共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Locher KP 《Philosophical transactions of the Royal Society of London. Series B, Biological sciences》2009,364(1514):239-245
ATP-binding cassette (ABC) transporters constitute a large superfamily of integral membrane proteins that includes both importers and exporters. In recent years, several structures of complete ABC transporters have been determined by X-ray crystallography. These structures suggest a mechanism by which binding and hydrolysis of ATP by the cytoplasmic, nucleotide-binding domains control the conformation of the transmembrane domains and therefore which side of the membrane the translocation pathway is exposed to. A basic, conserved two-state mechanism can explain active transport of both ABC importers and ABC exporters, but various questions remain unresolved. In this article, I will review some of the crystal structures and the mechanistic insight gained from them. Future challenges for a better understanding of the mechanism of ABC transporters will be outlined. 相似文献
3.
The homodimeric ATP-binding cassette transporter LmrA mediates multidrug transport by an alternating two-site (two-cylinder engine) mechanism 总被引:11,自引:0,他引:11 下载免费PDF全文
The bacterial LmrA protein and the mammalian multidrug resistance P-glycoprotein are closely related ATP-binding cassette (ABC) transporters that confer multidrug resistance on cells by mediating the extrusion of drugs at the expense of ATP hydrolysis. The mechanisms by which transport is mediated, and by which ATP hydrolysis is coupled to drug transport, are not known. Based on equilibrium binding experiments, photoaffinity labeling and drug transport assays, we conclude that homodimeric LmrA mediates drug transport by an alternating two-site transport (two-cylinder engine) mechanism. The transporter possesses two drug-binding sites: a transport-competent site on the inner membrane surface and a drug-release site on the outer membrane surface. The interconversion of these two sites, driven by the hydrolysis of ATP, occurs via a catalytic transition state intermediate in which the drug transport site is occluded. The mechanism proposed for LmrA may also be relevant for P-glycoprotein and other ABC transporters. 相似文献
4.
《Journal of liposome research》2013,23(2):1049-1061
AbstractLipid vesicles may be safely and efficiently loaded with therapeutic dose levels of the beta emitter yttrium-90 (90Y) by using the ability of the cation ionophore A23187 to transport yttrium across the lipid bilayer where it is chelated on the vesicle interior by diethylenetriamine pentaacetic acid (DTPA). For 100 nm diameter vesicles composed of diplamitoylphosphatidylcholine (DPPC) and cholesterol (Choi), DPPC/Chol (1:1), containing 15 mM DTPA with 40 nmoles of external yttrium, total uptake was > 95% of added yttrium within 5 min at 50° using 0.4 ng of ionophore per nmole of lipid. Background binding in these neutral vesicles accounts for less than 0.1% of the yttrium associated with the vesicles. Important operational parameters were the amount of ionophore (> 0.2 μg of ionophore per μmole of lipid was required) and also the temperature (for DPPC/Chol (1:1) vesicles uptake at 40° was essentially background but was > 95% at 50°). The presence of the polymer polyethylene glycol (PEG) on the membrane surface had no effect upon yttrium uptake. Once entrapped, vesicles did not leak any contents for several days at room temperature. 相似文献
5.
Human ATP-binding cassette G2 (ABCG2, also known as mitoxantrone resistance protein, breast cancer-resistance protein, ABC placenta) is a member of the superfamily of ATP-binding cassette (ABC) transporters that have a wide variety of substrates. Overexpression of human ABCG2 in model cancer cell lines causes multidrug resistance by actively effluxing anticancer drugs. Unlike most of the other ABC transporters which usually have two nucleotide-binding domains and two transmembrane domains, ABCG2 consists of only one nucleotide-binding domain followed by one transmembrane domain. Thus, ABCG2 has been thought to be a half-transporter that may function as a homodimer. In this study, we characterized the oligomeric feature of human ABCG2 using non-denaturing detergent perfluoro-octanoic acid and Triton X-100 in combination with gel filtration, sucrose density gradient sedimentation, and gel electrophoresis. Unexpectedly, we found that human ABCG2 exists mainly as a tetramer, with a possibility of a higher form of oligomerization. Monomeric and dimeric ABCG2 did not appear to be the major form of the protein. Further immunoprecipitation analysis showed that the oligomeric ABCG2 did not contain any other proteins. Taken together, we conclude that human ABCG2 likely exists and functions as a homotetramer. 相似文献
6.
Uptake of the ATP-binding cassette (ABC) transporter Ste6 into the yeast vacuole is blocked in the doa4 Mutant 总被引:4,自引:0,他引:4 下载免费PDF全文
Previous experiments suggested that trafficking of the a-factor transporter Ste6 of Saccharomyces cerevisiae to the yeast vacuole is regulated by ubiquitination. To define the ubiquitination-dependent step in the trafficking pathway, we examined the intracellular localization of Ste6 in the ubiquitination-deficient doa4 mutant by immunofluorescence experiments, with a Ste6-green fluorescent protein fusion protein and by sucrose density gradient fractionation. We found that Ste6 accumulated at the vacuolar membrane in the doa4 mutant and not at the cell surface. Experiments with a doa4 pep4 double mutant showed that Ste6 uptake into the lumen of the vacuole is inhibited in the doa4 mutant. The uptake defect could be suppressed by expression of additional ubiquitin, indicating that it is primarily the result of a lowered ubiquitin level (and thus of reduced ubiquitination) and not the result of a deubiquitination defect. Based on our findings, we propose that ubiquitination of Ste6 or of a trafficking factor is required for Ste6 sorting into the multivesicular bodies pathway. In addition, we obtained evidence suggesting that Ste6 recycles between an internal compartment and the plasma membrane. 相似文献
7.
Xia GaoHongmei Gu Ge LiKerry-Anne Rye Da-wei Zhang 《Biochimica et Biophysica Acta (BBA)/Molecular and Cell Biology of Lipids》2012,1821(3):552-559
The ATP-binding cassette transporter G1 (ABCG1) mediates free cholesterol efflux onto lipidated apolipoprotein A-I (apoA-I) and plays an important role in macrophage reverse cholesterol transport thereby reducing atherosclerosis. However, how ABCG1 mediates the efflux of cholesterol onto lipidated apoA-I is unclear. Since the crystal structure of ABCG family is not available, other approaches such as site-directed mutagenesis have been widely used to identify amino acid residues important for protein functions. We noticed that ABCG1 contains a single cysteine residue in its putative transmembrane domains. This cysteine residue locates at position 514 (Cys514) within the third putative transmembrane domain and is highly conserved. Replacement of Cys514 with Ala (C514A) essentially abolished ABCG1-mediated cholesterol efflux onto lipidated apoA-I. Substitution of Cys514 with more conserved amino acid residues, Ser or Thr, also significantly decreased cholesterol efflux. However, mutation C514A had no detectable effect on protein stability and trafficking. Mutation C514A also did not affect the dimerization of ABCG1. Our findings demonstrated that the sulfhydryl group of Cys residue located at position 514 plays a critical role in ABCG1-mediated cholesterol efflux. This article is part of a Special Issue entitled Advances in High Density Lipoprotein Formation and Metabolism: A Tribute to John F. Oram (1945-2010). 相似文献
8.
Hunke S Mourez M Jehanno M Dassa E Schneider E 《The Journal of biological chemistry》2000,275(20):15526-15534
The binding protein-dependent maltose transport system of enterobacteria (MalFGK(2)), a member of the ATP-binding cassette (ABC) transporter superfamily, is composed of two integral membrane proteins, MalF and MalG, and of two copies of an ATPase subunit, MalK, which hydrolyze ATP, thus energizing the translocation process. In addition, an extracellular (periplasmic) substrate-binding protein (MalE) is required for activity. Ligand translocation and ATP hydrolysis are dependent on a signaling mechanism originating from the binding protein and traveling through MalF/MalG. Thus, subunit-subunit interactions in the complex are crucial to the transport process but the chemical nature of residues involved is poorly understood. We have investigated the proximity of residues in a conserved sequence ("EAA" loop) of MalF and MalG to residues in a helical segment of the MalK subunits by means of site-directed chemical cross-linking. To this end, single cysteine residues were introduced into each subunit at several positions and the respective malF and malG alleles were individually co-expressed with each of the malK alleles. Membrane vesicles were prepared from those double mutants that contained a functional transporter in vivo and treated with Cu(1,10-phenanthroline)(2)SO(4) or bifunctional cross-linkers. The results suggest that residues Ala-85, Lys-106, Val-114, and Val-117 in the helical segment of MalK, to different extents, participate in constitution of asymmetric interaction sites with the EAA loops of MalF and MalG. Furthermore, both MalK monomers in the complex are in close contact to each other through Ala-85 and Lys-106. These interactions are strongly modulated by MgATP, indicating a structural rearrangement of the subunits during the transport cycle. These data are discussed with respect to current transport models. 相似文献
9.
Fructose uptake in Bifidobacterium longum NCC2705 is mediated by an ATP-binding cassette transporter
Wei X Guo Y Shao C Sun Z Zhurina D Liu D Liu W Zou D Jiang Z Wang X Zhao J Shang W Li X Liao X Huang L Riedel CU Yuan J 《The Journal of biological chemistry》2012,287(1):357-367
Recently, a putative ATP-binding cassette (ABC) transport system was identified in Bifidobacterium longum NCC2705 that is highly up-regulated during growth on fructose as the sole carbon source. Cloning and expression of the corresponding ORFs (bl0033-0036) result in efficient fructose uptake by bacteria. Sequence analysis reveals high similarity to typical ABC transport systems and suggests that these genes are organized as an operon. Expression of FruE is induced by fructose, ribose, or xylose and is able to bind these sugars with fructose as the preferred substrate. Our data suggest that BL0033-0036 constitute a high affinity fructose-specific ABC transporter of B. longum NCC2705. We thus suggest to rename the coding genes to fruEKFG and the corresponding proteins to FruE (sugar-binding protein), FruK (ATPase subunit), FruF, and FruG (membrane permeases). Furthermore, protein-protein interactions between the components of the transporter complex were determined by GST pulldown and Western blot analysis. This revealed interactions between the membrane subunits FruF and FruG with FruE, which in vivo is located on the external side of the membrane, and with the cytoplasmatic ATPase FruK. This is in line with the proposed model for bacterial ABC sugar transporters. 相似文献
10.
11.
ATP-binding cassette (ABC) proteins have two nucleotide-binding domains (NBDs) that work as dimers to bind and hydrolyze ATP, but the molecular mechanism of nucleotide hydrolysis is controversial. In particular, it is still unresolved whether hydrolysis leads to dissociation of the ATP-induced dimers or opening of the dimers, with the NBDs remaining in contact during the hydrolysis cycle. We studied a prototypical ABC NBD, the Methanococcus jannaschii MJ0796, using spectroscopic techniques. We show that fluorescence from a tryptophan positioned at the dimer interface and luminescence resonance energy transfer between probes reacted with single-cysteine mutants can be used to follow NBD association/dissociation in real time. The intermonomer distances calculated from luminescence resonance energy transfer data indicate that the NBDs separate completely following ATP hydrolysis, instead of opening. The results support ABC protein NBD association/dissociation, as opposed to constant-contact models. 相似文献
12.
ATP-binding cassette transporter BtuCD mediating vitamin B12 uptake in Escherichia coli couples the energy of ATP hydrolysis to the translocation of vitamin B12 across the membrane into the cell. Elastic normal mode analysis of BtuCD demonstrates that the simultaneous substrate trapping at periplasmic cavity and ATP binding at the ATP-binding cassette (BtuD) dimer proceeds readily along the lowest energy pathway. The transport power stroke is attributed to ATP-hydrolysis-induced opening of the nucleotide-binding domain dimer, which is coupled to conformational rearrangement of transmembrane domain (BtuC) helices leading to the closing at the periplasmic side and opening at the cytoplasmic gate. Simultaneous hydrolysis of two ATP is supported by the fact that antisymmetric movement of BtuD dimer implying alternating hydrolysis cannot induce effective conformational change of the translocation pathway. A plausible mechanism of translocation cycle is proposed in which the possible effect of the association of periplasmic binding protein BtuF to the transporter is also considered. 相似文献
13.
哺乳动物中腺苷三磷酸结合盒转运蛋白(ATP-binding cassette transporter,ABCT)可通过可变剪切产生多种转录本,其中含有提前终止密码子(premature terminal codon,PTC)的转录本还可与无义介导的mRNA降解通路(nonsense-mediated mRNA decay,NMD)作用来调节蛋白的相关功能,但这些现象尚未在低等生物的ABCT研究中发现.该文以单细胞原生动物——嗜热四膜虫为对象,利用转录组数据发现ABCC10基因存在可变剪切,并产生两条转录本(SV1和SV2),其中SV2在第五个内含子处发生内含子保留事件,这段长49bp的序列使SV2发生移码并产生PTC.在构建NMD通路中关键因子UPF1基因的嗜热四膜虫敲降株的基础上,利用实时荧光定量PCR方法检测SV2的转录情况.结果显示:含有PTC的转录本SV2在UPF1敲降株中的转录水平相对于野生型显著增加,说明SV2可被NMD通路降解.这与高等动物中某些ABCC蛋白通过可变剪切引入含PTC转录本,并能被NMD降解的方式一致,推测该方式在真核生物中十分保守,并在真核生物的共同祖先(the last eukaryotic common ancestor)中就已形成. 相似文献
14.
The maltose transport complex (MTC) is a member of the ATP-binding cassette superfamily of membrane transport proteins and is a model for understanding the folding and assembly of hetero-oligomeric membrane protein complexes. The MTC is made up of two integral membrane proteins, MalF and MalG, and a peripheral membrane protein, MalK. These proteins associate with a stoichiometry of 1:1:2 to form the complex MalFGK2. In our studies of the oligomerization of this complex, we have shown that the ATP-binding component, MalK, forms a dimer in the absence of MalF and MalG. Epitope-tagged MalK coimmunoprecipitated with wild-type MalK, indicating that the MalK protein forms an oligomer. The relative amounts of tagged and wild-type MalK that were present in the whole cell extracts and in the immunoprecipitated complexes show that the MalK oligomer is a dimer. These hetero-oligomers can also be formed in vitro by mixing two extracts, each containing either tagged or wild-type MalK. The dimerization of MalK was also demonstrated in vivo using the bacteriophage lambda repressor fusion assay. The formation of a MalK dimer in the absence of MalF and MalG may represent an initial step in the assembly pathway of the MTC. 相似文献
15.
16.
17.
Ogino T Kobuchi H Munetomo K Fujita H Yamamoto M Utsumi T Inoue K Shuin T Sasaki J Inoue M Utsumi K 《Molecular and cellular biochemistry》2011,358(1-2):297-307
Accumulation of protoporphyrin IX (PpIX) in cancer cells is a basis of 5-aminolevulinic acid (ALA)-induced photodymanic therapy. We studied factors that affect PpIX accumulation in human urothelial carcinoma cell line T24, with particular emphasis on ATP-binding cassette transporter G2 (ABCG2) and serum in the medium. When the medium had no fetal bovine serum (FBS), ALA induced PpIX accumulation in a time- and ALA concentration-dependent manner. Inhibition of heme-synthesizing enzyme, ferrochelatase, by nitric oxide donor (Noc18) or deferoxamine resulted in a substantial increase in the cellular PpIX accumulation, whereas ABCG2 inhibition by fumitremorgin C or verapamil induced a slight PpIX increase. When the medium was added with FBS, cellular accumulation of PpIX stopped at a lower level with an increase of PpIX in the medium, which suggested PpIX efflux. ABCG2 inhibitors restored the cellular PpIX level to that of FBS(-) samples, whereas ferrochelatase inhibitors had little effects. Bovine serum albumin showed similar effects to FBS. Fluorescence microscopic observation revealed that inhibitors of ABC transporter affected the intracellular distribution of PpIX. These results indicated that ABCG2-mediated PpIX efflux was a major factor that prevented PpIX accumulation in cancer cells in the presence of serum. Inhibition of ABCG2 transporter system could be a new target for the improvement of photodynamic therapy. 相似文献
18.
Summary Isolated renal brush border microvilli vesicles were employed to study the uptake of radiolabel froml-Ala · [3H]Gly andd-Ala · [3H]Gly as well as to determine the presence of dipeptidase activity. Microvilli vesicles were prepared from porcine kidney cortex by differential centrifugation through hypotonic Tris buffer containing Mg2+. The microvilli vesicles transiently accumulated radiolabel froml-Ala · [3H]Gly to higher levels than were initially present in the incubation medium (overshoot phenomenon). This accumulation was dependent on the presence of an inward-directed (extravesicular > intravesicular) Na+ gradient and was osmotically sensitive and linear with respect to microvilli protein concentration. Analysis of intravesicular contents revealed that all3H uptake froml-Ala · [3H]Gly appeared as free glycine. Hydrolysis studies demonstrated the rate ofl-ala · [3H]Gly hydrolysis to free alanine and [3H] glycine by the microvilli to be greatly in excess of their rate of radiolabel uptake from this dipeptide. In addition, the uptake profiles and kinetic constants for vesicular uptake of radiolabel froml-Ala · [3H]Gly and free glycine were demonstrated to be identical when measured by double-labeling techniques in the same experiments. These results indicate thatl-Ala · [3H]Gly is hydrolyzed at the external surface of the microvilli with the [3H]glycine released being transported into the vesicles by a Na+ gradient-dependent system identical to that employed for free glycine.Microvilli vesicle uptake of radiolabel fromd-Ala · [3H]Gly exhibited no Na+ dependent overshoot effect.d-Ala · [3H]Gly was completely resistant to microvilli-catalyzed hydrolysis.Analysis of the microvilli for renal dipeptidase, an enzyme with hydrolytic activity against a wide range ofl-dipeptides, revealed this enzyme to be enriched in the microvilli vesicles to a degree equivalent to that observed for marker enzymes for renal microvilli.Renal dipeptidase catalyzed hydrolysis ofl-Ala · Gly but notd-Ala · Gly, as was the case with microvilli-catalyzed hydrolysis of these dipeptides.With its location in the renal brush border microvilli and its hydrolytic action againstl-dipeptides, renal dipeptidase may act at the luminal surface of the proximal tubule cell to hydrolyzel-dipeptides present in the glomerular filtrate, with the resultant free amino acids transported across the brush border microvilli by Na+ gradient-dependent processes. 相似文献
19.
Three-dimensional structure by cryo-electron microscopy of YvcC, an homodimeric ATP-binding cassette transporter from Bacillus subtilis 总被引:1,自引:0,他引:1
Chami M Steinfels E Orelle C Jault JM Di Pietro A Rigaud JL Marco S 《Journal of molecular biology》2002,315(5):1075-1085
YvcC, a multidrug transporter from Bacillus subtilis, is a member of the ATP-binding cassette superfamily, highly homologous to each half of human multidrug-resistance P-glycoprotein and to several other bacterial half-ABC transporters. Here, the purified recombinant histidine-tagged YvcC has been reconstituted into a lipid bilayer. Controlled and partial detergent removal from YvcC-lipid micelles allowed the production of particularly interesting lipid-detergent-YvcC ring-shaped particles, about 40 nm in diameter, well suited for single particle analysis by cryo-electron microscopy. Furthermore, binding of these histidine-tagged ring-shaped particles to lipid layers functionalized with a Ni(2+)-chelating head group generated a preferential perpendicular orientation, eliminating the missing cone in the final three-dimensional reconstruction. From such analysis, a computed volume has been determined to 2.5 nm resolution giving a detailed insight into the structural organization of this half-ABC transporter within a membrane. The repetitive unit in the ring-shaped particles is consistent with a homodimeric organization of YvcC. Each subunit was composed of three domains: a 5 nm height transmembrane region, a stalk of about 4 nm in height and 2 nm in diameter, and a cytoplasmic lobe of about 5-6 nm in diameter. The latest domain, which fitted with the reported X-ray structure of HisP, was identified as the nucleotide-binding domain (NBD). The 3D reconstruction of the YvcC homodimer well compared with the very recent X-ray crystallographic data on the MsbA homodimer from Escherichia coli, supporting the existence of a central open chamber between the two subunits constituting the homodimer. In addition, the 3D reconstruction of YvcC embedded in a membrane revealed an asymmetric organization of the two NBDs sites within the homodimer, as well as a dimeric interaction between two homodimers. 相似文献