首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In this study, a high yield production bioprocess with recombinant Bacillus megaterium for the production of the extracellular enzyme levansucrase (SacB) was developed. For basic optimization of culture parameters and nutrients, a recombinant B. megaterium reporter strain that produced green fluorescent protein under control of a vector-based xylose-inducible promoter was used. It enabled efficient microtiter plate-based screening via fluorescence analysis. A pH value of pH?6, 20 % of dissolved oxygen, 37 °C, and elevated levels of biotin (100 μg?L?1) were found optimal with regard to high protein yield and reduced overflow metabolism. Among the different compounds tested, fructose and glycerol were identified as the preferred source of carbon. Subsequently, the settings were transferred to a B. megaterium strain recombinantly producing levansucrase SacB based on the plasmid-located xylose-inducible expression system. In shake flask culture under the optimized conditions, the novel strain already secreted the target enzyme in high amounts (14 U?mL?1 on fructose and 17.2 U?mL?1 on glycerol). This was further increased in high cell density fed-batch processes up to 55 U?mL?1, reflecting a levansucrase concentration of 0.52 g?L?1. This is 100-fold more than previous efforts for this enzyme in B. megaterium and more than 10-fold higher than reported values of other extracellular protein produced in this microorganism so far. The recombinant strain could also handle raw glycerol from biodiesel industry which provided the same amount and quality of the recombinant protein and suggests future implementation into existing biorefinery concepts.  相似文献   

2.
Two plasmid-based expression vectors have been constructed where one allows intracellular production of recombinant proteins while the second directs the proteins into the culture medium. Both vectors use the strong promoter preceding the groESL operon (codes for the essential heat shock proteins GroES and GroEL) of Bacillus subtilis fused to the lac operator allowing their induction by addition of ITPG. While the background level of expression of these expression cassettes is very low in the absence of the inducer, an induction factor of about 1300 was measured. When the genes htpG and pbpE (coding for a heat shock protein and a penicillin-binding protein, respectively) were fused to the groE promoter, the amount of recombinant protein produced after addition of IPTG represented 10 and 13%, respectively, of the total cellular protein. To obtain secretion of recombinant proteins, the coding region for the signal peptide of the amyQ gene encoding an alpha-amylase from Bacillus amyloliquefasciens was fused to the groE promoter. High-level secretion of amyQ alpha-amylase and cellulase A and B of Clostridium thermocellum was demonstrated.  相似文献   

3.
A multiple vector system for the intracellular high-level production of affinity tagged recombinant proteins in Bacillus megaterium was developed. The N- and C-terminal fusion of a protein of interest to a Strep II and a His(6)-tag is possible. Corresponding genes are expressed under the control of a xylose-inducible promoter in a xylose isomerase deficient host strain. The exemplatory protein production of green fluorescent protein (GFP) showed differences in produced and recovered protein amounts in dependence of the employed affinity tag and its N- or C-terminal location. Up to 9 mg GFP per liter shake flask culture were purified using one-step affinity chromatography. Integration of a protease cleavage site into the recombinant fusion protein allowed tag removal via tobacco etch virus (TEV) protease or Factor Xa treatment and a second affinity chromatographic step. Up to 274 mg/L culture were produced at 52 g CDW/L using a glucose limited fedbatch cultivation. GFP production and viability of the production host were followed by flow cytometry.  相似文献   

4.
Abstract Netropsin stimulated the rate of synthesis of an extracellular metalloproteinase in Bacillus megaterium incubated in a sporulation medium. The antibiotic delayed but did not suppress the decrease in the ability to synthesize the proteinase occurring at later sporulation stages. Netropsin also stimulated the synthesis of the proteinase when added to a growing culture; it inhibited the increase of protein turnover which was switched on between the 2nd and 3rd hour in the sporulating population. No refractile spores were developed during 6 h at 35°C in the antibiotic-treated culture. In the control 60% of sporulating cells were observed under similar conditions.  相似文献   

5.
Summary Bacillus brevis 47 was cultivated in 2-1 fermentors to study the effect of medium supplementation on extracellular protein production. Additional polypeptone, when supplied initially or at 12 h (late exponential phase), had little stimulatory effect on extracellular protein levels, which reached 6–7 g/l after 48h. A large increase in protein production was observed, however, when polypeptone was added at 21 h (stationary phase). This addition resulted in the accumulation in the medium of 14 g/l protein after 48 h, and a total of 16 g/l when cell-bound protein was included. In all cases, glucose was consumed only very slowly.  相似文献   

6.
The effect of various physico-chemical factors on production of intra- and extracellular phospholipase A1 bySalmonella newport was investigated. Maximum intracellular enzyme levels were observed when cells were grown in brain heart infusion broth, after 12 h of incubation at 37°C. Highest level of extracellular phospholipase A1, however, was seen in synthetic medium (pH 7.0) after 24 h of incubation at 37°C. Agitation during incubation had no effect on the intracellular enzyme synthesis but enhanced extracellular enzyme levels. Addition of surfactants to the growth media significantly decreased both intra- and extracellular phospholipase A1 production.  相似文献   

7.
The site of protein synthesis in Bacillus megaterium   总被引:6,自引:0,他引:6       下载免费PDF全文
  相似文献   

8.
Plasmid-located (multi-copy) and chromosomally located (single-copy) promoter test systems were developed for Bacillus megaterium by making use of the homologous beta-galactosidase-encoding bgaM gene. The multi-copy system facilitates rapid promoter analyses and promoter trapping, whereas the single-copy system, integrated into the chromosome, allows investigation of tightly regulated promoters. As a prerequisite for both the multi- and the single-copy systems, a beta-galactosidase-deficient B. megaterium strain was generated by deletion mutagenesis. Both test systems were verified using the promoter of the xylose operon (P( xylA )) from B. megaterium along with its repressor (XylR). As expected, expression levels in the two systems differed significantly, although expression of the bgaM reporter gene was induced by xylose in both cases, thereby proving the functionality of both the multi- and the single-copy system.  相似文献   

9.
A multiple vector system for the production and export of recombinant affinity-tagged proteins in Bacillus megaterium was developed. Up to 1 mg/liter of a His6-tagged or Strep-tagged Lactobacillus reuteri levansucrase was directed into the growth medium, using the B. megaterium esterase LipA signal peptide, and recovered by one-step affinity chromatography.  相似文献   

10.
An endoglucanase from Bacillus akibai I-1 was successfully overexpressed in Bacillus subtilis 168 and the expression level of the recombinant enzyme was greatly enhanced by using the sucrose-inducible sacB promoter. The endoglucanase activity in the culture supernatant of recombinant B. subtilis by using itself promoter (HpaII) in plasmid pMA5 was 3U/ml. Interestingly, with the addition of sacB promoter at downstream from the HpaII promoter or the replacement of HpaII promoter by the sacB promoter, the endoglucanase activities reached 62 and 60U/ml, respectively, under the optimal culture conditions. These results demonstrated that the sacB promoter might be more efficient for the expression of the endoglucanase than the HpaII promoter. More interestingly, the purified native enzyme had broad pH stability, good thermostability and resistibility to various metal ions and chelating agents examined, while the recombinant enzyme had improved resistibility to SDS, which was stable in 0.2% (w/v) laundry detergent and thus showed great potential in detergents industry.  相似文献   

11.
Summary A mathematical model was formulated to describe the kinetics and stoichiometry of growth and proteinase production in Bacillus megaterium. Synthesis of the extracellular proteinase in a batch culture is repressed by amino acids. The specific rate of formation of the enzyme (r E) can be described by the formula {ie373-1}, where k 2 and k 3 stand for the non-repressible and repressible part of enzyme synthesis respectively, k S 2 is a repression coefficient and S 2 indicates the concentration of amono acids; the values of k 2 and k S 2 depend on the composition of the mixture of amino acids. Even in a high concentration, a single amino acid is less effective than a mixture of amino acids. The dependence of the proteinase repression on the concentration of an external amino acid (leucine) follows the same course as its rate of incorporation into proteins, approaching saturation at concentrations higher than 50 M (half saturation approximately 10 M). However, the total uptake of leucine did not exhibit any saturation even at 500 M external concentration.Symbols X biomass concentration, g/l - E proteinase concentration, unit/l - t time, h - S 1 concentration of glucose, g/l - S 2 concentration of amino acids, g/l - specific growth rate, l/h - rE specific rate of enzyme production, unit/g/h - k 1 growth kinetic constant, l/h - k 2 product formation kinetic constant (for non-repressible part of enzyme synthesis), unit/g - k 3 product formation kinetic constant (for repressible portion of enzyme synthesis), unit/g - k S 1 saturation constant, g/l - k S 2 repression coefficient for a certain amino acid or amino acids mixture, g/l  相似文献   

12.
In the present work the impact of large production scale was investigated for Bacillus megaterium expressing green fluorescent protein (GFP). Specifically designed scale-down studies, mimicking the intermittent and continuous nutrient supply of large- and small-scale processes, were carried out for this purpose. The recombinant strain revealed a 40% reduced GFP yield for the large-scale conditions. In line with extended carbon loss via formation of acetate and carbon dioxide, this indicated obvious limitations in the underlying metabolism of B. megaterium under the large-scale conditions. Quantitative analysis of intracellular amino acids via validated fast filtration protocols revealed that their level strongly differed between the two scenarios. During cultivation in large-scale set-up, the availability of most amino acids, serving as key building blocks of the recombinant protein, was substantially reduced. This was most pronounced for tryptophan, aspartate, histidine, glutamine, and lysine. In contrast alanine was increased, probably related to a bottleneck at the level of pyruvate which also triggered acetate overflow metabolism. The pre-cursor quantifications could then be exploited to verify the presumed bottlenecks and improve recombinant protein production under large-scale conditions. Addition of only 5 mM tryptophan, aspartate, histidine, glutamine, and lysine to the feed solution increased the GFP yield by 100%. This rational concept of driving the lab scale productivity of recombinant microorganisms under suboptimal feeding conditions emulating large scale can easily be extended to other processes and production hosts.  相似文献   

13.
A protease, excreted by a sporogeneous strain of B. megaterium, growing exponentially in a minimum glucose ammonium medium, was isolated. It is a neutral endopeptidase, stabilized by Ca++, inhibited by o-phenanthroline, but not by di-isopropylfluorophosphate. The specificity, studied on insulin B-chain, glucagon, cytochrome c, and dipeptides substrates, indicated the need for a dipeptide backbone with both substituted amino and carboxyl groups. A requirement was observed for a nonpolar lateral chain in the amino acid whose amino group was involved in the peptide bond (Leu, Phe, Ala, He, Val). Rates of hydrolysis varied also with the amino acid whose carboxyl group was involved (e.g., His > Ser > Ala > Gly). In complex medium, supplemented with Yeast Extract, the biosynthesis of the protease was repressed during growth, but the same enzyme was excreted during sporulation. The repression was apparently of the same nature as that controlling sporulation during and after growth (e.g., repression by a mixture of amino acids or high concentration of glucose). An asporogeneous mutant showed a normal product ion of protease under all conditions, and a low intracellular protease turnover after growth. A mutant unable to produce protease showed a normal sporulation and a high protein turnover. This protease, here termed megapeptidase, seems to be a typical growth enzyme, not related to either the sporulation process or to the protein turnover after growth.  相似文献   

14.
15.
16.
Pathogenic Clostridium difficile produces two major protein toxins, toxin A and toxin B. We used the Bacillus megaterium expression system for expression of recombinant toxin A. The construct for the toxin A gene was obtained by the following cloning strategy: the gene for toxin A was generated in three parts, each of them ligated into a cloning vector. The three parts were sequentially fused to the complete gene. The holotoxin gene was ligated into the expression vector pWH1520. This vector was modified to generate a toxin with a C-terminally located His-tag. Gene expression in the B. megaterium system resulted in an approximate 300 kDa protein, which was identified by specific antibody as toxin A. Recombinant, His-tagged toxin A was purified by Ni(2+) as well as thyroglobulin affinity chromatography. Characterization of the recombinant toxin A showed identical cytotoxicity and in vitro-glucosyltransferase activity as the native toxin A from C. difficile.  相似文献   

17.
18.
19.
In order to establish a novel recovery system for polyhydroxyalkanoates, a self-disruptive strain of Bacillus megaterium that responds to substrate exhaustion was constructed. A gene cassette carrying the lysis system of Bacillus amyloliquefaciens phage - holin and endolysin - was inserted into the Escherichia coli- Bacillus subtilis shuttle vector pX under the control of a xylose-inducible expression system, xylR-xylA '. In this system, the expression of a target gene is induced by xylose but inhibited by glucose, which acts as an anti-inducer. B. megaterium was transformed with pX conveying the phage lysis system, which was integrated into the amyE locus of chromosomal DNA of B. megaterium by homologous recombination. The lysis system caused self-disruption of the transformant cells effectively even when expression of the lysis genes was induced during stationary phase. For the production of polyhydroxybutyrate (PHB), the transformant was grown in a medium containing glucose as a substrate in the presence of xylose. When the glucose concentration approached zero, self-disruption was spontaneously induced, releasing intracellularly accumulated PHB into the culture broth. This system realizes timely cell disruption immediately after the PHB content in the cell reaches a maximum level.  相似文献   

20.
【目的】选育高产青霉素G酰化酶(PGA)工业菌株。【方法】采用LiCl-紫外线复合诱变以及常压室温等离子体(ARTP)诱变技术对巨大芽胞杆菌(Bacillus megaterium) ATCC 14945进行处理。处理菌体涂平板后,将长出的菌落接种到液体培养基中,向培养6 h后的二代菌液中添加终浓度为0.1%的苯乙酸,28 °C、250 r/min条件下诱导培养40 h。对离心后获得的上清(粗酶液)采用NIPAB法测定PGA酶活力。以PGA酶活力最高的菌株为材料,对苯乙酸最佳添加量和最佳诱导时间进行优化,采用NIPAB法测定PGA酶活力。采用SDS-PAGE检测诱变前后巨大芽胞杆菌粗酶液中PGA的蛋白特性。【结果】从诱变菌落中筛选到PGA酶活力为39.60 U/mL的菌株12-4,酶活力比出发菌株提高了8.5倍。该菌株在液体培养6 h后添加终浓度为0.2%的苯乙酸,继续培养50 h后,PGA酶活力可达78.45 U/mL,比出发菌株提高了16.8倍。诱变前后菌株培养液中的PGA蛋白均具α、β亚基;诱变后菌株PGA α亚基的量没有明显变化,β亚基的量明显增多;α、β亚基之间的蛋白条带明显增多。【结论】采用诱变技术可提高巨大芽胞杆菌PGA活性,获得的诱变菌株12-4及培养条件对PGA工业化生产具有重要价值。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号