首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Colicin M is unique among the colicins in that it causes lysis of cells. Synthesis of peptidoglycan was inhibited before colicin-induced cell lysis occurred. This suggested that inhibition of peptidoglycan synthesis was the primary effect of the colicin which was followed by cell lysis. Following colicin M treatment, soluble peptidoglycan nucleotide precursors accumulated, and radioactivity associated with the membrane-bound carrier lipid almost disappeared. Further metabolism of radiolabeled intermediates bound to the lipid carrier (lipid intermediates) was not inhibited by colicin M. The two lipid intermediates decreased to a level where equal amounts of both were present. The data indicated that translocation of nucleotide precursors to the lipid carrier was not inhibited. In vitro peptidoglycan synthesis agreed with the in vivo results. It is concluded that colicin M inhibits peptidoglycan biosynthesis by preventing regeneration of the lipid carrier.  相似文献   

2.
Colicin M was earlier demonstrated to provoke Escherichia coli cell lysis via inhibition of cell wall peptidoglycan (murein) biosynthesis. As the formation of the O-antigen moiety of lipopolysaccharides was concomitantly blocked, it was hypothesized that the metabolism of undecaprenyl phosphate, an essential carrier lipid shared by these two pathways, should be the target of this colicin. However, the exact target and mechanism of action of colicin M was unknown. Colicin M was now purified to near homogeneity, and its effects on cell wall peptidoglycan metabolism reinvestigated. It is demonstrated that colicin M exhibits both in vitro and in vivo enzymatic properties of degradation of lipid I and lipid II peptidoglycan intermediates. Free undecaprenol and either 1-pyrophospho-MurNAc-pentapeptide or 1-pyrophospho-MurNAc-(pentapeptide)-Glc-NAc were identified as the lipid I and lipid II degradation products, respectively, showing that the cleavage occurred between the lipid moiety and the pyrophosphoryl group. This is the first time such an activity is described. Neither undecaprenyl pyrophosphate nor the peptidoglycan nucleotide precursors were substrates of colicin M, indicating that both undecaprenyl and sugar moieties were essential for activity. The bacteriolytic effect of colicin M therefore appears to be the consequence of an arrest of peptidoglycan polymerization steps provoked by enzymatic degradation of the undecaprenyl phosphate-linked peptidoglycan precursors.  相似文献   

3.
Abstract This communication summarizes our present knowledge of colicin M, an unusual member of the colicin group. The gene encoding colicin M, cma , has been sequenced and the protein isolated and purified. With a deduced molecular size of 29 453 Da, colicin M is the smallest of the known colicins. The polypeptide can be divided into functional domains for cell surface receptor binding, uptake into the cell, and killing activity. To kill, the colicin must enter from outside the cell. Colicin M blocks the biosynthesis of both peptidoglycan and O-antigen by inhibiting regeneration of the bactoprenyl-P carrier lipid. Autolysis occurs as a secondary effect following inhibition of peptidoglycan synthesis. Colicin M is the only colicin known to have such a mechanism of action. Immunity to this colicin is mediated by the cmi gene product, a protein of 13 890 Da. This cytoplasmic membrane protein confers immunity by binding to and thus neutralizing the colicin. Cmi shares properties with both immunity proteins of the pore-forming and the cytoplasmically active colicins. Genes for the colicin and immunity protein are found next to each other, but in opposite orientation, on pColM plasmids. The mechanism of colicin M release is not known.  相似文献   

4.
The biology of colicin M   总被引:4,自引:0,他引:4  
This communication summarizes our present knowledge of colicin M, an unusual member of the colicin group. The gene encoding colicin M, cma, has been sequenced and the protein isolated and purified. With a deduced molecular size of 29,453 Da, colicin M is the smallest of the known colicins. The polypeptide can be divided into functional domains for cell surface receptor binding, uptake into the cell, and killing activity. To kill, the colicin must enter from outside the cell. Colicin M blocks the biosynthesis of both peptidoglycan and O-antigen by inhibiting regeneration of the bactoprenyl-P carrier lipid. Autolysis occurs as a secondary effect following inhibition of peptidoglycan synthesis. Colicin M is the only colicin known to have such a mechanism of action. Immunity to this colicin is mediated by the cmi gene product, a protein of 13,890 Da. This cytoplasmic membrane protein confers immunity by binding to and thus neutralizing the colicin. Cmi shares properties with both immunity proteins of the pore-forming and the cytoplasmically active colicins. Genes for the colicin and immunity protein are found next to each other, but in opposite orientation, on pColM plasmids. The mechanism of colicin M release is not known.  相似文献   

5.
Binding of the immunity protein inactivates colicin M   总被引:3,自引:2,他引:1  
Colicin M (Cma) displays a unique mode of action in that it inhibits peptidoglycan and lipopolysaccharide biosynthesis through interference with bactoprenyl phosphate recycling. Protection of Cma-producing cells by the immunity protein (Cmi) was studied. The amount of Cmi determined the degree of inhibition of in vitro peptidoglycan synthesis by Cma. In cells, immunity breakdown could be achieved by overexpression of the Cma uptake system. Full immunity was restored after raising the cmi gene copy number. In sphaeroplasts, Cmi was degraded by trypsin, but this could be prevented by the addition of Cma. The N-terminal end includes the only hydrophobic amino acid sequence of Cmi, suggesting a function in anchoring of Cmi in the cytoplasmic membrane. It is proposed that Cmi does not act catalytically but binds Cma at the periplasmic face of the cytoplasmic membrane, thereby resulting in Cma inactivation. Two other possible modes of colicin M immunity, interference of Cmi with the uptake of Cma, and interaction of Cmi with the target of Cma, were ruled out by the data.  相似文献   

6.
Both the synthesis of lipopolysaccharide O-antigen and the synthesis of peptidoglycan in Salmonella typhimurium proceed via membrane-bound glycosylated lipid intermediates. The first enzyme of each pathway transfers a sugar phosphate from a nucleotide sugar to the glycosyl carrier lipid (P-GCL). Each enzyme catalyzes an exchange reaction between the reaction product urine monophosphate, and the nucleotide sugar substrate. Several strains of S. typhimurium defective in lipopolysaccharide synthesis accumulate glycosylated lipid intermediates under appropriate conditions. In addition, strains lysogenic for phage P22 synthesize a glucose derivative of the carrier lipid. These strains were used to demonstrate the P/GCL requirement of the exchange reaction catalyzed by galactose-diphosphoglycosyl carrier lipid (GCL-PP-Gal) synthetase, the first enzyme of O-antigen synthesis. Enzyme activity is greatly reduced when glycosylated P-GCL accumulates on the cytoplasmic membrane. The exchange reaction catalyzed by the first enzyme of peptidoglycan synthesis is unaffected by the accumulation of O-antigen fragments on the carrier lipid and may interact with a different pool of P-GCL within the membrane. GCL-PP-Gal synthetase activity cannot be detected in the membranes of two rfa mutants that synthesize incomplete lipopolysaccharide core. Either the synthesis of GCL-PP-Gal synthetase or the stable integration of the enzyme into the membrane structure may be disrupted in the rfa mutants. Peptidoglycan synthesis is unaffected by the mutations affecting the core glycosyltransferases.  相似文献   

7.
Colicin M is an inhibitor of murein biosynthesis.   总被引:10,自引:7,他引:3       下载免费PDF全文
Colicin M inhibited the incorporation of DL + meso-2,6-diamino[3,4,5-3H]pimelic acid into the murein (peptidoglycan) of growing cells of Escherichia coli W7 dap lys. The inhibition of the UDP-N-acetylmuramyl pentapeptide-dependent incorporation of UDP-N-acetyl-D-[U-14C]glucosamine into isolated cell envelopes indicated interference with a late step of murein biosynthesis. After the inhibition of murein biosynthesis, cells lysed, and they released lysis products of murein. In vitro, the murein biosynthesis of colicin M-tolerant mutants (tolM) was inhibited by colicin M. Therefore, tolerance is probably conferred by an impaired uptake of an altered fixation close to the target site and not by a mutation of the target itself. Preliminary studies with beta-lactam antibiotics and with mutants in penicillin-binding proteins did not reveal a specific enzymatic step inhibited by colicin M. The unique action among the colicins renders colicin M a potentially useful tool for studying murein biosynthesis.  相似文献   

8.
Colicin M inhibits murein biosynthesis by interfering with bactoprenyl phosphate carrier regeneration. It belongs to the group B colicins the uptake of which through the outer membrane depends on the Tong, ExbB and ExbD proteins. These colicins contain a sequence, called the Tong box, which has been implicated in transport via Tong. Point mutations were introduced by PCR into the TonB box of the structural gene for colicin M, cma, resulting in derivatives that no longer killed cells. Mutations in the tonB gene suppressed, in an allele-specific manner, some of the cma mutations, suggesting that interaction of colicin M with Tong may be required for colicin M uptake. Among the hydroxylamine-generated colicin M-inactive cma mutants was one which carried cysteine in place of arginine at position 115. This Colicin derivative still bound to the FhuA receptor and killed cells when translocated across the outer membrane by osmotic shock treatment. It apparently represents a new type of transport-deficient colicin M. Additional hydroxylamine-generated inactive derivatives of colicin M carried mutations centered on residues 193–197 and 223–252. Since these did not kill osmotically shocked cells the mutations must be located in a region which is important for colicin M activity. It is concluded that the Tong box at the N-terminal end of colicin M must be involved in colicin uptake via Tong across the outer membrane and that the C-terminal portion of the molecule is likely to contain the activity domain.  相似文献   

9.
An in vitro peptidoglycan synthesis reaction was employed to further characterize the role of the tolM product in colicin M-induced inhibition of peptidoglycan synthesis. It was found that the tolM product is not the colicin M target and that this gene product does not play a role in the interaction of the colicin with its target. Colicin M remained associated with envelopes prepared from colicin-treated tolM mutants. These findings suggested that the tolM product most likely is involved with the internalization of colicin M.  相似文献   

10.
The synthesis of the lipid carrier undecaprenyl phosphate (C(55)-P) requires the dephosphorylation of its precursor, undecaprenyl pyrophosphate (C(55)-PP). The latter lipid is synthesized de novo in the cytosol and is also regenerated after its release from the C(55)-PP-linked glycans in the periplasm. In Escherichia coli the dephosphorylation of C(55)-PP was shown to involve four integral membrane proteins, BacA, and three members of the type 2 phosphatidic acid phosphatase family, PgpB, YbjG, and YeiU. Here, the PgpB protein was purified to homogeneity, and its phosphatase activity was examined. This enzyme was shown to catalyze the dephosphorylation of C(55)-PP with a relatively low efficiency compared with diacylglycerol pyrophosphate and farnesyl pyrophosphate (C(15)-PP) lipid substrates. However, the in vitro C(55)-PP phosphatase activity of PgpB was specifically enhanced by different phospholipids. We hypothesize that the phospholipids are important determinants to ensure proper conformation of the atypical long axis C(55) carrier lipid in membranes. Furthermore, a topological analysis demonstrated that PgpB contains six transmembrane segments, a large periplasmic loop, and the type 2 phosphatidic acid phosphatase signature residues at a periplasmic location.  相似文献   

11.
Biosynthesis of enterobacterial common antigen.   总被引:15,自引:12,他引:3       下载免费PDF全文
Cultures of Salmonella typhimurium pulse-labeled with N-acetyl-D-[3H]glucosamine ([3H]GlcNAc) incorporated isotope into a GlcNAc-linked lipid that was tentatively identified as GlcNAc-pyrophosphorylundecaprenol. The incorporation of [3H]GlcNAc into this compound was abolished when cells were pulse-labeled in the presence of the antibiotic tunicamycin. Tunicamycin also abolished the in vivo synthesis of the haptenic form of enterobacterial common antigen (ECA) in S. typhimurium as determined by the passive hemagglutination test. These data indicated that the synthesis of the GlcNAc-linked lipid is related to ECA synthesis. Support for this conclusion was provided by the following observations. Cultures of Escherichia coli and S. typhimurium incorporated [3H]GlcNAc into cell envelope components that migrated as a homologous series of polymers when analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The [3H]GlcNAc-labeled polymers were not detected in mutants of E. coli and S. typhimurium defective in ECA synthesis due to lesions in either the rfe or rff gene clusters. These polymers were identified as ECA based on Western blot analyses employing anti-ECA monoclonal antibody. The incorporation of [3H]GlcNAc into ECA polymers was abolished by tunicamycin when the drug was added to cultures to give a minimum concentration of 3 micrograms/ml. In addition, pulse-chase experiments provided evidence for a precursor-product relationship between the GlcNAc-linked lipid and ECA. These results strongly suggest that the GlcNAc-linked lipid is involved in the biosynthesis of ECA in a manner analogous to the role of carrier lipid in the biosynthesis of O-antigen and peptidoglycan.  相似文献   

12.
O-antigen units are nonuniformly distributed among lipid A-core molecules in lipopolysaccharide (LPS) from gram-negative bacteria, as revealed by polyacrylamide gel electrophoresis in sodium dodecyl sulfate; the actual distribution patterns are complex, multimodal, and strain specific. Although the basic biochemical steps involved in synthesis and polymerization of O-antigen monomers and their subsequent attachment to lipid A-core are known, the mechanism by which specific multimodal distribution patterns are attained in mature LPS has not been previously considered theoretically or experimentally. We have developed probability equations which completely describe O-antigen distribution among lipid A-core molecules in terms of the probability of finding a nascent polymer (O antigen linked to carrier lipid) of length k (Tk) and the probability that a nascent polymer of length k will be extended to k + 1 by polymerase (pk) or transferred to lipid A-core by ligase (qk). These equations were used to show that multimodal distribution patterns in mature LPS cannot be produced if all pk are equal to p and all qk are equal to q, conditions which indicate a lack of selectivity of polymerase and ligase, respectively, for nascent O-antigen chain lengths. A completely stochastic model (pk = p, qk = q) of O-antigen polymerization and transfer to lipid A-core was also inconsistent with observed effects of mutations which resulted in partial inhibition of O-antigen monomer synthesis, lipid A-core synthesis, or ligase activity. The simplest explanation compatible with experimental observations is that polymerase or ligase, or perhaps both, have specificity for certain O-antigen chain lengths during biosynthesis of LPS. Our mathematical model indicates selectively probably was associated with the polymerase reaction. Although one may argue for a multimodal distribution pattern based on a kinetic mechanism i.e., varying reaction parameters in space or in time during cell growth, such a model requires complex sensory and regulatory mechanisms to explain the mutant data and mechanisms for sequestering specific components of LPS biosynthesis to explain the distribution pattern in normal cells. We favor the simple alternative of enzyme specificity and present generalized equations which should be useful in analysis of other analogous biochemical systems.  相似文献   

13.
One-third of the lipid A found in the Escherichia coli outer membrane contains an unsubstituted diphosphate unit at position 1 (lipid A 1-diphosphate). We now report an inner membrane enzyme, LpxT (YeiU), which specifically transfers a phosphate group to lipid A, forming the 1-diphosphate species. (32)P-labelled lipid A obtained from lpxT mutants do not produce lipid A 1-diphosphate. In vitro assays with Kdo(2)-[4'-(32)P]lipid A as the acceptor shows that LpxT uses undecaprenyl pyrophosphate as the substrate donor. Inhibition of lipid A 1-diphosphate formation in wild-type bacteria was demonstrated by sequestering undecaprenyl pyrophosphate with the cyclic polypeptide antibiotic bacitracin, providing evidence that undecaprenyl pyrophosphate serves as the donor substrate within whole bacteria. LpxT-catalysed phosphorylation is dependent upon transport of lipid A across the inner membrane by MsbA, a lipid A flippase, indicating a periplasmic active site. In conclusion, we demonstrate a novel pathway in the periplasmic modification of lipid A that is directly linked to the synthesis of undecaprenyl phosphate, an essential carrier lipid required for the synthesis of various bacterial polymers, such as peptidoglycan.  相似文献   

14.
Enzymatic activities which dephosphorylate dolichyl phosphate (Dol-P) and dolichyl pyrophosphate (Dol-P-P) have been observed in membranes from cultured human lymphocytes. Neither activity requires divalent metals. Dol-P phosphatase is inhibited by inorganic phosphate but not by other phosphate-containing compounds. Dol-P-P phosphatase is inhibited by bacitracin but not by phosphate-containing compounds including the methylene analogue of pyrophosphate. These reactions are similar to those previously found in the cycle of bacterial wall peptidoglycan biosynthesis. A chemical synthesis of [32P]Dol-P and [32P]Dol-P-P is reported.  相似文献   

15.
The bacA gene product of Escherichia coli was recently purified to near homogeneity and identified as an undecaprenyl pyrophosphate phosphatase activity (El Ghachi, M., Bouhss, A., Blanot, D., and Mengin-Lecreulx, D. (2004) J. Biol. Chem. 279, 30106-30113). The enzyme function is to synthesize the carrier lipid undecaprenyl phosphate that is essential for the biosynthesis of peptidoglycan and other cell wall components. The inactivation of the chromosomal bacA gene was not lethal but led to a significant, but not total, depletion of undecaprenyl pyrophosphate phosphatase activity in E. coli membranes, suggesting that other(s) protein(s) should exist and account for the residual activity and viability of the mutant strain. Here we report that inactivation of two additional genes, ybjG and pgpB, is required to abolish growth of the bacA mutant strain. Overexpression of either of these genes, or of a fourth identified one, yeiU, is shown to result in bacitracin resistance and increased levels of undecaprenyl pyrophosphate phosphatase activity, as previously observed for bacA. A thermosensitive conditional triple mutant delta bacA,delta ybjG,delta pgpB in which the expression of bacA is impaired at 42 degrees C was constructed. This strain was shown to accumulate soluble peptidoglycan nucleotide precursors and to lyse when grown at the restrictive temperature, due to the depletion of the pool of undecaprenyl phosphate and consequent arrest of cell wall synthesis. This work provides evidence that two different classes of proteins exhibit undecaprenyl pyrophosphate phosphatase activity in E. coli and probably other bacterial species; they are the BacA enzyme and several members from a superfamily of phosphatases that, different from BacA, share in common a characteristic phosphatase sequence motif.  相似文献   

16.
The biosynthesis of peptidoglycan lipid-linked intermediates   总被引:1,自引:0,他引:1  
The biosynthesis of bacterial cell wall peptidoglycan is a complex process involving many different steps taking place in the cytoplasm (synthesis of the nucleotide precursors) and on the inner and outer sides of the cytoplasmic membrane (assembly and polymerization of the disaccharide-peptide monomer unit, respectively). This review summarizes the current knowledge on the membrane steps leading to the formation of the lipid II intermediate, i.e. the substrate of the polymerization reactions. It makes the point on past and recent data that have significantly contributed to the understanding of the biosynthesis of undecaprenyl phosphate, the carrier lipid required for the anchoring of the peptidoglycan hydrophilic units in the membrane, and to the characterization of the MraY and MurG enzymes which catalyze the successive transfers of the N-acetylmuramoyl-peptide and N-acetylglucosamine moieties onto the carrier lipid, respectively. Enzyme inhibitors and antibacterial compounds interfering with these essential metabolic steps and interesting targets are presented.  相似文献   

17.
Neisseria meningitidis PglL belongs to a novel family of bacterial oligosaccharyltransferases (OTases) responsible for O-glycosylation of type IV pilins. Although members of this family are widespread among pathogenic bacteria, there is little known about their mechanism. Understanding the O-glycosylation process may uncover potential targets for therapeutic intervention, and can open new avenues for the exploitation of these pathways for biotechnological purposes. In this work, we demonstrate that PglL is able to transfer virtually any glycan from the undecaprenyl pyrophosphate (UndPP) carrier to pilin in engineered Escherichia coli and Salmonella cells. Surprisingly, PglL was also able to interfere with the peptidoglycan biosynthetic machinery and transfer peptidoglycan subunits to pilin. This represents a previously unknown post-translational modification in bacteria. Given the wide range of glycans transferred by PglL, we reasoned that substrate specificity of PglL lies in the lipid carrier. To test this hypothesis we developed an in vitro glycosylation system that employed purified PglL, pilin, and the lipid farnesyl pyrophosphate (FarPP) carrying a pentasaccharide that had been synthesized by successive chemical and enzymatic steps. Although FarPP has different stereochemistry and a significantly shorter aliphatic chain than the natural lipid substrate, the pentasaccharide was still transferred to pilin in our system. We propose that the primary roles of the lipid carrier during O-glycosylation are the translocation of the glycan into the periplasm, and the positioning of the pyrophosphate linker and glycan adjacent to PglL. The unique characteristics of PglL make this enzyme a promising tool for glycoengineering novel glycan-based vaccines and therapeutics.  相似文献   

18.
Computational analyses of four bacterial genomes of the Xanthomonadaceae family reveal new unique genes that may be involved in adaptation, pathogenicity, and host specificity. The Xanthomonas genus presents 3636 unique genes distributed in 1470 families, while Xylella genus presents 1026 unique genes distributed in 375 families. Among Xanthomonas-specific genes, we highlight a large number of cell wall degrading enzymes, proteases, and iron receptors, a set of energy metabolism genes, second copy of the type II secretion system, type III secretion system, flagella and chemotactic machinery, and the xanthomonadin synthesis gene cluster. Important genes unique to the Xylella genus are an additional copy of a type IV pili gene cluster and the complete machinery of colicin V synthesis and secretion. Intersections of gene sets from both genera reveal a cluster of genes homologous to Salmonella's SPI-7 island in Xanthomonas axonopodis pv citri and Xylella fastidiosa 9a5c, which might be involved in host specificity. Each genome also presents important unique genes, such as an HMS cluster, the kdgT gene, and O-antigen in Xanthomonas axonopodis pv citri; a number of avrBS genes and a distinct O-antigen in Xanthomonas campestris pv campestris, a type I restriction-modification system and a nickase gene in Xylella fastidiosa 9a5c, and a type II restriction-modification system and two genes related to peptidoglycan biosynthesis in Xylella fastidiosa temecula 1. All these differences imply a considerable number of gene gains and losses during the divergence of the four lineages, and are associated with structural genome modifications that may have a direct relation with the mode of transmission, adaptation to specific environments and pathogenicity of each organism.  相似文献   

19.
We investigated the specificity of interaction of a new type A lantibiotic, clausin, isolated from Bacillus clausii, with lipid intermediates of bacterial envelope biosynthesis pathways. Isothermal calorimetry and steady-state fluorescence anisotropy (with dansylated derivatives) identified peptidoglycan lipids I and II, embedded in dodecylphosphocholine micelles, as potential targets. Complex formation with dissociation constants of ∼0.3 μM and stoichiometry of ∼2:1 peptides/lipid intermediate was observed. The interaction is enthalpy-driven. For the first time, to our knowledge, we evidenced the interaction between a lantibiotic and C55-PP-GlcNAc, a lipid intermediate in the biosynthesis of other bacterial cell wall polymers, including teichoic acids. The pyrophosphate moiety of these lipid intermediates was crucial for the interaction because a strong binding with undecaprenyl pyrophosphate, accounting for 80% of the free energy of binding, was observed. No binding occurred with the undecaprenyl phosphate derivative. The pentapeptide and the N-acetylated sugar moieties strengthened the interaction, but their contributions were weaker than that of the pyrophosphate group. The lantibiotic decreased the mobility of the pentapeptide. Clausin did not interact with the water-soluble UDP-MurNAc- and pyrophosphoryl-MurNAc-pentapeptides, pointing out the importance of the hydrocarbon chain of the lipid target.  相似文献   

20.
Structural analysis of compounds identified as lipid I and II from Mycobacterium smegmatis demonstrated that the lipid moiety is decaprenyl phosphate; thus, M. smegmatis is the first bacterium reported to utilize a prenyl phosphate other than undecaprenyl phosphate as the lipid carrier involved in peptidoglycan synthesis. In addition, mass spectrometry showed that the muropeptides from lipid I are predominantly N-acetylmuramyl-L-alanine-D-glutamate-meso-diaminopimelic acid-D-alanyl-D-alanine, whereas those isolated from lipid II form an unexpectedly complex mixture in which the muramyl residue and the pentapeptide are modified singly and in combination. The muramyl residue is present as N-acetylmuramic acid, N-glycolylmuramic acid, and muramic acid. The carboxylic functions of the peptide side-chains of lipid II showed three types of modification, with the dominant one being amidation. The preferred site for amidation is the free carboxyl group of the meso-diaminopimelic acid residue. Diamidated species were also observed. The carboxylic function of the terminal D-alanine of some molecules is methylated, as are all three carboxylic acid functions of other molecules. This study represents the first structural analysis of mycobacterial lipid I and II and the first report of extensive modifications of these molecules. The observation that lipid I was unmodified strongly suggests that the lipid II intermediates of M. smegmatis are substrates for a variety of enzymes that introduce modifications to the sugar and amino acid residues prior to the synthesis of peptidoglycan.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号