首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nuclear DNA (ncDNA) synthesis in Chlamydomonas reinhardtii was measured by both 32P[or-thophosphoric acid] (32P) and [14C]adenine incorporation and found to be highly synchronous. Ca. 85% of incorporation was confined to the first 6 h of the dark period of a synchronized regime consisting of an alternating light-dark period of 12 h each. In contrast, no such synchronous incorporation pattern was found for chloroplast (cp) and mitochondrial (mt) DNAs in the same cell population. These two organellar DNAs also exhibited different 32P-incorporation patterns in the cell cycle. Considerable amounts of 32P were incorporated into cpDNA throughout the light-dark synchronous cycle under both mixo- and phototrophic growth conditions, although the second 6-h light period under phototrophy showed an increase not apparent under mixotrophy. This change in growth conditions did not affect 32P incorporation into mtDNA, which was found throughout the cell cycle, with a modest peak in the first 6-h of the dark period. The pattern of [3H]thymidine incorporation into cpDNA was also determined. Under synchronous phototrophic conditions, this pattern was quite different from that obtained with 32P. Most [3H]thymidine incorporation occurred during the light period of the synchronous cycle; this period had been shown previously by density transfer experiments to be the time of cpDNA duplication. Such preferential [3H]thymidine incorporation into cpDNA in the light period was not observed under mixotrophic synchronous growth conditions; in these, [3H]thymidine incorporation was detected throughout the cell cycle. This lack of coincidence between the patterns of 32P- and of [3H]thymidine incorporation into cpDNA during the synchronous cell cycle indicates that in addition to replication, the considerably reiterated organelle-DNA molecules may also regularly undergo an extensive repair process during each cell cycle.  相似文献   

2.
Culture conditions of Leishmania cells were developed to allow the study of the effect of tunicamycin (TM) on glycosylation and on the cell surface components. Leishmania incorporate [14C]-mannose and [35S]-methionine in vitro. The incorporation of [14C]-mannose is linear for 150 min and is inhibited by TM (2 g/ml) in a time dependent effect which reaches a plateau of 45% inhibition at 36 h. Under the same experimental conditions [35S]-methionine incorporation into protein is slightly affected. This is reflected by an almost identical polypeptide pattern for TM treated and non-treated cells when analyzed on SDS-PAGE. On the contrary, strong differences were detected on the labeled compounds analyzed on SDS-PAGE followed by autoradiography when the precursor used was [14C]-mannose. A shift in the electrophoretic mobility of most of the glycopeptides synthesized in the presence of TM was observed, which is also reflected in the structure of the main Leishmania cell surface components.The findings are discussed in the light of biological implications.  相似文献   

3.
Analysis of the distribution of 35S-sulfate and 14C-glutamate in major biochemical components of the two marine bacteria, Pseudomonas halodurans and Alteromonas luteo-violaceus, was compared with cell density and total cellular protein during exponential growth in batch culture. For both organisms, the sulfur distribution was restricted principally to the low molecular weight organic and protein fractions, which together accounted for over 90% of the total sulfur. Carbon was more widely distributed, with these two fractions containing only 70% of the total label.Growth rate constants calculated from increases in cell numbers, protein, and 35S and 14C in the various fractions indicated nearly balanced growth in A. luteo-violaceus, with constants derived from all biosynthetic parameters agreeing within 5% during the exponential phase. In contrast, protein synthesis and 35S incorporation into residue protein constants were 30% higher than constants derived from cell counts and incorporation of 14C in P. halodurans. Therefore the cellular protein content P. halodurans varied over a two-fold range, with maximum protein per cell in the late exponential phase. A distinct reduction in the rate constants for total protein and 35S incorporation into residue protein foreshadowed entry into the stationary phase more than one generation before other parameters.Incorporation of 35S-sulfate into residue protein paralleled protein synthesis in both bacteria. The weight percent S in protein agreed well with the composition of an average protein derived from the literature. Sulfur incorporation into protein may be a useful measurement of marine bacterial protein synthesis.Abbreviations L.M.W. low molecular weight - TCA trichloroacetic acid - CFU colony forming unit  相似文献   

4.
5.
R. B. Mellor  J. M. Lord 《Planta》1979,147(1):89-96
A crude organelle preparation from germinating castor bean endosperm catalysed the incorporation of galactose from UDP[14C]galactose into chloroform/methanol (2:1)-soluble glactolipids. At least two galactolipids were formed. Most of the [14C]galactose was present in a galactolipid synthesized by the microsomal membranes, the remainder was present in a second galactolipid synthesized by other cellular membranes, possibly Golgi-derived. The addition of asialo-agalacto-fetuin reduced incorporation of [14C]galactose into the microsomal galactolipid with a concomitant increase in microsomal [14C]galactoprotein. Asialo-agalacto-fetuin did not affect galactolipid or galactoprotein synthesis by nonmicrosomal fractions. The results suggest that the endoplasmic reticulum is a major site of protein galactosylation in castor bean endosperm cells, and that galactose transfer from UDP-galactose to protein occurs via a lipid-linked intermediate.Abbreviations ER endoplasmic reticulum - ASGF asialoagalacto-fetuin - IDPase inosine diphosphatase - TCA trichloroacetic acid  相似文献   

6.
J. Sanchez  M. Mancha 《Planta》1981,153(6):519-523
The kinetics of incorporation of [2-14C] acetate into lipids and acyl-CoAs in relation to added CoA and ATP by isolated spinach chloroplasts have been examined. The effect of the concentration of these cofactors on lipid and acyl-CoA synthesis was also studied. In the absence of cofactors, or when only one was present, the incorporation was very low and went mainly into lipids. When both cofactors were present a strong stimulation of both activities occurred. After 25 min, acyl-CoAs were more strongly labeled than lipids and both activities continued linearly for at least 60 min.Abbreviations ACP acyl carrier protein - FFA free fatty acids  相似文献   

7.
The use of stable isotopes to investigate animal diets, habitat use, and trophic level requires understanding the rate at which animals incorporate the 13C and 15N from their diets and the factors that determine the magnitude of the difference in isotopic composition between the animal’s diet and that of its tissues. We determined the contribution of growth and catabolic turnover to the rate of 13C and 15N incorporation into several tissues that can be sampled non-invasively (skin, scute, whole blood, red blood cells, and plasma solutes) in two age classes of a rapidly growing ectotherm (loggerhead turtles, Caretta caretta). We found significant differences in C and N incorporation rates and isotopic discrimination factors (Δ13C = δ13Ctissues − δ13Cdiet and Δ15N = δ15Ntissues − δ15Ndiet) among tissues and between age classes. Growth explained from 26 to 100% of the total rate of incorporation in hatchling turtles and from 15 to 52% of the total rate of incorporation in juvenile turtles. Because growth contributed significantly to the rate of isotopic incorporation, variation in rates among tissues was lower than reported in previous studies. The contribution of growth can homogenize the rate of isotopic incorporation and limit the application of stable isotopes to identify dietary changes at contrasting time scales and to determine the timing of diet shifts. The isotopic discrimination factor of nitrogen ranged from −0.64 to 1.77‰ in the turtles’ tissues. These values are lower than the commonly assumed average 3.4‰ discrimination factors reported for whole body and muscle isotopic analyses. The increasing reliance on non-invasive and non-destructive sampling in animal isotopic ecology requires that we recognize and understand why different tissues differ in isotopic discrimination factors.  相似文献   

8.
The rates of incorporation of various metabolites into starch by isolated amyloplasts from developing endosperm of spring wheat (Triticum aestivum L. cv. Axona) were examined. Of the metabolites tested that were likely to be present in the cytosol at concentrations sufficient to sustain starch synthesis, only glucose 1-phosphate (Glc1P) supported physiologically relevant rates of starch synthesis. Incorporation of Glc1P into starch was both dependent on the presence of ATP and intact organelles. The rate of incorporation of hexose into starch became saturated at a Glc1P concentration of less than 1 mol·m-3 in the presence of 1 mol·m-3 ATP. Starch synthesis from 5 mol · m-3 ADP-glucose supplied to the organelles occurred at rates 15-fold higher than from similar concentrations of Glc1P, but it is argued that this is probably of little physiological relevance. The net incorporation of hexose units into starch from GlclP was inhibited 50% by 100 mmol.m-3 carboxyatractyloside. Carbohydrate oxidation in the amyloplast was stimulated by the addition of 2-oxoglutarate and glutamine, and in such circumstances incorporation of14C-labelled metabolites into starch was reduced. Glucose 6-phosphate proved to be a better substrate for oxidative pathways than Glc1P. Our results suggest that Glc1P is the primary substrate for starch synthesis in developing wheat endosperm, and that ATP required for starch synthesis is imported via an adenylate translocator.  相似文献   

9.
Summary The study of the growth rate and incorporation of [3H]hypoxanthine and [14C]isoleucine showed that in vitro variations ofPlasmodium falciparum parasitemia levels and incorporation rates of the two radiolabeled molecules have been correlated. In our experimental conditions,P. falciparum blood forms in vitro tolerate osmolalities ranging from 180 to 360 mOsm. A weak hypo-osmolality (241 mOsm) favored the development of the parasite. The highest sensitivity of the parasite to osmotic variations was observed during schizogony. The merozoite stage and reinvasion process seemed less affected by hypo-osmolalities than by hyperosmolalities. The minor alterations in morphology of the parasites in hypo- and hyperosmotic media suggested thatP. falciparum may have efficient osmoregulatory power.  相似文献   

10.
Summary The incorporation of the chitin precursor N-acetyl-D-(1-3H) glucosamine byH. chlorinus has been studied by light and electron microscopic autoradiography. Light microscopic autoradiography showed that the incorporation occured preferentially at the hyphal apex. Autoradiograms from electron microscopy were quantitatively evaluated to determine the relative radioactivity incorporation between the cell wall and cytoplasm: this showed that (3H) incorporation took place mainly in the plasmalemma-wall complex. However a small amount of N-acetyl glucosamine can enter into the cytoplasmic space and is then transported by endomembranes (Golgi apparatus-vesicles) to the plasmalemma-cell wall interface before polymerization.Abbreviations PATAg Periodic acid-thiocarbohydrazide-silver proteinate - PTA phosphotungstic acid  相似文献   

11.
R. B. Mellor  J. M. Lord 《Planta》1979,146(1):91-99
A crude organelle preparation from germinating castor bean endosperm catalysed the incorporation of mannose from GDP[14C]mannose into acid-labile mannolipids. Solubility and chromatographic properties have identified the most rapidly synthesized products as mannosyl-phosphoryl-polyisoprenol, while the more polar lipid formed was shown to contain oligosaccharide. Little radioactivity from GDP[14C]mannose accumulated in insoluble product in the cell-free system, but supplying GDP[14C]mannose to intact endosperm tissue has shown that the major incorporation product in vivo is glycoprotein. This product was readily solubilized by either pronase or sodium dodecyl sulphate treatment suggesting it was membrane bound glycoprotein. Incorporation of mannose into mannosyl-phosphoryl-polyisoprenol during the cell-free assay was stimulated by the addition of dolichol monophosphate. This enzymic activity was optimal at pH 7.5 and in the presence of 10 mM Mg2+. The Km for GDP-mannose was estimated to be 5×10-7 M. Cellular mannosyl transferase activity changed markedly during early post-germinative growth; from being absent in the dry seed, enzyme activity increased to peak between the second and third days of growth and subsequently declined.Abbreviations TCA trichloroacetic acid - SDS sodium dodecyl sulphate  相似文献   

12.
The relationship between protein synthesis and the incorporation of [3H]gibberellin A1 ([3H]GA1) into a 2,000xg pelletable (2KP) fraction from lettuce (Lactuca sativa L.) hypocotyl sections has been investigated. Concentrations of D-2-(4-methyl-2,6-dinitroanilino)-N-methylpropionamide (MDMP) between 10-7 M and 10-4 M caused increasing inhibition of growth, 2KP labelling and incorporation of [14C]leucine into soluble protein. Growth and 2KP radioactivity were highly correlated (r=0.996). Transfer to MDMP early or late in the course of GA response caused reductions in both growth and incorporation into the 2KP fraction. Exposure to the inhibitor had more effect at 4 h than at 20 h. The proportions of alkali-soluble and insoluble radioactivity in the 2KP fraction were also altered by this treatment. The implications of these findings are discussed.Abbreviations GA1 gibberellin A1 - MDMP D-2-(4-methyl-2,6-dinitroanilino)-N-methylpropionamide - 2KP a2,000xg pelletable fraction  相似文献   

13.
Animals with high metabolic rates are believed to have high rates of carbon and nitrogen isotopic incorporation. We hypothesized that (1) chronic exposure to cold, and hence an increase in metabolic rate, would increase the rate of isotopic incorporation of both 13C and 15N into red blood cells; and (2) that the rate of isotopic incorporation into red blood cells would be allometrically related to body mass. Two groups of sparrows were chronically exposed to either 5 or 22°C and switched from a 13C-depleted C3-plant diet to a more 13C-enriched C4-plant one. We used respirometry to estimate the resting metabolic rate of birds exposed chronically to our two experimental temperatures. The allometric relationship between the rate of 13C incorporation into blood and body mass was determined from published data. The of birds at 5°C was 1.9 times higher than that of birds at 22°C. Chronic exposure to a low temperature did not have an effect on the rate of isotopic incorporation of 15N save for a very small effect on the incorporation of 13C. The isotopic incorporation rate of 13C was 1.5 times faster than that of 15N. The fractional rate of 13C incorporation into avian blood was allometrically related to body mass with an exponent similar to −1/4. We conclude that the relationship between metabolic rate and the rate of isotopic incorporation into an animal’s tissues is indirect. It is probably mediated by protein turnover and thus more complex than previous studies have assumed.  相似文献   

14.
Bacterial growth rates on the rhizoplane of rape seedlings grown in sand were determined using 3H-thymidine incorporation into DNA. Axenic roots incorporated thymidine into DNA, which had to be subtracted from values for roots with associated bacteria. Thymidine incorporation into rhizoplane bacterial DNA ranged between 0.6 and 1.4 pmol thymidine h–1 root–1 for 6 to 26-day-old plants. Using a conversion factor, the turnover time of bacteria was calculated to decrease from 9.2 h for 6-day-old plants to 160h for 26-day-old plants. A similar value was found for rhizosphere bacteria of plants grown for 26 days in natural soil.  相似文献   

15.
This research aims to examine the effect of cadmium uptake on lipid composition and fatty acid biosynthesis, in young leaves of tomato treated seedlings (Lycopersicon esculentum cv. Ibiza F1). Results in membrane lipids investigations revealed that high cadmium concentrations affect the main lipid classes, leading to strong changes in their composition and fatty acid content. Thus, the exposure of tomato plants to cadmium caused a concentration-related decrease in the unsaturated fatty acid content, resulting in a lower degree of fatty acid unsaturation. The level of lipid peroxides was significantly enhanced at high Cd concentrations. Studies of the lipid metabolism using radioactive labelling with [1-14C]acetate as a major precursor of lipid biosynthesis, showed that levels of radioactivity incorporation in total lipids as well as in all lipid classes were lowered by Cd doses. In total lipid fatty acids, [1-14C]acetate incorporation was reduced in tri-unsaturated fatty acids (C16:3 and C18:3); While it was enhanced in the palmitic (C16:0), palmitoleic (C16:1), stearic (C18:0) and linoleic (C18:2) acids. [1-14C]acetate incorporation into C16:3 and C18:3 of galactolipids [monogalactosyldiacylglycerol (MGDG) and digalactosyldiacylglycerol (DGDG)] and some phospholipids [phosphatidylcholine (PC) and phosphatidylglycerol (PG)] was inhibited by Cd stress. Our results showed that in tomato plants, cadmium stress provoked an inhibition of polar lipid biosynthesis and reduced fatty acid desaturation process.  相似文献   

16.
K. Lindsey 《Planta》1985,165(1):126-133
The relationship between the synthesis and accumulation of protein and capsaicin was investigated in cultured cells of Capsicum frutescens Mill. cv. annuum immobilized in reticulate polyurethane. Cells were cultured in media containing reduced concentrations of essential nutrients, in an attempt to manipulate the rates of protein synthesis. Cells cultured in the absence of orthophosphate for 7 d demonstrated no reduction in the incorporation of l-[U-14C]phenylalanine into soluble protein or an increase in incorporation into capsaicin, compared with controls supplied with orthophosphate. By day 15 of culture, however, a differential incorporation of label was observed. Over a 21-d culture period the intracellular phosphate did not completely disappear. Cells cultured in the absence of nitrate and phosphate combined, however, exhibited some reduction in incorporation of [14C]phenylalanine into protein and an increased incorporation into capsaicin after 7 d of culture, but the differences were greater at day 15, when increases in the total capsaicin content of the cultures were apparent. There was observed a relationship between the intracellular nitrate concentration, the culture growth index, and the incorporation of [14C]phenylalanine into soluble protein — each of these factors was inversely related to the incorporation of label into capsaicin and the total capsaicin content of the cultures.Abbreviations HPLC high-performance liquid chromatography - Phe phenylalanine  相似文献   

17.
Synechococcus PCC 6301 synthesized sucrose as a compatible solute following hyperosmotic shock induced by NaCl. Initial rates of photosynthetic 14C incorporation were reduced following salt shock. Photosynthetic rates were comparable in cells enriched for glycogen (by growth in NO 3 - -deficient medium) and cells grown in NO 3 - -sufficient medium in the absence of osmotic shock. Incorporation of 14C was predominantly into the NaOH fraction and the residual acidic fraction in cells grown in NO 3 - -sufficient medium, whereas incorporation was predominantly into the residual acidic fraction in cells grown in NO 3 - -deficient medium. Following salt stress, 14C incorporation was initially into the ethanol-soluble fraction and the majority of tracer was recovered in sucrose. Carbon-14 was detected in sucrose in cells which had been enriched for [14C]glycogen prior to salt stress, inferring that glycogen can act as a carbon source for sucrose synthesis following salt stress. Changes in the specific activity of sucrose are consistent with an initial synthesis of sucrose from glycogen followed by synthesis of sucrose using newly fixed carbon, in response to salt stress.This work was supported by the Agricultural and Food Research Council.  相似文献   

18.
The amino acid (35S-methionine) incorporating activity of an in vitro wheat germ translation system was found to be maximal in 80 to 125 mol m–3 K with 2 to 4 mol m–3 Mg both as the acetate. Substitution of Na for K, or chloride for acetate at concentrations above 80 mol m–3 inhibited incorporation. When the K acetate concentration was raised to 200 mol m–3, no incorporation of radioactive methionine occurred.Translation by polysomes extracted from leaf tissue of S. maritima, supplemented with postribosomal supernatant from wheat germ, showed activity which was optimal in the presence of 225 mol m–3 K acetate and 8 mol m–3 Mg acetate. However, the translation system was not directly comparable with the wheat germ system, as studies with an initiation inhibitor, aurintricarboxylic acid, suggested that the S. maritima system was essentially elongation-dependent, while initiation occurred in the wheat germ system.Elongation-dependent polysomal preparations were extracted from leaves of the glycophytes Pisum sativum, Triticum aestivum, Oryza sativa and Hordeum vulgare, and from the halophytes Atriplex isatidea and Inula crithmoides. Translation by polysomes from the salt-tolerant plants was optimal at higher K and Mg concentrations, than by polysomes from the glycophytes. Furthermore, NaCl was better able partially to substitute for the role of K in polysomal preparations from halophytes than glycophytes.  相似文献   

19.
In recent studies using intact chloroplasts of spinach (Spinacia oleracea L.) to investigate the accumulation of acetyl-CoA produced by the activity of either acetyl-CoA synthetase (EC 6.2.1.1) or the pyruvate-dehydrogenase complex, this product was not detectable. These results in combination with new information on the physiological levels of acetate and pyruvate in spinach chloroplasts (H.-J. Treede et al. 1986, Z. Naturforsch. 41 C, 733–740) prompted a reinvestigation of the incorporation of [1-14C] acetate and [2-14C] pyruvate into fatty acids at physiological concentrations.The K m for the incorporation into fatty acids was about 0.1 mM for both metabolites and thus agreed with the values obtained by H.-J. Treede et al. (1986) for acetyl-CoA synthetase and the pyruvate dehydrogenase complex. However, acetate was incorporated with a threefold higher V max. Saturation for pyruvate incorporation into the fattyacid fraction was achieved only at physiological pyruvate concentrations (<1.0 mM). The diffusion kinetics observed at higher concentrations may be the result of contamination with derivates of the labeled substrate. Competition as well as double-labeling experiments with [3H]acetate and [2-14C]pyruvate support the notion that, at least in spinach, chloroplastic acetate is the preferred substrate for fatty-acid synthesis when both substrates are supplied concurrently (P.G. Roughan et al., 1979 b, Biochem. J. 184, 565–569).Experiments with spinach leaf discs confirmed the predominance of fatty-acid incorporation from acetate. Radioactivity from [1-14C]acetate appeared to accumulate in glycerolipids while that from [2-14C]pyruvate was apparently shifted in favor of the products of prenyl metabolism.Abbreviations Chl chlorophyll - TLC thin-layer chromatography  相似文献   

20.
The uptake of [1-14C]isopentenyl diphosphate by intact plastids purified from cell suspensions of Vitis vinifera L. cv. Muscat de Frontignan was investigated using vacuum-filtration and silicone-oil-filtering techniques. Transport across the plastid envelope which was stimulated by cations, such as Mg2+ and Mn2+, was characterized by a K m of approx. 0.5 mM and a V max of 25 nmol·(mg protein)-1·-h-1. The data showed that isopentenyl diphosphate apparently accumulated in the plastid against a concentration gradient. The involvement of a protein carrier was suggested by the strong inhibition of the uptake by compounds which are known to block SH groups. Thus, the saturation kinetics together with the pH optimum (7.5–8), the temperature dependence (maximum incorporation at 37 °C) and the competitive inhibition by a structural analogue of the substrate (aminophenylethyl diphosphate) provided evidence for a mechanism of uptake by facilitated diffusion. The carrier identified may thus play a major role in supplying the plastid compartment with isopentenyl diphosphate for isoprenoid biosynthesis.Abbreviations APP aminophenylethyl diphosphate - DMAPP dimethylallyl diphosphate - GPP geranyl diphosphate - IPP isopentenyl diphosphate - NEM N-ethylmaleïmide - PCMB p-chloromercuribenzoate  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号