useful in characterizing the delta opioid receptor.  相似文献   

11.
The nitrendipine receptor associated with the voltage-dependent calcium channel from rabbit skeletal muscle transverse tubule membranes has been solubilized by detergent extraction. A highly stable solubilized receptor preparation was obtained using 3-[(3-cholamidopropyl)dimethyl-ammonio]-1-propanesulfonate as detergent with phospholipids or glycerol present as stabilizing agents. Binding of [3H]nitrendipine to the solubilized receptor was reversible and saturable. At 4 degrees C the equilibrium dissociation constant of the [3H]nitrendipine X receptor complex was 7 +/- 3 nM and was close to that determined from the rate constants of association (k1 = 1.3 10(5) M-1 s-1) and dissociation (k-1 = 1.10 X 10(-3) s-1) of 8.4nM. The nitrendipine concentration that gave a half-maximal inhibition of [3H]nitrendipine binding to the solubilized receptor was 10 nM, which was similar to the values for the dissociation constant determined for the radiolabelled ligand. [3H]Nitrendipine binding to its solubilized receptor was also inhibited by other antiarrythmic drugs, such as bepridil and verapamil, and enhanced by d-cis-diltiazem. Since these drugs are apparent non-competitive inhibitors of [3H]nitrendipine binding it was concluded that these different binding sites are tightly coupled. Sucrose density sedimentation of solubilized nitrendipine receptor resulted in the separation of three [3H]nitrendipine binding activities with apparent sedimentation coefficients of 11.4 S, 14.4 S and 21 S.  相似文献   

12.
Transverse tubule membrane vesicles contain dihydropyridine receptor of rabbit skeletal muscle in an insideout orientation. Digitonin-solubilized, purified dihydropyridine receptor is embedded in digitonin vesicles in an outside-out orientation. Ca2+ selectively stimulates binding of the Ca2+-channel antagonist [3H]PN200-110 to dihydropyridine receptor in the outside-out but not the inside-out orientation. The dissociation constant for binding Ca2+ to the extracellular Ca2+-specific binding site of dihydropyridine receptor is 2-3 microM. The data demonstrate that binding Ca2+ to the extracellular high-affinity Ca2+-binding site is required for binding dihydropyridines to dihydropyridine receptor. This binding is inhibited, however, by 1-10 mM concentrations of any divalent cation tested (Ba2+, Mn2+, Mg2+). Also, Ca2+ selectively stimulates binding of the Ca2+-channel agonist [3H]BayK8644 to dihydropyridine receptor in the inside-out orientation. The titration of this Ca2+ dependence indicates that the dissociation constant for binding Ca2+ to the intracellular Ca2+-specific binding site of dihydropyridine receptor is in the millimolar range. Thus, binding Ca2+-channel agonist or antagonist to dihydropyridine receptor is modulated by binding Ca2+ to different sites of the receptor. Measurements of dissociation rate constants for binding [3H]PN200-110 to dihydropyridine receptor in the presence of diltiazem, verapamil and/or Ca2+ indicate that Ca2+, like diltiazem or verapamil, is an allosteric effector of this receptor.  相似文献   

13.
The synthesis of a tritiated derivative of the 5-HT1A photoaffinity probe 8-methoxy-2-[N-n-propyl, N-3-(2-nitro-4-azidophenyl)aminopropyl]aminotetralin ([3H]8-methoxy-3'-NAP-amino-PAT) allowed the use of this probe for attempting the irreversible labeling of specific binding sites in rat brain membranes. Sodium dodecyl-sulfate-polyacrylamide gel electrophoresis of proteins solubilized from hippocampal microsomal membranes that had been incubated with 20 nM [3H]8-methoxy-3'-NAP-amino-PAT under UV light revealed a marked incorporation of 3H label into a 63-kilodalton protein termed PI. As expected of a possible correspondence between PI and 5-HT1A receptor binding sites, 3H labeling by the photoaffinity probe could be prevented by selective 5-HT1A ligands such as 8-hydroxy-2-(di-n-propylamino)tetralin, ipsapirone, buspirone, and gepirone and by N-ethylmaleimide, but not by the 5-HT2 antagonist ketanserin, noradrenaline- and dopamine-related drugs, monoamine oxidase inhibitors, and chlorimipramine. Furthermore, the regional and subcellular distributions of PI were identical to those of specific 5-HT1A binding sites. These results indicated that the binding subunit of the 5-HT1A receptor is a 63-kilodalton protein with a functionally important sulfhydryl group(s).  相似文献   

14.
3H]nitrendipine receptors in skeletal muscle   总被引:39,自引:0,他引:39  
The richest source of receptors for the organic calcium channel blocker [3H]nitrendipine in muscle is the transverse tubule membrane. The tubular membrane preparation binds [3H]nitrendipine with a high affinity and has a very high number of [3H]nitrendipine binding sites. For example, for the transverse tubule membrane preparation from rabbit muscle, the dissociation constant of the nitrendipine-receptor complex is 1.8 +/- 0.3 nM and the maximum binding capacity Bmax = 50 +/- 6 pmol/mg of protein. Similar results have been found with a membrane preparation from frog muscle. The dissociation constant found at equilibrium is near that determined from the ratio of rate constants for association (kappa 1) and dissociation (kappa-1). Binding of [3H] nitrendipine is pH-dependent and reveals the presence of an essential ionizable group with a pK of 5.4 on the nitrendipine receptor. The binding is destroyed by proteases showing that the receptor is a protein. Three different classes of Ca2+ channel blockers inhibit [3H]nitrendipine to its specific site. (i) The dihydropyridine analogs of nitrendipine which are competitive inhibitors of [3H]nitrendipine. These molecules form tight complexes with the nitrendipine receptor with dissociation constants between 1.4 and 4.0 nM. (ii) Other antiarrhythmic molecules like verapamil, amiodarone, bepridil, and F13004 which are noncompetitive inhibitors of [3H]nitrendipine binding with dissociation constants between 0.2 and 1 microM. (iii) Divalent cations like Ni2+, Co2+, Mn2+, or Ca2+ which are noncompetitive inhibitors of [3H]nitrendipine binding with the following rank order of potency: Ni+ (K0.5 = 1.8 mM) greater than Co2+ (K0.5 = 2.7 mM) greater than Mn2+ (K0.5 = 4.8 mM) greater than Ca2+ (K0.5 = 65 mM).  相似文献   

15.
The characteristics of photoaffinity labeling with the calcium agonist [3H]Bay K 8644 (Bay) and the calcium antagonists [3H]nitrendipine (Nit) and (+)PN200-110 (PN) of crude membranes from rat skeletal, cardiac, ileal, and uterine muscles and whole brain were investigated. In all these crude membranes, [3H](+)PN (20 nM) was mainly photoincorporated into one protein band with a molecular weight of 30,000 - 41,000 Da. It was also incorporated into some other bands of all these crude membranes. The photoincorporation of [3H](+)PN into these crude membranes was inhibited by the presence of 20 microM unlabeled (+)PN. The photoincorporation of [3H](+)PN into these crude membranes depended on its dose and on the time of UV irradiation. No incorporation of [3H](+)PN was observed in the absence of UV irradiation. The incorporation was not affected by the presence of 1 mM CaCl2 and/or 0.15 M NaCl, but was significantly decreased by 20 microM (+)PN and slightly decreased by 20 microM (-)PN, 20 microM Bay, 1 mM diltiazem, or 1 mM verapamil. Namely, enantiomers of PN caused various extents of stereoselective inhibition of photoaffinity labeling by [3H](+)PN of specific protein bands in these crude membranes. [3H]Nit was photoincorporated into these crude membranes in the same way as [3H](+)PN, but [3H]Bay was not photoincorporated. However, 20 microM unlabeled Nit did not consistently inhibit photoaffinity labeling with [3H]Nit. These findings suggested that measurement of photoaffinity of crude membranes from rat skeletal, cardiac, and uterine muscles and whole brain with [3H](+)PN by UV irradiation is a useful method for investigating the characteristics of the voltage-dependent calcium channels that are affected by 1,4-dihydropyridine derivatives.  相似文献   

16.
The adrenergic receptors of rat pineal gland were investigated using radiolabeled ligand binding and photoaffinity labeling techniques. 125I-2-[beta-(4-hydroxyphenyl)ethylaminomethyl]tetralone (125I-HEAT) and 125I-cyanopindolol (125I-CYP) labeled specific sites on rat pineal gland membranes with equilibrium dissociation constants (KD) of 48 (+/- 5) pM and 30 (+/- 5) pM, respectively. Binding site maxima were 481 (+/- 63) and 1,020 (+/- 85) fmol/mg protein. The sites labeled by 125I-HEAT had the pharmacological characteristics of alpha 1-adrenergic receptors. 125I-CYP-labeled beta-adrenergic receptors were characterized as a homogeneous population of beta 1-adrenergic receptors. The alpha 1- and beta 1-adrenergic receptors were covalently labeled with the specific photoaffinity probes 4-amino-6,7-dimethoxy-2-(4-[5-(4-azido-3-[125I]iodophenyl) pentanoyl]-1-piperazinyl) quinazoline (125I-APDQ) and 125I-p-azidobenzylcarazolol (125I-pABC). 125I-APDQ labeled an alpha 1-adrenergic receptor peptide of Mr = 74,000 (+/- 4,000), which was similar to peptides labeled in rat cerebral cortex, liver, and spleen. 125I-pABC labeled a single beta 1-adrenergic receptor peptide with a Mr = 42,000 (+/- 1,500), which differed from the 60-65,000 peptide commonly seen in mammalian tissues. Possible reasons for these differences are discussed.  相似文献   

17.
Bovine adrenal medulla plasma membranes were purified by a differential centrifugation procedure using sucrose and Urografin discontinuous density gradients; the membranes were enriched 10-12-fold in acetylcholinesterase activity and [3H]ouabain binding sites. Specific (+)-[3H]PN200-110 binding to these membranes amounted to 90% of total binding and was saturable and of high affinity (KD = 41 pM; Bmax = 119 fmol/mg of protein) with a Hill coefficient close to 1, a result suggesting the presence of a single, homogeneous population of dihydropyridine receptors. The association and dissociation rate constants were, respectively, 7.5 X 108 M-1 min-1 and 0.023 min-1. Unlabeled (+)-PN200-110 displaced (+)-[3H]PN200-110 binding with a potency 100-fold higher than (-)-PN200-110 (IC50,0.5 and 45nM, respectively). Although the two enantiomers of BAY K 8644 completely displaced (+)-[3H]PN200-110 binding, they exhibited no stereoselectivity (IC50, 69 and 83 nM,respectively). Whereas ( +/- )-nitrendipine very potently displaced (+)-[3H]PN200-110 binding (IC50 = 1.3 nM) verapamil and cinnarizine displaced the binding by only 30 and 40% at 1 microM, and diltiazem increased it by 20% at 10 microM. [3H]Ouabain bound to plasma membranes with a KD of 34 nM and a Bmax of 9.75 pmol/mg of protein, a figure 80-fold higher than the Bmax for (+)-PN200-110. [3H]Ouabain also bound to intact chromaffin cells with a Bmax of 244 fmol/10(6) cells.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
Tetrabutyl-2(2-phenoxyethyl)-1,3-propylidene diphosphonate (SR-7037) completely displaced dihydropyridine [( 3H]PN200-110), phenylalkylamine [( 3H]D888), and benzothiazepine [( 3H]diltiazem) ligands from brain L-type calcium channels. Half-maximal inhibition of [3H]PN200-110 binding occurred at 19 nM with a Hill coefficient of 0.96. SR-7037 primarily decreased the affinity for [3H]PN200-110 with a small, but significantly, effect on the maximal binding capacity. Kinetic studies showed that this was due to an increased radioligand dissociation rate from 0.04 min-1 to 0.43 min-1 in the presence of the diphosphonate. Displacement of [3H]D888 by SR-7037 was biphasic with respective IC50 of 44 and 8400 nM. Likewise, unlabeled (-)-D888 identified two sites with IC50 values of 0.9 and 27 nM. Both SR-7037 (1000 nM) and D888 (200 nM) accelerated radioligand dissociation about 2-fold. [3H]Diltiazem binding was inhibited by SR-7037 with an IC50 value of 29 nM. The inhibition of dihydropyridine binding by SR-7037 is enhanced by most divalent cations at millimolar concentrations with the following potency: Mn2+ greater than Mg2+ greater than Ca2+ greater than Co2+. Barium has the opposite effect. The half-maximal effect of calcium occurred at 6 microM free ion. Specific binding of [3H]D888 was antagonized in the presence of 1 mM CaCl2. It is concluded that SR-7037 has allosteric interactions with the dihydropyridine receptor of the L-type calcium channel. The differential effect of Ca2+ on the potency of D888 and diltiazem relative to that of SR-7037 indicates that the three drugs may bind to nonequivalent sites. These results support specific calcium channel inhibition, possibly at a novel site, as the primary mechanism of the diphosphonate's pharmacological actions.  相似文献   

19.
Tritiated vasopressin ([3H]AVP) was directly crosslinked to its human platelet receptor by using an ultraviolet irradiation procedure. After preincubation with [3H]AVP, the hydrodynamic parameters of the hormone-receptor complexes solubilized with 3-[(3-cholamidopropyl)dimethylammonio]-1-propane sulfonate were derived from Sephacryl S-300 superfine gel filtration and from sucrose density gradient ultracentrifugation experiments. The following values were obtained: Stoke's radius = 5.48 +/- 0.1 nm, apparent sedimentation coefficient = 5.55 +/- 0.1 S, and calculated molecular weight = 132,000. On sodium dodecyl sulfate-8% polyacrylamide slab gel electrophoresis under reducing conditions, [3H]AVP preferentially and specifically labeled a 125,000-dalton protein. The labeling of this protein was suppressed by addition of excess cold vasopressin, whereas angiotensin II did not inhibit incorporation of tritiated vasopressin in this protein. These results suggest that direct UV-photoaffinity labelling with [3H]AVP is a suitable tool for the purification of the human platelet vasopressin receptor.  相似文献   

20.
A radioactive photoactive dihydropyridine calcium channel blocker, [3H]azidopine, was used to photoaffinity label plasma membranes of multidrug-resistant Chinese hamster lung cells selected for resistance to vincristine (DC-3F/VCRd-5L) or actinomycin D (DC-3F/ADX). Sodium dodecyl sulfate-polyacrylamide gel electrophoretic fluorograms revealed the presence of an intensely radiolabeled 150-180-kDa doublet in the membranes from drug-resistant but not from the drug-sensitive parental (DC-3F) cells. A similar radiolabeled doublet was barely detected in a drug-sensitive partial revertant (DC-3F/ADX-U) cell line. The 150-180-kDa doublet exhibited a specific half-maximal saturable photolabeling at 1.07 X 10(-7) M [3H]azidopine. The dihydropyridine binding specificity was established by competitive blocking of specific photolabeling with nonradioactive azidopine as well as with nonphotoactive calcium channel blockers nimodipine, nitrendipine, and nifedipine. In addition, [3H]azidopine photolabeling was blocked by verapamil and diltiazem but was stimulated by excess prenylamine and bepridil suggesting a cross-specificity for up to four different classes of calcium channel blockers. The 150-180-kDa calcium channel blocker acceptor co-electrophoresed exactly with the 150-180-kDa surface membrane glycoprotein (gp150-180 or P-glycoprotein) Vinca alkaloid acceptor from multidrug-resistant cells and was immunoprecipitated by polyclonal antibody recognizing gp150-180. [3H]Azidopine photolabeling of the 150-180-kDa component in the presence of excess vinblastine was reduced over 90%, confirming the identity or close relationship of the calcium channel blocker acceptor and the gp150-180 Vinca alkaloid acceptor. The [3H]azidopine photolabeling of gp150-180 also was reduced by excess actinomycin D, adriamycin, or colchicine, demonstrating a broad gp150-180 drug recognition capacity. The ability of gp150-180 to recognize multiple natural product cytotoxic drugs as well as calcium channel blockers suggests a direct function for gp150-180 in the multidrug resistance phenomenon and a role in the circumvention of that resistance by calcium channel blockers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号