首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary WhenManduca sexta larvae are allatectomized 5 h before head capsule slippage (HCS) in the final larval molt, the new larval cuticle contains granules that melanize 3 h before ecdysis when the ecdysteroid titer falls (Curtis et al. 1984). In both the epidermis and hemolymph of these allatectomized larvae dopamine was higher than dopa prior to and at the time of melanization. Dopamine also increased in the new cuticle as melanization began. Dopa decarboxylase (DDC) activity increased in the epidermis, cuticle, and fat body beginning 16 h after HCS, with a two-fold greater increase in the epidermis of allatectomized larvae. Both -MDH and -fluoromethyl-dopa inhibited epidermal DDC activity and inhibited melanization in vitro when dopa was used as a precursor. Addition of dopamine to the medium allowed melanization in the presence of the inhibitors. All these results indicate that dopamine is likely the primary precursor of cuticular melanin. The diphenoloxidase in the premelanin granules was activated in vivo between 19 and 21 h after HCS and was found to prefer dopamine to dopa and not to convert tyrosine to melanin. The activation of the prophenoloxidase was inhibited by 20-hydroxyecdysone (20-HE), both in vivo and in vitro, if hormone was given by 16 h after HCS. Infusion of 1.2 g/ml 20-HE into allatectomized larvae for 24 h from HCS prevented both the increase in DDC activity and the activation of the premelanin granules. Although the larvae ecdysed after a 15 h delay, melanization never occurred.Abbreviations -MDH L-3-(3,4 dihydroxyphenyl)-2-hydrazine-methylpropionic acid - -FM-dopa R-S--fluoromethyl-dopa - DCC dopa decarboxylase - 20-HE 20-hydroxyecdysone - JH juvenile hormone - HCS head capsule slippage  相似文献   

2.
The effect of ecdysterone and a juvenile hormone analogue (JHa) on autophagy and heterophagy was investigated in the fat body cells of the last larval instar of Mamestra brassicae. In the course of normal development autophagic vacuoles and protein granules of heterophagic origin begin to accumulate in these cells, on the 4th and 5th day of the last larval stage respectively. When ecdysterone (10 mug/g body weight) was administered to the larvae for 24 h either on the 1st or on the 2nd day of the last larval stage, autophagic and heterophagic vacuoles appeared in the cells as early as on the 2nd or 3rd days. Autophagy was also observed in the cells of one-or two-day-old last larval fat body after a 5 h incubation in a medium containing 10 mug/ml ecdysterone, in vitro. Ligation of the last thoracic segment resulted in inhibition of metamorphic changes in the fat body lobules of the isolated abdomen. Injection of 10 mug ecdysterone into the isolated abdomen resulted in an appearence of autophagic vacuoles in these cells, too. JHa treatment, when started on the 2nd or 3rd day of the last larval stage, inhibited both auto- and heterophagy and the fat bodies maintained their larval character. Treatment started on the 4th or 5th day proved either ineffective or lethal. It is concluded that the auto- and heterophagy taking place in the larval fat body cells are stimulated by ecdysterone and inhibited by JHa. Experiments performed in vitro or on ligated animals in vivo provided evidence for a direct action of ecdysterone at the cellular level.  相似文献   

3.
Chironomus thummi contains nine soluble hemoglobins (Hbs) in the larval hemolymph which can be resolved by 12.7% acrylamide gel electrophoresis (pH 8.65). Hemoglobins 2 and 3 are stage specific for the 4th instar and are first detected by day 4 of this stage in vivo, being absent in the 3rd instar. Fat-body cultures in the presence of 3H-delta-aminolevulinic acid and 14C-amino acids synthesize and secrete labelled Hbs, as was assayed by acrylamide gel electrophoresis and immunoprecipitation of Hbs recovered from the culture medium. During development from 3rd instar to pupa, Chironomus fat body undergoes functional changes, being actively involved in Hb synthesis in intermolt periods and inactive with respect to Hb production during molting. The repression of Hb synthesis is reversed following the molt from the 3rd instar to the 4th instar. Metamorphosis is related to a gradual and irreversible loss of Hb synthesis and secretion by the fat body. The treatment of fat body in vitro with ecdysterone inhibits Hb synthesis in tissue from intermolt animals, even in the presence of excess methoprene, a potent juvenile hormone analogue. In contrast, immunoprecipitation of the translation products from a wheat-germ cell-free system, using mRNA from ecdysterone-treated 4th-instar fat body as a template, shows significant synthesis of globins, suggesting that ecdysterone does not affect the amount or template activity of globin messages. Methoprene induces the precocious in vitro synthesis of Hbs 2 and 3 in day-2 4th-instar fat body and enhances all Hb synthesis in the absence of ecdysterone. In vitro treatment with methoprene activates newly molted fat body to synthesize Hbs 2 and 3 in vitro. The process of Hb induction by this analogue is completely inhibited by actinomycin D or ecdysterone. Fat body from animals already exposed to high endogeneous ecdysterone titer are insensitive to treatment with this juvenile hormone analogue. Intermolt larvae normally possess stable Hb mRNA molecules, because actinomycin-D administration in vitro does not affect Hb synthesis for as long as 30 h, whereas it effectively inhibits all RNA synthesis in the fat body. Immunoprecipitation of globin translated in vitro from mRNA from 2-day-old 4th-instar larvae treated in vivo with methoprene shows enhanced synthesis of globins 2 and 3, as compared to controls with no treatment. It is suggested that both juvenile hormone and ecdysterone regulate Hb synthesis in Chironomus; juvenile hormone affecting the activity of Hb genes, and ecdysterone modulating the level of Hb gene expression.  相似文献   

4.
Summary In the tobacco hornworm,Manduca sexta, the epidermis which underlies the larval crochets is the first tissue to become independent of the prothoracic glands (PG) in a larval molt. In each successive larval molt, crochet forming cells increase in size, form hooks at their distal ends and, finally, secrete cuticle. This paper examines the endocrine requirements for competence to molt and describes parallel cultures in vivo and in vitro to define the hormonal control of crochet molting. When implanted into a fourth instar host larva prior to initiation of the last larval molt, competent crochet epidermis molted, forming crochets synchronously with its host. In the fourth instar, competence to form crochets is attained slowly during the first two days following ecdysis from the third instar. During the feeding phase of the fifth (last) instar, the crochet epidermis remains competent to molt (to form an extra sixth instar set of crochets) until the larva attains a weight of about 4.5 gm. Then, concurrent with the decline in the titer of juvenile hormone (JH) in the hemolymph, competence to form crochets declines. A similar loss of competence did not occur when fourth instar crochet epidermis was exposed to a declining JH titer by culture in either fourth instar isolated abdomens for 72 h or in fifth instar host larvae between 4 and 7 gm. Responses of crochet epidermis cultured in vitro also were examined. Competent fourth instar crochet epidermis formed crochets following 3–6 h exposure to ecdysone in vitro. Six ×10–7M -ecdysone was required for 50% response, whereas a 10–50-fold higher concentration of -ecdysone was necessary. Although formation of morphologically complete crochets in vitro proceeded with similar time course to that in situ, no molt-induced growth occurred in vitro. When crochet epidermis was exposed to ecdysone in vitro immediately after explantation, exogenous JH was not required for molting. But when tissue was first cultured for 72 h without hormones, subsequent molting in vitro could not be elicited, although molting still could occur when the tissue subsequently was implanted into a fourth instar host. Exposure to corpora allata or to JH during the 72 h of culture in vivo partially prevented the loss in capacity to respond to ecdysone in vitro, suggesting that JH may be one factor involved directly or indirectly in maintenance of tissue responsiveness.Preliminary presentation of some of this work given at the December, 1973 Meeting of the American Society of Zoologists (Fain and Riddiford, 1973)  相似文献   

5.
The effects of juvenile hormone (JH) and 20-hydroxyecdysone (20E) on the developmental expression of the two insecticyanin genes, ins-a and ins-b, were investigated with two gene-specific probes. Removal of the corpora allata (-CA, source of JH) clearly delayed and down-regulated the epidermal expression of these genes but enhanced their expression in the fat body during the early development of the fifth instar. Application of JH I to the -CA larvae at the time of head capsule slippage completely restored the normal epidermal expression pattern of the two genes in the early fifth instar, then INS-a mRNA declined prematurely whereas INS-b mRNA remained similar to that in the intact larvae. By contrast, in the fat body of -CA larvae, the exogenous JH had little effect on the levels of INS-a mRNA, but enhanced expression of INS-b mRNA relative to intact larvae. Culture of epidermis from day 1 fifth instar larvae with 40 ng/ml 20E for up to 24 h accelerated the loss of INS-a mRNA without affecting the levels of INS-b mRNA. Both mRNAs declined in isolated larval abdomens over a 24 h period, and this decline was slowed by 1 g methoprene (a JH analog). Together these results indicate that JH controls the levels of the two mRNAs in both the epidermis and fat body, with additional factors involved in regulating these genes in the fat body during the molt and in the epidermis during the growth phase.  相似文献   

6.
Summary Pigmentation of last instar larvae of the cabbage armyworm,Mamestra brassicae is of two types: melanin in the cuticle and ommochrome in the epidermis. The latter was found to be primarily xanthommatin. When allatectomy was performed 8 h before head capsule slippage (HCS) in the last larval molt, later ommochrome synthesis was inhibited. Application of juvenile hormone (JH) up to 12 h after HCS (9 h before ecdysis) (activity: methopreneJH I>JH II>JH III) restored ommochrome synthesis. After that time it has less and less effect.Removal of the suboesophageal ganglion from the larvae 8 h before HCS prevented both later ommochrome synthesis and melanization. Melanization of isolated abdomens was restored by implantation of 3 suboesophageal ganglia or injection of melanization and reddish coloration hormone (MRCH) 18 h after HCS. Restoration of ommochrome synthesis required exogenous JH in addition to melanization hormone from suboesophageal ganglion or MRCH. Therefore, melanization appears to be critical for the later onset of ommochrome synthesis even in a larva which has been exposed to JH during the critical period.Abbreviations CC·CA corpora cardiaca-corpora allata complex - JH juvenile hormone - MRCH melanization and reddish coloration hormone - HCS head capsule slippage  相似文献   

7.
Summary Larvae of the cabbage looper,Trichoplusia ni, precociously initiate metamorphosis in the penultimate instar when parasitized byChelonus insularis. Some larvae developing from stung eggs precociously spin cocoons, but upon dissection contain no live or obvious parasites. Such pseudoparasitized larvae greatly slow down in development as prepupae, due to a suppressed ecdysteroid titer which in turn may be caused by a suppressed juvenile hormone titer.Abbreviations JH juvenile hormone - JHA juvenile hormone analog - JHE juvenile hormone esterase  相似文献   

8.
Summary Spermathecal accessory glands from pupae of Tenebrio molitor were cultured in vitro in Landureau S-20 medium with or without ecdysterone at a concentration of 5 g/ml medium. Morphological changes were examined by electron microscopy. Tissue taken from pupae that have not been exposed to a peak of ecdysterone in vivo is only able to differentiate in medium with hormone, and then only partially, while tissue taken from pupae that have experienced an endogenous peak of ecdysterone is able to develop maximally irrespective of the presence or absence of hormone. The specific ultrastructural changes that occur in vitro correspond to those occurring in the gland in situ during the normal course of differentiation, and are: the formation of the pseudocilium, cell retraction and formation of an end apparatus, and cuticulogenesis in the ductule and main lumen of the gland. Pseudocilium formation does not appear to be ecdysterone-dependent, while cuticulogenesis requires ecdysterone for initiation of the process. Deposition of cuticle is an expression of an earlier commitment of the cells to this process, and is initiated by elevated levels of ecdysterone. Ecdysterone is not required for completion of cuticulogenesis.This study was supported by grants from the National Institutes of Health (NIAMD 15662 and NIGMS 26140)  相似文献   

9.
ABSTRACT. In the blood-fed mosquito, peak vitellogenin synthesis occurs 24–32 h after the meal, dropping to resting levels by 40 h. Challenging fat body with ecdysterone in vitro at various times after a blood meal demonstrated a refractory period at about 50 h, when there was also a drastic decrease in mitochondria, rough endoplasmic reticulum, ribosomes, and glycogen in fat body cells. When fat bodies from sugar-fed females were incubated with continuous ecdysterone in vitro , vitellogenin synthesis reached a peak at 30 h, but then declined even in the presence of ecdysteroné. This was not due to the in vitro conditions since fat bodies were responsive, even if first exposed to ecdysterone, after 80 h in vitro. If ecdysterone was removed, vitellogenin synthesis ceased. If it was replaced, the fat body responded again only if the initial removal was done during the first 30 h. It is proposed that the falling ecdysterone titre is the major cause of cessation of vitellogenin synthesis, but that synthesis is programmed to decline even if exposure to ecdysterone is abnormally prolonged.  相似文献   

10.
Summary Juvenile hormone (JH) treatment coordinately stimulated the dose-dependent synthesis of vitellogenin and endoplasmic reticulum (ER) membrane phospholipids in fat body cells from allatectomized adult females ofLeucophaea maderae. Animals were pulse-labeled in vivo with [32P] to simultaneously measure the rates of synthesis of the phosphorylated subunits of vitellogenin and the structural phospholipids of the ER membranes. Phospholipid synthesis in ER membranes from nontarget tissues for JH such as thoracic muscle, midgut, and larval fat body was unresponsive to hormone treatment. The proliferation of ER in response to JH treatment was thus restricted to tissue that was competent to synthesize vitellogenin.Primary and secondary vitellogenin induction was measured in allatectomized adult females treated 12 days apart with JH-III. The time-course of the primary response for vitellogenin and ER phospholipid synthesis was characterized by a 24 h latent period, a rapid increase to a maximum at 72 h, and then a gradual decline. During secondary induction, vitellogenin accumulated in the hemolymph nearly twice as fast as before and peaked at a concentration of 38 g/l. This vitellogenin titer was approximately two-fold higher than that found at the height of the primary response. During both primary and secondary stimulation with JH, ER phospholipid synthesis, as measured by [14C]choline incorporation into microsomal phosphatidylcholine, was stimulated five-fold over the untreated control animals. The amplified production of vitellogenin during the secondary response was associated with a 24 h-earlier peak of ER phospholipid synthesis in the fat body.  相似文献   

11.
The chitinase activity in the abdominal body walls of isolated abdomens of Bombyx mori larvae was examined.The activity in the abdomen just after ligation, decreased with the lapse of time, but increased by a fivefold factor whenever ecdysterone was injected into the abdomen at a sufficient dose to induce ecdysis. The increase in chitinase activity appeared some 9 hr after hormone injection. The increase in the enzyme activity was not blocked completely by actinomycin D and puromycin, and the rate of syntheses of RNA and protein in the body walls was not found to rise before the increase of chitinase activity.  相似文献   

12.
Morphogenetic effect of juvenile hormone (JH) and its analogues, dodecyl methyl ether, ethyl trimethyl dodecadienoate and methylenedioxyphenoxy-6-epoxy-3-ethyl-7-methyl-2-nonene, on carefully timed Tenebrio pupae was determined. These results show that the response of pupal epidermal cells to JH varied with age during the first 48 hr after larval-pupal ecdysis. The pupae showed low morphogenetic response soon after pupal ecdysis but their response increased gradually until 18 hr. The response to JH decreased in pupae older than about 32 hr; and 48 hr old pupae were unresponsive to low doses of JH employed in this study. Age-related differences in the pattern of response of the individual body regions to JH were also observed.The synergistic effect of 1 μg of ecdysterone with these JH compounds was also tested in relation to the age of Tenebrio pupa. The results show that the synergistic effect of ecdysterone was generally limited to >18 hr old pupae. This suggests that the physiological basis of the synergistic effect of ecdysterone may be the latter's ability to synchronize epidermal cells.The significance of these observations in the analysis of time of action of juvenile hormone is discussed.  相似文献   

13.
Summary In the ovoviviparous fly, Sarcophaga bullata, vitellogenesis is cyclic; a process reflected in ultrastructural changes in the fat body cells and oenocytes. At eclosion the larval fat body has not yet completely disappeared. During vitellogenesis the fat body cells are specialized for intensive protein synthesis showing a very extensive RER and numerous invaginations of the plasma membrane. These features disappear when the eggs descend into the oviducts to complete embryogenesis. The predominant feature of the oenocytes is their very prominent SER. The fat body cells of the males are never as specialized for protein synthesis as those of the females. Feeding of ecdysterone to males for 3 or more days induces a rather extensive subcellular apparatus for protein synthesis, i.e., invaginations of the plasma membrane and an extensive RER. Juvenile hormone is completely ineffective in this respect. Both ecdysterone and juvenile hormone have pronounced but different effects on the oenocytes of males.  相似文献   

14.
Salivary glands of 3rd instar larvae of Drosophila melanogaster were labeled with 3H-leucine in the presence and absence of ecdysterone. Twentysix ecdysterone inducible proteins were detected. Their induction was correlated with puff stage. Synthesis of fifteen proteins commenced during early puff stage (PS2); synthesis of seven others at late puff stages (PS8–10). Synthesis of four proteins was induced between puff stage 3/4 and 7/8. Thus, the hormonal induction of protein synthesis generally reflected the appearance of early and of late puffs as described by Ashburner (1972). Eleven ecdysterone inducible proteins were detected in larval fat body in vitro. Comparison of the fat body to the salivary gland proteins revealed that one of the ecdysterone induced fat body proteins was identical in molecular weight and charge to one of the proteins induced by ecdysterone in salivary glands.  相似文献   

15.
The in vivo development of the entomogenous hyphomycetePaecilomyces farinosus inSpodoptera exigua (beet armyworm) larvae was examined using light and electron microscopic techniques. Blastospores injected into larval hemocoels (500 blastospores/larva) were immediately ingested by phagocytic hemocytes, and no fungal cells were detected in the hemolymph until 36 h post-injection. As indicated by immunocytochemical methods, the in vivo-produced blastosopres, in contrast to in vitro blastospores, lacked a galacto-mannan surface layer required for opsonization by aS. exigua humoral lectin. Therefore, these in vivo cells were not recognized by phagocytic granulocytes and were freely-circulating in the hemolymph. Hyphae differentiating from the blastospores were recognized by the hemocytes and induced formation of multicellular hemocytic nodules. By 72 h post-injection, mycelia were observed emerging from the nodules and by 96 h, larvae had become mummified due to extensive proliferation of the fungus throughout host tissues. Neither phagocytosis of the initially injected in vitro-produced blastospores nor nodule formation around hyphal cells later in the infection process was effective in stopping fungal growth. The in vivo development ofP. farinosus was similar to that of another hyphomycete,Beauveria bassiana except that in the latter case, extensive nodule formation was inhibited by the production of fungal metabolites.  相似文献   

16.
Summary We have previously demonstrated that estrogen can exert inhibitory or atretogenic effects on the ovaries of both rats and rhesus monkeys in vivo. This study was designed to test whether the hamster (Mesocricetus auratus) is an appropriate model in which to test the effects of estrogens (diethylstilbestrol and estradiol-17) on steroid accumulation by ovarian granulosa cells in vitro, and whether the effects are similar to those demonstrated for other species in vivo. Immature female hamsters were injected with pregnant mare's serum gonadotropin at 28 to 30 days of age. Animals were sacrificed and follicular contents aspirated three days later. Granulosa cells were either left untreated or treated with diethylstilbestrol or estradiol (1×10-7 M) in vitro for 72 h in the presence of androstenedione (1×10-7 M), and in the presence or absence of serum (10%) or human follicle-stimulating hormone (20 ng/ml), and long-term accumulation of estrogen and progesterone was determined. Diethylstilbestrol inhibited accumulation of estrogen regardless of the presence or absence of follicle-stimulating hormone. In contrast, only estradiol plus follicle-stimulating hormone augmented accumulation of progesterone by granulosa cells. These findings that estrogen can be non-stimulatory or inhibitory to function of granulosa cells in vitro parallel those shown in vivo. Our experimental approach may therefore represent an appropriate model for study of the direct effects of estradiol on the function of granulosa cells.  相似文献   

17.
The insect-hormone ecdysterone causes a de novo synthesis of RNA in the fat body cells of blowfly larvae. Hybridization of the RNA induced by the hormone with 3H-Poly(U) demonstrates that it contains poly(A) sequences and therefore is probably informational. DNA-RNA-hybridization experiments further show that qualitatively new mRNA species are synthesized under the influence of ecdysterone. The inducibility of RNA synthesis is strongly correlated to specific developmental stages.  相似文献   

18.
《Insect Biochemistry》1985,15(4):489-502
When fat body mRNA from the tobacco hornworm larva, Manduca sexta, was translated in a rabbit reticulocyte lysate system, three major polypeptides were found, each having a different developmental profile. One mRNA coded for a 74 kilodalton (K) polypeptide doublet precipitated by an antibody to the arylphorin (manducin). This mRNA was present only during the intermolt feeding phase of the penultimate and the final larval instars. Its appearance 16–24 hr after larval ecdysis was dependent upon the incoming nutrient supply and independent of the juvenile hormone (JH) level. Immunoblots of proteins of the fat body, epidermis, and cuticle revealed the presence of arylphorin in all three tissues. Additionally, several small polypeptides that cross-reacted with the arylphorin antibody were found in the fat body during and up to 24 hr after the last larval molt and in the tanning pupal cuticle. The larval epidermis was also found to contain a small amount of arylphorin mRNA. At the time of the JH decline prior to the onset of metamorphosis, a female-specific mRNA coding for a 79 K translation product appeared. In allatectomized larvae this mRNA was detectable earlier, and its appearance in intact larvae was prevented by application of methoprene, indicating that JH regulates its appearance. At wandering a new mRNA that also codes for a 79 K polypeptide appeared in both sexes and was the major messenger present during the prepupal stage. Neither it nor the female-specific mRNA were translatable after pupal ecdysis.  相似文献   

19.
Summary The role of juvenile hormone (JH) esterases in relation to the diapause state of the southwestern corn borer,Diatraea grandiosella, was examined. The facultative larval diapause of this insect is dependent upon the presence of JH. Plasma, fat body, midgut, and body wall extracts metabolized [3H]JH I and [3H]JH III to JH-acid in vitro. JH-diol, JH-acid-diol, or conjugated polar metabolites were not detected. A longer half life of [3H]JH I was found in vitro in the plasma of diapausing larvae than in that of non-diapausing larvae. Although JH hydrolytic activity was relatively low in the plasma of pre-diapausing and diapausing larvae, systematic changes were observed suggesting that JH esterases may be involved in regulating the JH titer during this period. The JH hydrolytic activity found in the plasma of diapausing larvae was 3 to 5 times lower than that found in the plasma of mid-last instar non-diapausing larvae. Gel filtration profiles obtained from the plasma of diapausing and non-diapausing larvae suggested that JH esterases and -naphthyl-acetate esterases are different enzymes. Multiple overlapping peaks of JH hydrolytic activity with an apparent molecular weight range of 43,000 to 75,000 were detected, whereas 2 separate peaks of -naphthyl-acetate hydrolytic activity (apparent mol. wt. ca. 54,000, and 120,000) were detected. Gel filtration of supernatants of fat body indicated that JH was hydrolyzed at a lower rate by the fat body of pre-diapausing larvae than by that of non-diapausing larvae.  相似文献   

20.
Summary Transferring the temperature sensitive mutantl(1)su(f) ts67g from 25° C to 30° C before or early in the third larval instar blocks the increase in the ecdysterone titer that normally occurs at the end of the larval period. Feeding exogenous ecdysterone to these hormone-deficient larvae results in the formation of pseudopupae. The mutant was used to study ecdysterone-inducible functions in late larval salivary glands by preparing three animal samples with different hormone titers: the titer was low in one sample because of an earlier temperature shift, high in a second sample because the larvae were subsequently transferred to ecdysterone-supplemented food, and also high in a third sample that was kept at 25°C, providing a control for normal development. The effect of the different hormone conditions was studied by35S-methionine labeling of the salivary gland proteins during the larval to prepupal transition and the prepupal period. The results indicate that synthesis of several of the proteins normally appearing during the transition and prepupal period is induced by exogenous ecdysterone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号