首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
Segments are fundamental units in animal development which are made of distinct cell lineages separated by boundaries. Although boundaries show limited plasticity during their formation for sharpening, cell lineages make compartments that become tightly restricted as development goes on. Here, we characterize a unique case of breaking of the segment boundary in late drosophila embryos. During dorsal closure, specific cells from anterior compartments cross the segment boundary and enter the adjacent posterior compartments. This cell mixing behaviour is driven by an anterior-to-posterior reprogramming mechanism involving de novo expression of the homeodomain protein Engrailed. Mixing is accompanied by stereotyped local cell intercalation, converting the segment boundary into a relaxation compartment important for tension-release during morphogenesis. This process of lineage switching and cell remodelling is controlled by JNK signalling. Our results reveal plasticity of segment boundaries during late morphogenesis and a role for JNK-dependent developmental reprogramming in this process.  相似文献   

2.
Neiman AM 《Genetics》2011,189(3):737-765
In response to nitrogen starvation in the presence of a poor carbon source, diploid cells of the yeast Saccharomyces cerevisiae undergo meiosis and package the haploid nuclei produced in meiosis into spores. The formation of spores requires an unusual cell division event in which daughter cells are formed within the cytoplasm of the mother cell. This process involves the de novo generation of two different cellular structures: novel membrane compartments within the cell cytoplasm that give rise to the spore plasma membrane and an extensive spore wall that protects the spore from environmental insults. This article summarizes what is known about the molecular mechanisms controlling spore assembly with particular attention to how constitutive cellular functions are modified to create novel behaviors during this developmental process. Key regulatory points on the sporulation pathway are also discussed as well as the possible role of sporulation in the natural ecology of S. cerevisiae.  相似文献   

3.
4.
5.
6.
Intestinal development and differentiation   总被引:1,自引:0,他引:1  
  相似文献   

7.
The chaperone-mediated sequestration of misfolded proteins into specialized quality control compartments represents an important strategy for maintaining protein homeostasis in response to stress. However, precisely how this process is controlled in time and subcellular space and integrated with the cell''s protein refolding and degradation pathways remains unclear. We set out to understand how aggregated proteins are managed during infection-related development by a globally devastating plant pathogenic fungus and to determine how impaired protein quality control impacts cellular differentiation and pathogenesis in this system. Here we show that in the absence of Hsp104 disaggregase activity, aggregated proteins are spatially sequestered into quality control compartments within conidia, but not within terminally differentiated infection cells, and thus spatial protein quality control is cell type–dependent. We demonstrate that impaired aggregate resolution results in a short-term developmental penalty but has no significant impact upon appressorium function. Finally, we show that, somewhat unexpectedly, the autophagy machinery is necessary for the normal formation and compartmentalization of protein aggregates. Taken together, our findings provide important new insight into spatial protein quality control during the process of terminal cellular differentiation by a globally important model eukaryote and reveal a new level of interplay between major proteostasis pathways.  相似文献   

8.
Brefeldin A (BFA) induces the formation of an extensively fused network of membranes derived from the trans-Golgi network (TGN) and early endosomes (EE). We describe in detail here the unaffected passage of endocytosed material through the fused TGN/EE compartments to lysosomes in BFA-treated cells. We also confirmed that BFA caused the formation of tubular lysosomes, although the kinetics and extent of tubulation varied greatly between different cell types. The BFA-induced tubular lysosomes were often seen to form simple networks. Formation of tubular lysosomes was microtubule-mediated and energy-dependent; interestingly, however, maintenance of the tubulated lysosomes only required microtubules and was insensitive to energy poisons. Upon removal of BFA, the tubular lysosomes rapidly recovered in an energy-dependent process. In most cell types examined, the extensive TGN/EE network is ephemeral, eventually collapsing into a compact cluster of tubulo-vesicular membranes in a process that precedes the formation of tubular lysosomes. However, in primary bovine testicular cells, the BFA-induced TGN/EE network was remarkably stable (for > 12 h). During this time, the TGN/EE network coexisted with tubular lysosomes, however, the two compartments remained completely separate. These results show that BFA has multiple, profound effects on the morphology of various compartments of the endosome-lysosome system. In spite of these changes, endocytic traffic can continue through the altered compartments suggesting that transport occurs through noncoated vesicles or through vesicles that are insensitive to BFA.  相似文献   

9.
Is a mosaic embryo also a mosaic of communication compartments?   总被引:2,自引:0,他引:2  
We have studied the pathways of cell communication in embryos of the mollusc Lymnaea stagnalis in which the developmental fate of a cell or a group of cells is known from cell lineage studies. We iontophoretically injected Lucifer Yellow CH and followed the spread of fluorescence between cells interconnected via gap junctions. In early stages all blastomeres appear to be dye-coupled, but later on communication is restricted within compartments. The pattern of cell communication corresponds with the development of compartments with specific cell fates. Dye-spread is limited by communication boundaries which completely or mostly prevent the passage of dye to adjacent compartments with different developmental fates. These boundaries appear progressively during development. Our results suggest that, during the development of Lymnaea, the progressive changes in the pattern of dye spread correspond with the progressive restrictions of the developmental fates of individual cells or groups of cells. We conclude that changes in the pattern of cell communication and in the appearance of communication compartments are not exclusive features of regulative embryos.  相似文献   

10.
The mechanisms that control organ growth are among the least known in development. This is particularly the case for the process in which growth is arrested once final size is reached. We have studied this problem in the wing disc of Drosophila, the developmental and growth parameters of which are well known. We have devised a method to generate entire fast-growing Minute(+) (M(+)) discs or compartments in slow developing Minute/+ (M/+) larvae. Under these conditions, a M(+) wing disc gains at least 20 hours of additional development time. Yet it grows to the same size of Minute/+ discs developing in M/+ larvae. We have also generated wing discs in which all the cells in either the anterior (A) or the posterior (P) compartment are transformed from M/+ to M(+). We find that the difference in the cell division rate of their cells is reflected in autonomous differences in the developmental progression of these compartments: each grows at its own rate and manifests autonomous regulation in the expression of the developmental genes wingless and vestigial. In spite of these differences, ;mosaic' discs comprising fast and slow compartments differentiate into adult wings of the correct size and shape. Our results demonstrate that imaginal discs possess an autonomous mechanism with which to arrest growth in anterior and posterior compartments, which behave as independent developmental units. We propose that this mechanism does not act by preventing cell divisions, but by lengthening the division cycle.  相似文献   

11.
12.
13.
BACKGROUND: In angiosperms the seed is the outcome of double fertilization, a process leading to the formation of the embryo and the endosperm. The development of the two seed compartments goes through three main phases: polarization, differentiation of the main tissues and organs and maturation. SCOPE: This review focuses on the maize kernel as a model system for developmental and genetic studies of seed development in angiosperms. An overview of what is known about the genetic and molecular aspects underlying embryo and endosperm formation and maturation is presented. The role played by embryonic meristems in laying down the plant architecture is discussed. The acquisition of the different endosperm domains are presented together with the use of molecular markers available for the detection of these domains. Finally the role of programmed cell death in embryo and endosperm development is considered. CONCLUSIONS: The sequence of events occurring in the developing maize seed appears to be strictly regulated. Proper seed development requires the co-ordinated expression of embryo and endosperm genes and relies on the interaction between the two seed components and between the seed and the maternal tissues. Mutant analysis is instrumental in unravelling the genetic control underlying the formation of each compartment as well as the molecular signals interplaying between the two compartments.  相似文献   

14.
15.
Logic of gene regulatory networks   总被引:1,自引:0,他引:1  
  相似文献   

16.
Polyps of Scyphozoa have a cup-shaped body. At one end is the mouth opening surrounded by tentacles, at the other end is an attachment disc. The body wall consists of two tissue layers, the ectoderm and the endoderm, which are separated by an extracellular matrix, the mesoglea. The polyp's gastric cavity is subdivided by septa running from the apical end to the basal body end. The septa consist of two layers of endoderm and according to biology textbooks the number of septa is four. However, in rare circumstances Aurelia produces polyps with zero, two, six, or eight septa. We found that the number was always even. Therefore we propose that two types of endoderm exist, forming alternating stripes running from the oral body end to the aboral end. The stripes have some properties of developmental compartments. Where cells of different compartments meet, they form a septum. We also propose that the ectoderm is subdivided into compartments. The borders of the ectodermal and endodermal compartments are perpendicular to each other. Tentacles of the polyp and rhopalia (sense organs) of the ephyra (young medusa), respectively, develop at the border between two ectodermal compartments. The number can be even or odd. Rhopalia formation is particularly favored where two ectodermal and two endodermal compartments meet.  相似文献   

17.
Growth of lateral organs is a complex mechanism that starts with formation of lateral primordia.Basal developmental programs like polarity, organ identity and environmental cues influence the final organ size achieved via coordinated cell division and expansion. recent evidence shows that the precise balance between these two processes, known as compensation mechanisms, seems to be influenced by the identity of the organ. Furthermore, studies of mutants affected in floral organ size suggest the existence of developmental compartments within different floral whorls that show distinct compensation behaviors.Key words: Antirrhinum majus, cell division, cell expansion, COMPACTA ÄHNLICH, compensation, floral size, FORMOSA, NITIDA, organ identity  相似文献   

18.
Dormant spores of Bacillus anthracis germinate during host infection and their vegetative growth and dissemination precipitate anthrax disease. Upon host death, bacilli engage a developmental programme to generate infectious spores within carcasses. Hallmark of sporulation in Bacillus spp. is the formation of an asymmetric division septum between mother cell and forespore compartments. We show here that sortase C (SrtC) cleaves the LPNTA sorting signal of BasH and BasI, thereby targeting both polypeptides to the cell wall of sporulating bacilli. Sortase substrates are initially produced in different cell compartments and at different developmental stages but penultimately decorate the envelope of the maturing spore. srtC mutants appear to display no defect during the initial stages of infection and precipitate lethal anthrax disease in guinea pigs at a similar rate as wild-type B. anthracis strain Ames. Unlike wild-type bacilli, srtC mutants do not readily form spores in guinea pig tissue or sheep blood unless their vegetative forms are exposed to air.  相似文献   

19.
20.
Specificity of gap junction formation produces communication compartments, groups of cells joined to each other by gap junctions (homologous communication) but more rarely to cells in adjacent compartments (heterologous communication). Specificity of junction formation can be studied in mixed cultures of different cell types. In these model systems, compartmentation is often associated with sorting out, a process that produces separate domains of the different cells. The borders of the physically distinct domains correlate with the functional boundaries of the communication compartments. Compartments have also been observedin vivowhere they are believed to play a role in separating groups of cells following different differentiation pathways. Two classes of cell surface molecule, connexins and cell adhesion molecules, are candidates for a role in the control of specificity. A representative of each class appears to be necessary for gap junction formation and both are expressed in a tissue specific manner. We have shown that mixed cultures of rat epithelial (BRL) cells and rat (BICR) fibroblasts show specificity, form communication compartments and sort out. Both cell types express the same connexin (connexin 43) but different cell adhesion molecules (BRL, P-cadherin and 125-kDa N-cadherin; BICR, 140-kDa N-cadherin). Transfection of both cell types with E-cadherin results in a 10-fold increase in heterologous communication. These data suggest that E-cadherin plays a role in the control of specificity of gap junction formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号