首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The polyketide aglycone, tylactone (protylonolide), does not normally accumulate during tylosin production in Streptomyces fradiae, suggesting that the capacity of the organism to glycosylate tylactone exceeds the capacity for polyketide synthesis. Consistent with this model, tylosin yields were significantly increased (due to bioconversion of the added material) when exogenous tylactone was added to fermentations. However, tylosin yield improvements were also observed (albeit at lower levels) in solvent controls to which dimethylsulfoxide (DMSO) was added. At least in part, the latter effect resulted from stimulation of polyketide metabolism by DMSO. This was revealed when the solvent was added to fermentations containing the tylA mutant, S. fradiae GS14, which normally accumulates copious quantities of tylactone. Journal of Industrial Microbiology & Biotechnology (2001) 27, 46–51. Received 18 March 2001/ Accepted in revised form 29 May 2001  相似文献   

2.
Conventional mutagenesis (UV irradiation and exposure to nitrosoguanidine) were used to produce and regenerate protoplasts, aiming at increasing the antibiotic activity of a Streptomycesfradiae strain producing tylosin. Variants exceeding the activity of the initial producer strain by 0.5-28.3% were obtained. The most active variants were produced by a combined exposure to UV and nitrosoguanidine, as well as upon regeneration of protoplasts formed from the cells of clones produced by UV irradiation. Unstable inheritance of the trait of increased tylosin production was demonstrated.  相似文献   

3.
4.
To elucidate the repression mechanism of ammonium ions on the biosynthesis of tylosin in Streptomyces fradiae NRRL 2702, enzyme activities involved in the metabolism of the aspartate family of amino acids were evaluated in relation to the ammonium ion concentration and tylosin production. It was found that aspartate aminotransferase was essential for both cell growth and tylosin production. However, both threonine dehydratase and valine dehydrogenase were repressed by supplemented ammonium ions at concentrations higher than 50 mM. Threonine dehydratase was purified from cell-free extracts by acetone precipitation, ion-exchange chromatography and gel filtration, and its molecular mass was estimated to be 67,200 Da. The optimum pH and temperature for threonine dehydratase activity were 7.5 and 25 degrees C, respectively, and the Km value for threonine under these optimum conditions was 21 mM. The inhibition pattern of ammonium ions on the activity of threonine dehydratase appeared to be a mixed type.  相似文献   

5.
6.
Aspartate aminotransferase as well as valine dehydrogenase and threonine dehydratase was required for the biosynthesis of tylosin in Streptomyces fradiae NRRL 2702. The biosynthesis of these enzymes and tylosin production were repressed by high concentrations of ammonium ions. The change in specific tylosin production rates in batch cultures with different initial concentrations of ammonium ions showed patterns similar to those of the specific production rates of aspartate aminotransferase, valine dehydrogenase, and threonine dehydratase. Aspartate aminotransferase has been purified by acetone precipitation, DEAE-cellulose, hydroxyapatite, and preparative electrophoresis chromatographies. The purified enzyme (120 kDa) consisted of two subunits identical in molecular mass (54 kDa) and showed homogeneity, giving one band with a pI of 4.2 upon preparative isoelectric focusing. The enzyme was specific for L-aspartate in the forward reaction; the Km values were determined to be 2.7 mM for L-aspartate, 0.7 mM for 2-oxyglutarate, 12.8 mM for L-glutamate, and 0.15 mM for oxaloacetate. The enzyme was somewhat thermostable, having a maximum activity at 55 degrees C, and had a broad pH optimum that ranged from 5.5 to 8.0. The mode of action was a ping-pong-bi-bi mechanism.  相似文献   

7.
The tylE-J region of the tylosin-biosynthetic gene cluster of Streptomyces fradiae contains six open reading frames. The products of tylJ and tylD are nucleoside diphospho (NDP)-deoxyhexose 3-epimerase and NDP-deoxyhexose 4-ketoreductase, respectively, involved in the synthesis of NDP-6-deoxyallose from NDP-4-keto, 6-deoxyglucose. After incorporation of deoxyallose at C23-OH of the polyketide lactone, tylosin biosynthesis is completed by the products of tylE and tylF, which convert the deoxyallosyl moiety to mycinose via bis-O-methylation at 2-OH and 3-OH, respectively. Hydroxylation of the polyketide lactone at C23 is catalysed by the cytochrome P450 enzyme, TylHl. The product of tylHll is a ferredoxin of unknown specificity that could conceivably act together with TylHl. Received 17 March 1999/ Accepted in revised form 20 June 1999  相似文献   

8.
Nitrogen regulation in tylosin production by Streptomyces fradiae NRRL 2702 was studied in chemostat culture using a soluble synthetic medium. The maximum value of specific tylosin formation rate ( q TYL) was 1·13 mg g−1 h−1 at the specific growth rate (μ) of 0·05 h−1, and q TYL decreased with increasing levels of the specific growth rate after reaching a rate of 0·1 h−1. The optimum conditions for tylosin formation were that the specific ammonium ion uptake rate ( q N) and μ were 0·13 mmol g−1 h−1 and 0·05 h−1, respectively. The specific formation rates of threonine dehydratase (TDT) and tylosin were repressed by high levels of specific ammonium ion uptake rate. This study showed the adaptation to chemostat cultures of the nitrogen regulation of tylosin fermentations.  相似文献   

9.
10.
The method of localized mutagenesis was applied to obtain mutants of Streptomyces fradiae producing higher amounts of tylosin. The populations of the germinating spores were subjected to a short-term treatment with nitrosomethylurea during different periods of the first DNA replication cycle. The method reveals defines periods sensitive to mutation induction and isolates a mutant producing a 60% increase in the yield of tylosin as compared to that provided by the stock strain.  相似文献   

11.
Interspecies fusion of protoplasts of the Streptomyces fradiae strains producing neomycin (an aminoglycoside antibiotic) and tylosin (a macrolide antibiotic) was performed with a view to isolate strains producing novel antibiotics. Fusion of the protoplasts of the neomycin- and tylosin-producing strains labelled by the resistance to monomycin and lincomycin, respectively, caused no formation of stable strains producing antibiotics differing in chromatographic mobility from the antibiotics produced by the initial strains. In fusion of the protoplasts of the unlabelled strains, heat-inactivated protoplasts of the active line of one strain (donor) and native protoplasts of the inactive line of the other strain (recipient) were used. When the neomycin-producing culture was used as a recipient the fusion led to formation of strain 195-34 producing antibiotics of the benzo(a)anthraquinone group. One of these antibiotics, i.e. antibiotic 34-I, proved to be a novel biologically active substance. After regeneration of the protoplasts of the initial strains, no stable strains producing antibiotics differing from neomycin and tylosin were isolated.  相似文献   

12.
Adenosine 3':5' cyclic monophosphate seems to regulate antibiotic biosynthesis and secondary metabolism in tylosin-producing cultures of Streptomyces fradiae C373.1. A dose-dependent response is observed by exogenous additions of dibutyryl cyclic AMP (cAMP), and is related to the nutritional status of the culture. Addition of cAMP to cultures growing in nutritionally lean media caused higher cumulative antibiotic tigers and some cellular differentiation compared with the control. In nutritionally rich media, a qualitatively different behavior resulted: an almost instantaneous shift toward secondary metabolism occurred. The response is characterized by extensive cellular differentiation with little growth and only a trace of antibiotic production. The possible role of cyclic AMP n the regulation of tylosin biosynthesis and secondary metabolism and its relation to specific nutrient limitations in synthetic, defined media in Streptomyces fradiae is discussed. (c) 1994 John Wiley & Sons, Inc.  相似文献   

13.
Abstract In Streptomyces fradiae l -threonine is catabolized by threonine dehydratase or threonine aldolase to 2-ketobutyrate or acetaldehyde and glycine, respectively. Threonine dehydratase synthesis is repressed and its activity is inhibited by NH4+ ions. Threonine aldolase is not repressed by NH4+ ions and its activity is slightly stimulated by these ions. The addition of threonine to the medium increased pronouncedly the fraction of non-branched fatty acids with an even carbon number under conditions when threonine dehydratase was repressed and inhibited. The results indicate that threonine serves as a source of propionyl-CoA and 2-methylbutyryl-CoA and also of acetyl-CoA required for tylosin and fatty acid biosynthesis.  相似文献   

14.
Synthesis of threonine dehydratase in Streptomyces fradiae was positively influenced by valine and negatively by isoleucine. However, these two amino acids had no effect on the activity of this enzyme. Synthesis of threonine dehydratase in -aminobutyrate resistant mutants of S. fradiae was pronouncedly less sensitive to the positive effect of valine and this change in regulation led to valine overproduction. Synthesis of acetohydroxy acid synthase is regulated in a similar manner to that of threonine dehydratase, however a lower level of expression was detected in -aminobutyrate resistant mutants. And again, no effect of branched-chain amino acids on acetohydroxy acid synthase activity was observed. It follows that in S. fradiae synthesis of threonine dehydratase is the main regulatory mechanism governing production and the mutual ratio of synthesized valine and isoleucine.Abbreviations -AB -aminobutyrate - AHAS acetohydroxy acid synthase - -KB -ketobutyrate - MNNG N-methyl-N-nitro-N-nitrosoguanidine - TD threonine dehydratase - Trans. B. transaminase of branched-chain amino acids - VDH valine dehydrogenase  相似文献   

15.
Summary Genes encoding enzymes for tylosin biosynthesis, genes involved in the expression of resistance to tylosin (Tyl), hygromycin B (Hm), chloramphenicol (Cm), and mitomycin C (MC), and a single copy of an amplifiable unit of DNA (AUD) were jointly transferred at very high frequencies by conjugation from several different Streptomyces fradiae strains to S. fradiae JS85, a mutant defective in many or possibly all tylosin biosynthetic reactions and containing a multiple tandem reiteration of the AUD. No recombination was observed between nar, rif and spc genes in conjugal matings, but recombination was observed between these genes after protoplast fusion. Tylosin biosynthetic genes were transferred at a much lower frequency to S. fradiae JS87, another mutant defective in many or all tylosin biosynthetic reactions, but deleted for the AUD and other DNA sequences. These findings suggest that tylosin structural genes, several genes encoding antibiotic resistance determinants, and amplifiable DNA are present on a self-transmissible element that does not mobilize chromosomal genes, and that JS85 and JS87 contain deletions, and JS85 an amplification, of overlapping portions of this element.  相似文献   

16.
M Zalacain  E Cundliffe 《Gene》1991,97(1):137-142
In addition to tlrA, tlrB and tlrC, which were previously cloned by others, a fourth antibiotic-resistance gene (tlrD) has been isolated from Streptomyces fradiae, a producer of tylosin (Ty), and cloned in Streptomyces lividans. Like tlrA, tlrD encodes an enzyme that methylates the N6-amino group of the A2058 nucleoside within 23S ribosomal RNA. However, whereas the tlrA protein dimethylates that nucleoside, the tlrD product generates N6-monomethyladenosine. The genes also differ in their mode of expression: tlrA is inducible, whereas tlrD is apparently expressed constitutively, and it has been confirmed that the tlrA-encoded enzyme can add a second methyl group to 23S rRNA that has already been monomethylated by the tlrD-encoded enzyme. Presumably, that is what happens in S. fradiae.  相似文献   

17.
Tylosin is a macrolide antibiotic used as veterinary drug and growth promoter. Attempts were made for hyper production of tylosin by a strain of Streptomyces fradiae NRRL-2702 through irradiation mutagenesis. Ultraviolet (UV) irradiation of wild-type strain caused development of six morphologically altered colony types on agar plates. After screening using Bacillus subtilis bioassay only morphological mutants indicated the production of tylosin. An increase of 2.7±0.22-fold in tylosin production (1500 mg/l) in case of mutant UV-2 in complex medium was achieved as compared to wild-type strain (550 mg/l). Gamma irradiation of mutant UV-2 using 60Co gave one morphologically altered colony type γ-1, which gave 2500 mg/l tylosin yield in complex medium. Chemically defined media promoted tylosin production upto 3800 mg/l. Maximum value of qp (3.34 mg/gh) was observed by mutant γ-1 as compared to wild strain (0.81 mg/gh). Moreover, UV irradiation associated changes were unstable with loss of tylosin activity whereas mutant γ-1 displayed high stability on subsequent culturing.  相似文献   

18.
19.
Summary The exposure of a wild-type tylosin producing strain ofStreptomyces fradiae to mutagenic agents resulted in the isolation of several tylosin over-producing strains. Examination of three mutants, T4310, 612 and 3204 showed that improved tylosin production was associated with increased hydrolytic enzyme activity and cell growth. The wild-type strain showed lower levels of hydrolytic activity including, protease, amylase, lipase and esterase activities and attained a lower cell density than the mutants.  相似文献   

20.
Abstract The regulation of fatty acid composition by ammonium ions and amino acids was studied in Streptomyces fradiae , a tylosin producer. The quantity of branched-chain fatty acids in S. fradiae cells decreased significantly in cultures cultivated in a medium containing high concentrations of ammonium ions, in which the biosynthesis of tylosin was also strongly inhibited. Amino acids stimulating the tylosin production most pronouncedly, also substantially modified the composition of cell fatty acids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号