首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have characterized 17 rob(13q14q) Robertsonian translocations, using six molecular probes that hybridize to the repetitive sequences of the centromeric and shortarm regions of the five acrocentric chromosomes by FISH. The rearrangements include six de novo rearrangements and the chromosomally normal parents, five maternally and three paternally inherited translocations, and three translocations of unknown origin. The D21Z1/D13Z1 and D14Z1/D22Z1 centromeric alpha-satellite DNA probes showed all rob(13q14q) chromosomes to be dicentric. The rDNA probes did not show hybridization on any of the 17 cases studied. The pTRS-47 satellite III DNA probe specific for chromosomes 14 and 22 was retained around the breakpoints in all cases. However, the pTRS-63 satellite III DNA probe specific for chromosome 14 did not show any signals on the translocation chromosomes examined. In 16 of 17 translocations studied, strong hybridization signals on the translocations were detected with the pTRI-6 satellite I DNA probe specific for chromosome 13. All parents of the six de novo rob(13q14q), including one whose pTRI-6 sequence was lost, showed strong positive hybridization signals on each pair of chromosomes 14 and 13, with pTRS-47, pTRS-63, and pTRI-6. Therefore, the translocation breakpoints in the majority of rob(13q14q) are between the pTRS-47 and pTRS-63 sequences in the p11 region of chromosome 14 and between the pTRI-6 and rDNA sequences within the p11 region of chromosome 13.  相似文献   

2.
Non-heading Chinese cabbage [Brassica rapa L. ssp. chinensis (L.) Hanelt] is one of the most popular leafy vegetables. Despite the economic importance of non-heading Chinese cabbage, little attention has been given to its cytogenetic profile. This study reveals the karyotype of non-heading Chinese cabbage. Fluorescence in situ hybridization (FISH) with 45S and 5S rDNA probes was performed on mitotic metaphase complementary regions. We located 45S rDNA on the centromeric or adjacent region of chromosomes A1 and A2, with the largest on the satellite of chromosome A5. Meanwhile, 5S rDNA co-localized with 45S rDNA on chromosomes A2 and A5, and on the telomeric region of chromosome A10. We performed DAPI fluorescence banding on the same metaphase chromosomes to identify homologous chromosomes. The DAPI fluorescence pattern was observed mainly on the centromeric heterochromatin regions of each chromosome. However, the lengths of chromosomes A2 and A6 were completely stained, except for their telomeric regions. Meiotic diakinesis chromosomes as new substrates in FISH-developed karyotype were revealed for the first time. The karyotype of non-heading Chinese cabbage reveals that it contains eight submetacentric chromosomes, one subtelocentric chromosome (bearing satellite), and one telocentric chromosome. Diakinetic chromosome pairing can overcome the difficulty of unlabeled chromosome identification. This study provided valuable information for cytogenetic research and molecular breeding of non-heading Chinese cabbage by using the combination of FISH and DAPI fluorescence patterns on mitotic and meiotic chromosomes.  相似文献   

3.
Satellite DNA sequences were isolated from the water buffalo (Bubalus bubalis) after digestion with two restriction endonucleases, BamHI and StuI. These satellite DNAs of the water buffalo were classified into two types by sequence analysis: one had an approximately 1,400 bp tandem repeat unit with 79% similarity to the bovine satellite I DNA; the other had an approximately 700 bp tandem repeat unit with 81% similarity to the bovine satellite II DNA. The chromosomal distribution of the satellite DNAs were examined in the river-type and the swamp-type buffaloes with direct R-banding fluorescence in situ hybridization. Both the buffalo satellite DNAs were localized to the centromeric regions of all chromosomes in the two types of buffaloes. The hybridization signals with the buffalo satellite I DNA on the acrocentric autosomes and X chromosome were much stronger than that on the biarmed autosomes and Y chromosome, which corresponded to the distribution of C-band-positive centromeric heterochromatin. This centromere-specific satellite DNA also existed in the interstitial region of the long arm of chromosome 1 of the swamp-type buffalo, which was the junction of the telomere-centromere tandem fusion that divided the karyotype in the two types of buffaloes. The intensity of the hybridization signals with buffalo satellite II DNA was almost the same over all the chromosomes, including the Y chromosome, and no additional hybridization signal was found in noncentromeric sites.  相似文献   

4.
We describe the morphology and molecular organization of heterochromatin domains in the interphase nuclei, and mitotic and meiotic chromosomes, of Brassica rapa, using DAPI staining and fluorescence in situ hybridization (FISH) of rDNA and pericentromere tandem repeats. We have developed a simple method to distinguish the centromeric regions of mitotic metaphase chromosomes by prolonged irradiation with UV light at the DAPI excitation wavelength. Application of this bleached DAPI band (BDB) karyotyping method to the 45S and 5S rDNAs and 176 bp centromere satellite repeats distinguished the 10 B. rapa chromosomes. We further characterized the centromeric repeat sequences in BAC end sequences. These fell into two classes, CentBr1 and CentBr2, occupying the centromeres of eight and two chromosomes, respectively. The centromere satellites encompassed about 30% of the total chromosomes, particularly in the core centromere blocks of all the chromosomes. Interestingly, centromere length was inversely correlated with chromosome length. The morphology and molecular organization of heterochromatin domains in interphase nuclei, and in mitotic and meiotic chromosomes, were further characterized by DAPI staining and FISH of rDNA and CentBr. The DAPI fluorescence of interphase nuclei revealed ten to twenty conspicuous chromocenters, each composed of the heterochromatin of up to four chromosomes and/or nucleolar organizing regions.  相似文献   

5.
Han Y  Zhang Z  Huang S  Jin W 《BMC genetics》2011,12(1):18-7

Background

Integration of molecular, genetic and cytological maps is still a challenge for most plant species. Recent progress in molecular and cytogenetic studies created a basis for developing integrated maps in cucumber (Cucumis sativus L.).

Results

In this study, eleven fosmid clones and three plasmids containing 45S rDNA, the centromeric satellite repeat Type III and the pericentriomeric repeat CsRP1 sequences respectively were hybridized to cucumber metaphase chromosomes to assign their cytological location on chromosome 2. Moreover, an integrated molecular cytogenetic map of cucumber chromosomes 2 was constructed by fluorescence in situ hybridization (FISH) mapping of 11 fosmid clones together with the cucumber centromere-specific Type III sequence on meiotic pachytene chromosomes. The cytogenetic map was fully integrated with genetic linkage map since each fosmid clone was anchored by a genetically mapped simple sequence repeat marker (SSR). The relationship between the genetic and physical distances along chromosome was analyzed.

Conclusions

Recombination was not evenly distributed along the physical length of chromosome 2. Suppression of recombination was found in centromeric and pericentromeric regions. Our results also indicated that the molecular markers composing the linkage map for chromosome 2 provided excellent coverage of the chromosome.  相似文献   

6.
Intracytoplasmic sperm injection (ICSI), as an assisted reproduction technique, has been widely used in animal and human. However, its possible effect on epigenetic changes has not been well studied. To investigate whether ICSI can induce aberrant DNA methylation changes in rabbit preimplantation embryos, we examined the methylation status of the SP-A promoter region and the satellite sequence Rsat IIE by bisulfite-sequencing technology. The SP-A promoter region was extensively demethylated before the first round of DNA replication commences, and the unmethylated status was maintained until morula when dynamic remethylation occurred. A similar but more moderate demethylation process was observed in satellite sequence Rsat IIE. These results are in contrast with the previous reports of no active demethylation in normal rabbit embryos, suggesting that the active demethylation we observed may be induced by ICSI.  相似文献   

7.
A degenerate alpha satellite DNA probe specific for a repeated sequence on human chromosomes 13 and 21 was synthesized using the polymerase chain reaction (PCR). Fluorescence in situ hybridization (FISH) with this probe to normal metaphase spreads revealed strong probe binding to the centromeric regions of human chromosomes 13 and 21 with negligible cross-hybridization with other chromosomes. FISH to normal interphase cell nuclei showed four distinct domains of probe binding. However, hybridization with probe to interphase and metaphase preparations from one apparently normal human male resulted in only three major binding domains. Metaphase chromosome analysis revealed a centromeric deletion on one chromosome 21 that caused greatly reduced probe binding. The result suggest caution in the interpretation of interphase ploidy studies performed with chromosome-specific alphoid DNA probes.  相似文献   

8.
In the present study, we describe for the first time a family of 190-bp satellite DNA related to 5S rDNA in anurans and the existence of 2 forms of 5S rDNA, type I (201 bp) and type II (690 bp). The sequences were obtained from genomic DNA of Physalaemus cuvieri from Palmeiras, State of Bahia, Brazil. Analysis of the nucleotide sequence revealed that the satellite DNA obtained by digestion with EcoRI, called PcP190EcoRI, is 70% similar to the coding region of type I 5S rDNA and 66% similar to the coding region of type II 5S rDNA. Membrane hybridization and PCR amplification of the sequence showed that PcP190EcoRI is tandemly repeated. The satellite DNA as well as type I and type II 5S rDNA were localized in P. cuvieri chromosomes by fluorescent in situ hybridization. The PcP190EcoRI sequence was found in the centromeres of chromosomes 1-5 and in the pericentromeric region of chromosome 3. Type I 5S rDNA was detected in chromosome 3, coincident with the site of PcP190EcoRI. Type II 5S rDNA was located interstitially in the long arm of chromosome 5. None of these sequences co-localized with nucleolar organizer regions. Our data suggests that this satellite DNA originates from the 5S ribosomal multigene family, probably by gene duplication, nucleotide divergence and sequence dispersion in the genome.  相似文献   

9.
10.
Several repetitive DNA fragments were generated from PCR amplifications of caribou DNA using primer sequences derived from the white-tailed deer satellite II DNA clone OvDII. Two fragments, designated Rt-0.5 and Rt-0.7, were sequenced and found to have 96% sequence similarity. These caribou clones also had 85% sequence similarity with OvDII. Multiple-colored fluorescence in situ hybridization (FISH) studies with satellite I and satellite II DNA probes to caribou metaphase chromosomes and extended chromatin fibers provided direct visualization of the genomic organization of these two satellite DNA families, with the following findings: (1) Cervid satellite I DNA is confined to the centromeric regions of the acrocentric autosomes, whereas satellite II DNA is found at the centromeric regions of all chromosomes except for the Y. (2) For most acrocentric chromosomes, the satellite I signal appeared to be medially located at the primary constriction, in contrast to that of satellite II, which appeared to be oriented toward the lateral sides as two separate fluorescent dots. (3) The satellite II clone Rt-0.7 appeared to be enriched in the centromeric region of the caribou X chromosome, a pair of biarmed autosomes, and a number of other acrocentric autosomes. (4) Fiber-FISH demonstrated that the satellite I and satellite II arrays were juxtaposed. On highly extended chromatin fibers, the total length of the hybridization signals for the two satellite DNA arrays often reached 300-400 microm. The length of a given satellite II array usually reached 200 microm, corresponding to 2 x 10(3) kb of DNA in a given centromere.  相似文献   

11.
The karyotype of the tamaraw (Bubalus mindorensis, 2n = 46) was investigated by RBG-banding technique and compared with those of the river and the swamp cytotypes of domestic water buffalo (B. bubalis). The tamaraw karyotype consisted of 6 submetacentric and 16 acrocentric autosome pairs (NAA = 56), and X and Y chromosomes. The RBG-banded karyotype of the three taxa had a high degree of homology, and the tamaraw karyotype could be explained by a Robertsonian translocation between chromosomes 7 and 15 and by a telomere-centromere tandem fusion between chromosomes 4p and 12 of the standardized river buffalo cytotype (2n = 50, NAA = 58). The buffalo satellite I and II DNAs were localized to the centromeric regions of all the tamaraw chromosomes. The biarmed chromosome 2 of the tamaraw resulting from the fusion between chromosomes 7 and 15 of the standard contained much larger amounts of the satellite I DNA than the other biarmed chromosomes, suggesting that this chromosome was formed by a relatively recent Robertsonian fusion. The (TTAGGG)n telomeric sequence was specifically localized to the telomeric region of all the buffalo chromosomes. The 18S + 28S rDNA was localized to the telomeric regions of the chromosomes 5p, 7, 19, 21, and 22 of the tamaraw and of their homologous chromosomes in the river and swamp buffalo cytotypes.  相似文献   

12.
The 5S ribosomal RNA genes were mapped to mitotic chromosomes of Arabidopsis thaliana by fluorescence in situ hybridization (FISH). In the ecotype Landsberg erecta, hybridization signals appeared on three pairs of chromosomes, two of which were metacentric and the other acrocentric. Hybridization signals on one pair of metacentric chromosomes were much stronger than those on the acrocentric and the other pair of metacentric chromosomes, probably reflecting the number of copies of the genes on the chromosomes. Other ecotypes, Columbia and Wassilewskija, had similar chromosomal distribution of the genes, but the hybridization signals on one pair of metacentric chromosomes were very weak, and detectable only in chromosomes prepared from young flower buds. The chromosomes and arms carrying the 5S rDNA were identified by multi-color FISH with cosmid clones and a centromeric 180 bp repeat as co-probes. The metacentric chromosome 5 and its L arm carries the largest cluster of the genes, and the short arm of acrocentric chromosome 4 carries a small cluster in all three ecotypes. Chromosome 3 had another small cluster of 5S rRNA genes on its L arm. Chromosomes 1 and 2 had no 5S rDNA cluster, but they are morphologically distinguishable; chromosome 1 is metacentric and 2 acrocentric. Using the 5S rDNA as a probe, therefore, all chromosomes of A. thaliana could be identified by FISH. Chromosome 1 is large and metacentric; chromosome 2 is acrocentric carrying 18S-5.8S-25S rDNA clusters on its short arm; chromosome 3 is metacentric carrying a small cluster of 5S rDNA genes on its L arm; chromosome 4 is acrocentric carrying both 18S-5.8S-25S and 5S rDNAs on its short (L) arm; and chromosome 5 is metacentric carrying a large cluster of 5S rDNA on its L arm.  相似文献   

13.
Centromeric alpha satellite DNA sequences are linked to the kinetochore CENP-B proteins and therefore may be involved in the centromeric function. The high heterogeneity of size of the alphoid blocks raises the question of whether small amount of alphoid DNA or "deletion" of this block may have a pathological significance in the human centromere. In the present study, we analysed the correlation between size variations of alphoid DNA and kinetochore sizes in human chromosome 21 by molecular cytogenetic and immunochemical techniques. FISH analyses of alpha satellite DNA sizes in chromosome 21 homologues correlated well with the variation of their physical size as determined by pulsed field gel electrophoresis (PFGE). By contrast, the immunostaining study of the same homologous chromosomes with antikinetochore antibodies suggested that there is no positive correlation between the alpha satellite DNA block and kinetochore sizes. FISH analysis of chromosome 21-specific alphoid DNA and immunostaining of kinetochore extended interphase chromatin fibers indicate that centromeric kinetochore-specific proteins bind to restricted areas of centromeric DNA arrays. Thus, probably, restricted regions of centromeric DNA play an important role in kinetochore formation, centromeric function and abnormal chromosome segregation leading to non-disjunction.  相似文献   

14.
Fluorescence in situ hybridization (FISH) analyses were used to order 16 bacterial artificial chromosomes (BAC) clones containing loci from the bovine lymphocyte antigen (BoLA) class I and III regions of bovine chromosome 23 (BTA23). Fourteen of these BACs were assigned to chromosomal band locations of mitotic and pachytene chromosomes by single- and dual-colour FISH. Dual-colour FISH confirmed that class II DYA is proximal to and separated from BoLA class I genes by approximately three chromosome bands. The FISH results showed that tumour necrosis factor alpha (TNFA), heat shock protein 70 (HSP70.1) and 21 steroid dehydrogenase (CYP21) are closely linked in the region of BTA23 band 22 along with BoLA class I genes, and that male enhanced antigen (MEA) mapped between DYA and the CYP21/TNFA/HSP70.1 gene region. All BAC clones containing BoLA class I genes mapped distal to CYP21/TNFA/HSP70.1 and centromeric to prolactin (PRL). Myelin oligodendrocyte glycoprotein (MOG) was shown to be imbedded within the BoLA class I gene cluster. The cytogenetic data confirmed that the disrupted distribution of BoLA genes is most likely the result of a single large chromosomal inversion. Similar FISH results were obtained when BoLA DYA and class I BAC clones were mapped to discrete chromosomal locations on the BTA homologue in white-tailed deer, suggesting that this chromosomal inversion predates divergence of the advanced ruminant families from a common ancestor.  相似文献   

15.
The predominant chromosomal locations of human satellite I DNA were detected using fluorescent in situ hybridization (FISH). Synthetic deoxyoligonucleotides designed from consensus sequences of the simple sequence repeats of satellite 1 were used as probes. The most abundant satellite I repeat, the-A-B-A-B-A-form, is located at the pericentromeric regions of chromosomes 3, 4, 13, 14, 15, 21, and 22. The less abundant-B-B-B-form was not detected on chromosome 4, but was present at all the other locations. A variation of FISH that allows strand-specific hybridization of single-stranded probes (CO-FISH) determined that the human satellite I sequences are predominantly arranged in head-to-tail fashtion along the DNA strand.  相似文献   

16.
The olive fruit fly, Bactrocera oleae, has a diploid set of 2n?=?12 chromosomes including a pair of sex chromosomes, XX in females and XY in males, but polytene nuclei show only five polytene chromosomes, obviously formed by five autosome pairs. Here we examined the fate of the sex chromosomes in the polytene complements of this species using fluorescence in situ hybridization (FISH) with the X and Y chromosome-derived probes, prepared by laser microdissection of the respective chromosomes from mitotic metaphases. Specificity of the probes was verified by FISH in preparations of mitotic chromosomes. In polytene nuclei, both probes hybridized strongly to a granular heterochromatic network, indicating thus underreplication of the sex chromosomes. The X chromosome probe (in both female and male nuclei) highlighted most of the granular mass, whereas the Y chromosome probe (in male nuclei) identified a small compact body of this heterochromatic network. Additional hybridization signals of the X probe were observed in the centromeric region of polytene chromosome II and in the telomeres of six polytene arms. We also examined distribution of the major ribosomal DNA (rDNA) using FISH with an 18S rDNA probe in both mitotic and polytene chromosome complements of B. oleae. In mitotic metaphases, the probe hybridized exclusively to the sex chromosomes. The probe signals localized a discrete rDNA site at the end of the short arm of the X chromosome, whereas they appeared dispersed over the entire dot-like Y chromosome. In polytene nuclei, the rDNA was found associated with the heterochromatic network representing the sex chromosomes. Only in nuclei with preserved nucleolar structure, the probe signals were scattered in the restricted area of the nucleolus. Thus, our study clearly shows that the granular heterochromatic network of polytene nuclei in B. oleae is formed by the underreplicated sex chromosomes and associated rDNA.  相似文献   

17.
为了解栽培种甘薯(徐薯18,Ipomoea batatas cv.XushuNo.18)的染色体结构,文章利用45SrDNA荧光原位杂交、自身基因组荧光原位杂交和银染技术对栽培种甘薯进行分子细胞遗传学研究。银染结果显示,徐薯18间期核有6对、8对和9对银染点;45SrDNA荧光原位杂交结果显示,徐薯18染色体上有8对或9对强弱不一的45SrDNA信号;自身基因组荧光原位杂交结果表明,所有染色体的全长分布强烈而密集的杂交信号,着丝粒区、近着丝粒区和端粒区有增强的信号带。  相似文献   

18.
Members of three prominent DNA families of Beta procumbens have been isolated as Sau3A repeats. Two families consisting of repeats of about 158 bp and 312 bp are organized as satellite DNAs (Sau3A satellites I and II), whereas the third family with a repeat length of 202 bp is interspersed throughout the genome. Multi-colour fluorescence in situ hybridization was used for physical mapping of the DNA families, and has shown that these tandemly organized families occur in large heterochromatic and DAPI positive blocks. The Sau3A satellite I hybridized exclusively around or near the centromeres of 10, 11 or 12 chromosomes. The Sau3A satellite family I showed high intraspecific variability and high-resolution physical mapping was performed on pachytene chromosomes using differentially labelled repeats. The physical order of satellite subfamily arrays along a chromosome was visualized and provided evidence that large arrays of plant satellite repeats are not contiguous and consist of distinct subfamily domains. Re-hybridization of a heterologous rRNA probe to mitotic metaphase chromosomes revealed that the 18S-5.8S-25S rRNA genes are located at subterminal position on one chromosome pair missing repeat clusters of the Sau3A satellite family I. It is known that arrays of Sau3A satellite I repeats are tightly linked to a nematode (Heterodera schachtii) resistance gene and our results show that the gene might be located close to the centromere. Large arrays of the Sau3A satellite II were found in centromeric regions of 16 chromosomes and, in addition, a considerable interspersion of repeats over all chromosomes was observed. The family of interspersed 202 bp repeats is uniformly distributed over all chromosomes and largely excluded from the rRNA gene cluster but shows local amplification in some regions. Southern hybridization has shown that all three families are specific for genomes of the section Procumbentes of the genus Beta.  相似文献   

19.
Huang X  Hu J  Hu X  Zhang C  Zhang L  Wang S  Lu W  Bao Z 《Genes & genetic systems》2007,82(3):257-263
The chromosomes of Argopecten irradians irradians were studied by various cytogenetic approaches. Conventional chromosome characterization built on C-banding, DAPI-staining, and silver staining was complemented by the physical mapping of ribosomal DNA and telomeric sequence (TTAGGG)n by FISH. Results showed that the constitutive heterochromatin revealed by C-banding was mainly distributed at telomeric and centromeric regions. However, interstitial C-bands were also observed. The pattern of DAPI banding was almost consistent with that of C-banding. Silver staining revealed that NORs were located on the short arms of chromosome 3 and 10, and this was further confirmed by FISH using 18S-28S rDNA. 5S rDNA was mapped as two distinguishable loci on the long arm of chromosome 11. 18S-28S and 5S rDNA were located on different chromosomes by sequential FISH. FISH also showed that the vertebrate telomeric sequence (TTAGGG)n was located on both ends of each chromosome and no interstitial signals were detected. Sequential 18S-28S rDNA and (TTAGGG)n FISH demonstrated that repeated units of the two multicopy families were closely associated on the same chromosome pair.  相似文献   

20.
Prochilodus lineatus, an abundant species in the Mogi-Guaçu river basin, represents a large part of the region's fishing potential. Karyotypic analyses based on classic cytogenetic techniques have revealed the presence of 54 meta-submetacentric type chromosomes, together with the occurrence of small supernumerary chromosomes with intra and interindividual variations. This paper describes the genomic organization of two families of satellite DNA in the P. lineatus genome. The chromosomal localization these two repetitive DNA families through fluorescence in situ hybridization (FISH) demonstrated that the SATH1 satellite DNA family, composed of approximately 900 bp, was located in the pericentromeric region of a group of chromosomes of the standard complement, as well as on all the B chromosomes. The SATH2 satellite family has a monomeric unit of 441 bp and was located in the pericentromeric regions of some chromosomes of the standard complement, but was absent in the B chromosomes. Double FISH analyses showed that these two families participate jointly in the pericentromeric organization of several chromosomes of this species. The data obtained in this study support the hypothesis that the B chromosomes derive from chromosomes of the standard complement, which are carriers of the SATH1 satellite DNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号