首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Phototransduction is a canonical G protein-mediated cascade of retinal photoreceptor cells that transforms photons into neural responses. Phosducin (Pd) is a Gbetagamma-binding protein that is highly expressed in photoreceptors. Pd is phosphorylated in dark-adapted retina and is dephosphorylated in response to light. Dephosphorylated Pd binds Gbetagamma with high affinity and inhibits the interaction of Gbetagamma with Galpha or other effectors, whereas phosphorylated Pd does not. These results have led to the hypothesis that Pd down-regulates the light response. Consequently, it is important to understand the mechanisms of regulation of Pd phosphorylation. We have previously shown that phosphorylation of Pd by cAMP-dependent protein kinase moderately inhibits its association with Gbetagamma. In this study, we report that Pd was rapidly phosphorylated by Ca(2+)/calmodulin-dependent kinase II, resulting in 100-fold greater inhibition of Gbetagamma binding than cAMP-dependent protein kinase phosphorylation. Furthermore, Pd phosphorylation by Ca(2+)/calmodulin-dependent kinase II at Ser-54 and Ser-73 led to binding of the phosphoserine-binding protein 14-3-3. Importantly, in vivo decreases in Ca(2+) concentration blocked the interaction of Pd with 14-3-3, indicating that Ca(2+) controls the phosphorylation state of Ser-54 and Ser-73 in vivo. These results are consistent with a role for Pd in Ca(2+)-dependent light adaptation processes in photoreceptor cells and also suggest other possible physiological functions.  相似文献   

2.
3.
Upon agonist binding, the C5a anaphylatoxin receptor (C5aR) is rapidly phosphorylated on phosphorylation sites that are located within the C-terminal domain of the receptor. Previous studies suggested that C5aR phosphorylation proceeds in a hierarchical manner with serine 334 presenting a highly accessible priming site that controls subsequent phosphorylation at other positions. To better understand the dynamics of Ser-334 phosphorylation, we generated site-specific monoclonal antibodies that specifically react with phosphoserine 334. In differentiated U937 cells, which endogenously express C5aR, stimulation with low C5a concentrations resulted in a very rapid (t((1/2)) approximately 20 s), albeit transient, receptor phosphorylation. Whole cell phosphorylation assays with specific inhibitors as well as in vitro phosphorylation assays with recombinant enzymes and peptide substrates revealed that phosphorylation of Ser-334 is regulated by protein kinase C-beta and a calyculin A-sensitive protein phosphatase. Surprisingly, at high concentrations (>10 nM) of C5a, the protein kinase C-mediated phosphorylation of Ser-334 was essentially blocked. This could be attributed to the even faster (t((1/2)) < 5 s) binding of beta-arrestin to the receptor. Analysis of C5aR Ser/Ala mutants that possess a single intact serine residue either at position 334 or at neighboring positions 327, 332, or 338 revealed functional redundancy of C-terminal phosphorylation sites since all 4 serine residues could individually support C5aR internalization and desensitization. This study is among the first to analyze in a detailed manner, using a non-mutational approach, modifications of a defined phosphorylation site in a G protein-coupled receptor and to correlate these findings with functional parameters of receptor deactivation.  相似文献   

4.
The effect of the familial hypertrophic cardiomyopathy mutations, A13T, F18L, E22K, R58Q, and P95A, found in the regulatory light chains of human cardiac myosin has been investigated. The results demonstrate that E22K and R58Q, located in the immediate extension of the helices flanking the regulatory light chain Ca(2+) binding site, had dramatically altered Ca(2+) binding properties. The K(Ca) value for E22K was decreased by approximately 17-fold compared with the wild-type light chain, and the R58Q mutant did not bind Ca(2+). Interestingly, Ca(2+) binding to the R58Q mutant was restored upon phosphorylation, whereas the E22K mutant could not be phosphorylated. In addition, the alpha-helical content of phosphorylated R58Q greatly increased with Ca(2+) binding. The A13T mutation, located near the phosphorylation site (Ser-15) of the human cardiac regulatory light chain, had 3-fold lower K(Ca) than wild-type light chain, whereas phosphorylation of this mutant increased the Ca(2+) affinity 6-fold. Whereas phosphorylation of wild-type light chain decreased its Ca(2+) affinity, the opposite was true for A13T. The alpha-helical content of the A13T mutant returned to the level of wild-type light chain upon phosphorylation. The phosphorylation and Ca(2+) binding properties of the regulatory light chain of human cardiac myosin are important for physiological function, and alteration any of these could contribute to the development of hypertrophic cardiomyopathy.  相似文献   

5.
Cryptochrome 1 and 2 act as essential components of the central and peripheral circadian clocks for generation of circadian rhythms in mammals. Here we show that mouse cryptochrome 2 (mCRY2) is phosphorylated at Ser-557 in the liver, a well characterized peripheral clock tissue. The Ser-557-phosphorylated form accumulates in the liver during the night in parallel with mCRY2 protein, and the phosphorylated form reaches its maximal level at late night, preceding the peak-time of the protein abundance by approximately 4 h in both light-dark cycle and constant dark conditions. The Ser-557-phosphorylated form of mCRY2 is localized in the nucleus, whereas mCRY2 protein is located in both the cytoplasm and nucleus. Importantly, phosphorylation of mCRY2 at Ser-557 allows subsequent phosphorylation at Ser-553 by glycogen synthase kinase-3beta (GSK-3beta), resulting in efficient degradation of mCRY2 by a proteasome pathway. As assessed by phosphorylation of GSK-3beta at Ser-9, which negatively regulates the kinase activity, GSK-3beta exhibits a circadian rhythm in its activity with a peak from late night to early morning when Ser-557 of mCRY2 is highly phosphorylated. Altogether, the present study demonstrates an important role of sequential phosphorylation at Ser-557/Ser-553 for destabilization of mCRY2 and illustrates a model that the circadian regulation of mCRY2 phosphorylation contributes to rhythmic degradation of mCRY2 protein.  相似文献   

6.
Keratin 8 (K8) serine 73 occurs within a relatively conserved type II keratin motif ((68)NQSLLSPL) and becomes phosphorylated in cultured cells and organs during mitosis, cell stress, and apoptosis. Here we show that Ser-73 is exclusively phosphorylated in vitro by p38 mitogen-activated protein kinase. In cells, Ser-73 phosphorylation occurs in association with p38 kinase activation and is inhibited by SB203580 but not by PD98059. Transfection of K8 Ser-73 --> Ala or K8 Ser-73 --> Asp with K18 generates normal-appearing filaments. In contrast, exposure to okadaic acid results in keratin filament destabilization in cells expressing wild-type or Ser-73 --> Asp K8, whereas Ser-73 --> Ala K8-expressing cells maintain relatively stable filaments. p38 kinase associates with K8/18 immunoprecipitates and binds selectively with K8 using an in vitro overlay assay. Given that K1 Leu-160 --> Pro ((157)NQSLLQPL --> (157)NQSPLQPL) leads to epidermolytic hyperkeratosis, we tested and showed that the analogous K8 Leu-71 --> Pro leads to K8 hyperphosphorylation by p38 kinase in vitro and in transfected cells, likely due to Ser-70 neo-phosphorylation, in association with significant keratin filament collapse upon cell exposure to okadaic acid. Hence, K8 Ser-73 is a physiologic phosphorylation site for p38 kinase, and its phosphorylation plays an important role in keratin filament reorganization. The Ser-73 --> Ala-associated filament reorganization defect is rescued by a Ser-73 --> Asp mutation. Also, disease-causing keratin mutations can modulate keratin phosphorylation and organization, which may affect disease pathogenesis.  相似文献   

7.
The G protein-coupled light-sensitive receptor melanopsin is involved in non-image-forming light responses including circadian timing. The predicted secondary structure of melanopsin indicates a long cytoplasmic tail with many potential phosphorylation sites. Using bioinformatics, we identified a number of amino acids with a high probability of being phosphorylated. We generated antibodies against melanopsin phosphorylated at Ser-381 and Ser-398, respectively. The antibody specificity was verified by immunoblotting and immunohistochemical staining of HEK-293 cells expressing rat melanopsin mutated in Ser-381 or Ser-398. Using the antibody recognizing phospho-Ser-381 melanopsin, we demonstrated by immunoblotting and immunohistochemical staining in HEK-293 cells expressing rat melanopsin that the receptor is phosphorylated in this position during the dark and dephosphorylated when light is turned on. On the contrary, we found that melanopsin at Ser-398 was unphosphorylated in the dark and became phosphorylated after light stimulation. The light-induced changes in phosphorylation at both Ser-381 and Ser-398 were rapid and lasted throughout the 4-h experimental period. Furthermore, phosphorylation at Ser-381 and Ser-398 was independent of each other. The changes in phosphorylation were confirmed in vivo by immunohistochemical staining of rat retinas during light and dark. We further demonstrated that mutation of Ser-381 and Ser-398 in melanopsin-expressing HEK-293 cells affected the light-induced Ca2+ response, which was significantly reduced as compared with wild type. Examining the light-evoked Ca2+ response in a melanopsin Ser-381 plus Ser-398 double mutant provided evidence that the phosphorylation events were independent.  相似文献   

8.
Phosphorylation of the regulatory light chain of myosin II (MLC) controls the contractility of actomyosin in nonmuscle and muscle cells. It has been reported that cdc2 phosphorylates MLC in vitro at Ser-1 or Ser-2 and Thr-9 which protein kinase C phosphorylates (Satterwhite, L. L., M. J. Lohka, K. L. Wilson, T. Y. Scherson, L. K. Cisek, J. L. Corden, and T. D. Pollard. 1992 J. Cell Biol. 118:595-605). We have examined in vivo phosphorylation of MLC during mitosis and after the release of mitotic arrest. Phosphate incorporation of MLC in mitotic cells is found to be 6-12 times greater than that in nonmitotic cells. Phosphopeptide maps have revealed that the MLC from mitotic cells is phosphorylated at Ser-1 and/or Ser-2 (Ser-1/2), but not at Thr-9. MLC is also phosphorylated to a much lesser extent at Ser-19 which myosin light chain kinase phosphorylates. On the other hand, MLC of nonmitotic cells is phosphorylated at Ser-19 but not at Ser-1/2. The extent of phosphate incorporation is doubled at 30 min after the release of mitotic arrest when some cells start cytokinesis. Phosphopeptide analyses have revealed that the phosphorylation at Ser-19 is increased 20 times, while the phosphorylation at Ser-1/2 is decreased by half. This high extent of MLC phosphorylation at Ser-19 is maintained for another 30 min and gradually decreased to near the level of interphase cells as cells complete spreading at 180 min. On the other hand, phosphorylation at Ser-1/2 is decreased to 18% at 60 min, and is practically undetectable at 180 min after the release of mitotic arrest. The stoichiometry of MLC phosphorylation has been determined by quantitation of phosphorylated and unphosphorylated forms of MLC separated on 2D gels. The molar ratio of phosphorylated MLC to total MLC is found to be 0.16 +/- 0.06 and 0.31 +/- 0.05 in interphase and mitotic cells, respectively. The ratio is increased to 0.49 +/- 0.05 at 30 min after the release of mitotic arrest. These results suggest that the change in the phosphorylation site from Ser-1/2 to Ser-19 plays an important role in signaling cytokinesis.  相似文献   

9.
10.
G M Cole  S I Reed 《Cell》1991,64(4):703-716
The mating pheromone response in S. cerevisiae is activated by a G protein-mediated signaling pathway in which G beta gamma is the active transducer of the signal. When exogenous pheromone is added to vegetatively growing cells, G beta is rapidly phosphorylated at several sites; phosphorylation does not require de novo protein synthesis. A mutation in G beta was constructed that eliminates signal-induced phosphorylation. This mutation leads to enhanced sensitivity to and impaired ability to recover from pheromone, but does not affect the ability of G beta gamma to transmit the mating signal. These phenotypes suggest that G protein phosphorylation mediates an adaptive response to pheromone-induced signaling. G beta phosphorylation does not require either the pheromone receptor C-terminus or the product of the SST2 gene, both of which mediate separate adaptive responses to pheromone. However, G beta phosphorylation is greatly facilitated by the presence of the G alpha subunit, which has also been shown to participate in an adaptation to pheromone.  相似文献   

11.
Phosducin (Pdc) and phosducin-like protein (PhLP) regulate G protein-mediated signaling by binding to the betagamma subunit complex of heterotrimeric G proteins (Gbetagamma) and removing the dimer from cell membranes. The binding of Pdc induces a conformational change in the beta-propeller structure of Gbetagamma, creating a pocket between blades 6 and 7. It has been proposed that the isoprenyl group of Gbetagamma inserts into this pocket, stabilizing the Pdc.Gbetagamma structure and decreasing the affinity of the complex for the lipid bilayer. To test this hypothesis, the binding of Pdc and PhLP to several Gbetagamma dimers containing variants of the beta or gamma subunit was measured. These variants included modifications of the isoprenyl group (gamma), residues involved in the conformational change (beta), and residues lining the proposed prenyl pocket (beta). Switching prenyl groups from farnesyl to geranylgeranyl or vice versa had little effect on binding. However, alanine substitution of one residue in the beta subunit involved in the conformational change (W332) decreased binding 5-fold. Alanine substitution of certain residues within the prenyl pocket caused only minor decreases in binding, while a lysine substitution of T329 within the pocket inhibited binding 10-fold. Molecular modeling of the binding energy of the Pdc.Gbeta(1)gamma(2) complex required insertion of the geranylgeranyl group into the prenyl pocket in order to accurately predict the effects of prenyl pocket amino acid substitutions. Finally, a dimer containing a gamma subunit with no prenyl group (gamma(2)-C68S) decreased binding by nearly 20-fold. These results support the structural model in which the prenyl group escapes contact with the aqueous milieu by inserting into the prenyl pocket and stabilizing the Pdc-binding conformation of Gbetagamma.  相似文献   

12.
13.
Activation of protein kinase A (PKA) through the beta-adrenergic receptor pathway is crucial for the positive regulation of cardiac L-type currents; however it is still unclear which phosphorylation events cause the robust regulation of channel function. In order to study whether or not the recently identified PKA phosphorylation sites on the beta(2) subunit are of functional significance, we coexpressed wild-type (WT) or mutant beta(2) subunits in tsA-201 cells together with an alpha(1C) subunit, alpha(1C)Delta1905, that lacked the C-terminal 265 amino acids, including the only identified PKA site at Ser-1928. This truncated alpha(1C) subunit was similar to the truncated alpha(1C) subunit isolated from cardiac tissue not only in size ( approximately 190 kDa), but also with respect to its failure to serve as a PKA substrate. In cells transfected with the WT beta(2) subunit, voltage-activated Ba(2+) currents were significantly increased when purified PKA was included in the patch pipette. Furthermore, mutations of Ser-478 and Ser-479 to Ala, but not Ser-459 to Ala, on the beta(2) subunit, completely abolished the PKA-induced increase of currents. The data indicate that the PKA-mediated stimulation of cardiac L-type Ca(2+) currents may be at least partially caused by phosphorylation of the beta(2) subunit at Ser-478 and Ser-479.  相似文献   

14.
15.
Lin FT  Chen W  Shenoy S  Cong M  Exum ST  Lefkowitz RJ 《Biochemistry》2002,41(34):10692-10699
Beta-arrestins mediate agonist-dependent desensitization and internalization of G protein-coupled receptors. Previously, we have shown that phosphorylation of beta-arrestin1 by ERKs at Ser-412 regulates its association with clathrin and its function in promoting clathrin-mediated internalization of the receptor. In this paper we report that beta-arrestin2 is also phosphorylated, predominantly at residues Thr-383 and Ser-361. Isoproterenol stimulation of the beta(2)-adrenergic receptor promotes dephosphorylation of beta-arrestin2. Mutation of beta-arrestin2 phosphorylation sites to aspartic acid decreases the association of beta-arrestin2 with clathrin, thereby reducing its ability to promote internalization of the beta(2)-adrenergic receptor. Its ability to bind and desensitize the beta(2)-adrenergic receptor is, however, unaltered. These results suggest that, analogous to beta-arrestin1, phosphorylation/dephosphorylation of beta-arrestin2 regulates clathrin-mediated internalization of the beta(2)-adrenergic receptor. In contrast to beta-arrestin1, which is phosphorylated by ERK1 and ERK2, phosphorylation of beta-arrestin2 at Thr-383 is shown to be mediated by casein kinase II. Recently, it has been reported that phosphorylation of visual arrestin at Ser-366 prevents its binding to clathrin. Thus it appears that the function of all arrestin family members in mediating internalization of G protein-coupled receptors is regulated by distinct phosphorylation/dephosphorylation mechanisms.  相似文献   

16.
To study phosphorylation of the endogenous type I thyrotropin-releasing hormone receptor in the anterior pituitary, we generated phosphosite-specific polyclonal antibodies. The major phosphorylation site of receptor endogenously expressed in pituitary GH3 cells was Thr(365) in the receptor tail; distal sites were more phosphorylated in some heterologous models. beta-Arrestin 2 reduced thyrotropin-releasing hormone (TRH)-stimulated inositol phosphate production and accelerated internalization of the wild type receptor but not receptor mutants where the critical phosphosites were mutated to Ala. Phosphorylation peaked within seconds and was maximal at 100 nm TRH. Based on dominant negative kinase and small interfering RNA approaches, phosphorylation was mediated primarily by G protein-coupled receptor kinase 2. Phosphorylated receptor, visualized by immunofluorescence microscopy, was initially at the plasma membrane, and over 5-30 min it moved to intracellular vesicles in GH3 cells. Dephosphorylation was rapid (t((1/2)) approximately 1 min) if agonist was removed while receptor was at the surface. Dephosphorylation was slower (t((1/2)) approximately 4 min) if agonist was withdrawn after receptor had internalized. After agonist removal and dephosphorylation, a second pulse of agonist caused extensive rephosphorylation, particularly if most receptor was still on the plasma membrane. Phosphorylated receptor staining was visible in prolactin- and thyrotropin-producing cells in rat pituitary tissue from untreated rats and much stronger in tissue from animals injected with TRH. Our results show that the TRH receptor can rapidly cycle between a phosphorylated and nonphosphorylated state in response to changing agonist concentrations and that phosphorylation can be used as an indicator of receptor activity in vivo.  相似文献   

17.
DNA polymerase epsilon (Polepsilon), one of the three major eukaryotic replicative polymerases, is comprised of the essential catalytic subunit, called Pol2 in budding yeast, and three accessory subunits, only one of which, Dpb2, is essential. Polepsilon is recruited to replication origins during late G(1) phase prior to activation of replication. In this work we show that the budding yeast Dpb2 is phosphorylated in a cell cycle-dependent manner during late G(1) phase. Phosphorylation results in the appearance of a lower mobility species. The appearance of that species in vivo is dependent upon the Cdc28 cyclin-dependent protein kinase (CDK), which can directly phosphorylate Dpb2 in vitro. Either G(1) cyclin (Cln) or B-type cyclin (Clb)-associated CDK is sufficient for phosphorylation. Mapping of phosphorylation sites by mass spectrometry using a novel gel-based proteolysis protocol shows that, of the three consensus CDK phosphorylation sites, at least two, Ser-144 and Ser-616, are phosphorylated in vivo. The Cdc28 CDK phosphorylates only Ser-144 in vitro. Using site-directed mutagenesis, we show that Ser-144 is sufficient for the formation of the lower mobility form of Dpb2 in vivo. In contrast, Ser-616 appears not to be phosphorylated by Cdc28. Finally, inactivation of all three CDK consensus sites in Dpb2 results in a synthetic phenotype with the pol2-11 mutation, leading to decreased spore viability, slow growth, and increased thermosensitivity. We suggest that phosphorylation of Dpb2 during late G(1) phase at CDK consensus sites facilitates the interaction with Pol2 or the activity of Polepsilon  相似文献   

18.
Endothelial nitric-oxide synthase (eNOS) plays a central role in cardiovascular regulation. eNOS function is critically modulated by Ca(2+) and protein phosphorylation, but the interrelationship between intracellular Ca(2+) mobilization and eNOS phosphorylation is poorly understood. Here we show that endoplasmic reticulum (ER) Ca(2+) release activates eNOS by selectively promoting its Ser-635/633 (bovine/human) phosphorylation. With bovine endothelial cells, thapsigargin-induced ER Ca(2+) release caused a dose-dependent increase in eNOS Ser-635 phosphorylation, leading to elevated NO production. ER Ca(2+) release also promoted eNOS Ser-633 phosphorylation in mouse vessels in vivo. This effect was independent of extracellular Ca(2+) and selective to Ser-635 because the phosphorylation status of other eNOS sites, including Ser-1179 or Thr-497, was unaffected in thapsigargin-treated cells. Blocking ERK1/2 abolished ER Ca(2+) release-induced eNOS Ser-635 phosphorylation, whereas inhibiting protein kinase A or Ca(2+)/calmodulin-dependent protein kinase II had no effect. Protein phosphorylation assay confirmed that ERK1/2 directly phosphorylated the eNOS Ser-635 residue in vitro. Further studies demonstrated that ER Ca(2+) release-induced ERK1/2 activation mediated the enhancing action of purine or bradykinin receptor stimulation on eNOS Ser-635/633 phosphorylation in bovine/human endothelial cells. Mutating the Ser-635 to nonphosphorylatable alanine prevented ATP from activating eNOS in cells. Taken together, these studies reveal that ER Ca(2+) release enhances eNOS Ser-635 phosphorylation and function via ERK1/2 activation. Because ER Ca(2+) is commonly mobilized by agonists or physicochemical stimuli, the identified ER Ca(2+)-ERK1/2-eNOS Ser-635 phosphorylation pathway may have a broad role in the regulation of endothelial function.  相似文献   

19.
The deactivation of visual pigments involved in phototransduction is critical for recovering sensitivity after exposure to light in rods and cones of the vertebrate retina. In rods, phosphorylation of rhodopsin by rhodopsin kinase (GRK1) and the subsequent binding of visual arrestin completely terminates phototransduction. Although signal termination in cones is predicted to occur via a similar mechanism as in rods, there may be differences due to the expression of related but distinct gene products. While rods only express GRK1, cones in some species express only GRK1 or GRK7 and others express both GRKs. In the mouse, cone opsin is phosphorylated by GRK1, but this has not been demonstrated in mammals that express GRK7 in cones. We compared cone opsin phosphorylation in intact retinas from the 13-lined ground squirrel (GS) and pig, cone- and rod-dominant mammals, respectively, which both express GRK7. M opsin phosphorylation increased during continuous exposure to light, then declined between 3 and 6 min. In contrast, rhodopsin phosphorylation continued to increase during this time period. In GS retina homogenates, anti-GS GRK7 antibody blocked M opsin phosphorylation by 73%. In pig retina homogenates, only 20% inhibition was observed, possibly due to phosphorylation by GRK1 released from rods during homogenization. Our results suggest that GRK7 phosphorylates M opsin in both of these mammals. Using an in vitro GTPgammaS binding assay, we also found that the ability of recombinant M opsin to activate G(t) was greatly reduced by phosphorylation. Therefore, phosphorylation may participate directly in the termination of phototransduction in cones by decreasing the activity of M opsin.  相似文献   

20.
The phosphorylation of the cardiac muscle isoform of the sarcoplasmic reticulum (SR) Ca(2+)-ATPase (SERCA2a) on serine 38 has been described as a regulatory event capable of very significant enhancement of enzyme activity (Hawkins, C., Xu, A., and Narayanan, N. (1994) J. Biol. Chem. 269, 31198-31206). Independent confirmation of these observations has not been forthcoming. This study has utilized a polyclonal antibody specific for the phosphorylated serine 38 epitope on the Ca(2+)-ATPase to evaluate the phosphorylation of SERCA2a in isolated sarcoplasmic reticulum vesicles and isolated rat ventricular myocytes. A quantitative Western blot approach failed to detect serine 38-phosphorylated Ca(2+)-ATPase in either kinase-treated sarcoplasmic reticulum vesicles or suitably stimulated cardiac myocytes. Calibration standards confirmed that the detection sensitivity of assays was adequate to detect Ser-38 phosphorylation if it occurred on at least 1% of Ca(2+)-ATPase molecules in SR vesicle experiments or on at least 0.1% of Ca(2+)-ATPase molecules in cardiac myocytes. The failure to detect a phosphorylated form of the Ca(2+)-ATPase in either preparation (isolated myocyte, purified sarcoplasmic reticulum vesicles) suggests that Ser-38 phosphorylation of the Ca(2+)-ATPase is not a significant regulatory feature of cardiac Ca(2+) homeostasis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号