首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The core histone tail domains are key regulatory elements in chromatin. The tails are essential for folding oligonucleosomal arrays into both secondary and tertiary structures, and post-translational modifications within these domains can directly alter DNA accessibility. Unfortunately, there is little understanding of the structures and interactions of the core histone tail domains or how post-translational modifications within the tails may alter these interactions. Here we review NMR, thermal denaturation, cross-linking, and other selected solution methods used to define the general structures and binding behavior of the tail domains in various chromatin environments. All of these methods indicate that the tail domains bind primarily electrostatically to sites within chromatin. The data also indicate that the tails adopt specific structures when bound to DNA and that tail structures and interactions are plastic, depending on the specific chromatin environment. In addition, post-translational modifications, such as acetylation, can directly alter histone tail structures and interactions.  相似文献   

2.
The core histone tail domains are key regulators of eukaryotic chromatin structure and function and alterations in the tail-directed folding of chromatin fibers and higher order structures are the probable outcome of much of the post-translational modifications occurring in these domains. The functions of the tail domains are likely to involve complex intra- and inter-nucleosomal histone-DNA interactions, yet little is known about either the structures or interactions of these domains. Here we introduce a method for examining inter-nucleosome interactions of the tail domains in a model dinucleosome and determine the propensity of each of the four N-terminal tail domains to mediate such interactions in this system. Using a strong nucleosome "positioning" sequence, we reconstituted a nucleosome containing a single histone site specifically modified with a photoinducible cross-linker within the histone tail domain, and a second nucleosome containing a radiolabeled DNA template. These two nucleosomes were then ligated together and cross-linking induced by brief UV irradiation under various solution conditions. After cross-linking, the two templates were again separated so that cross-linking representing inter-nucleosomal histone-DNA interactions could be unambiguously distinguished from intra-nucleosomal cross-links. Our results show that the N-terminal tails of H2A and H2B, but not of H3 and H4, make internucleosomal histone-DNA interactions within the dinucleosome. The relative extent of intra- to inter-nucleosome interactions was not strongly dependent on ionic strength. Additionally, we find that binding of a linker histone to the dinucleosome increased the association of the H3 and H4 tails with the linker DNA region.  相似文献   

3.
The core histone tail domains are known to be key regulators of chromatin structure and function. The tails are required for condensation of nucleosome arrays into secondary and tertiary chromatin structures, yet little is known regarding tail structures or sites of tail interactions in chromatin. We have developed a system to test the hypothesis that the tails participate in internucleosomal interactions during salt-dependent chromatin condensation, and here we used it to examine interactions of the H3 tail domain. We found that the H3 tail participates primarily in intranucleosome interactions when the nucleosome array exists in an extended "beads-on-a-string" conformation and that tail interactions reorganize to engage in primarily internucleosome interactions as the array successively undergoes salt-dependent folding and oligomerization. These results indicated that the location and interactions of the H3 tail domain are dependent upon the degree of condensation of the nucleosomal array, suggesting a mechanism by which alterations in tail interactions may elaborate different structural and functional states of chromatin.  相似文献   

4.
The core histone tail domains are critical regulators of chromatin structure and function and modifications such as acetylation of lysine residues within the tails are central to this regulation. Studies have shown that the removal of core histone tail domains by trypsinization in which one-half to two-thirds of each core histone tail domain are removed in gross aspects mimics the acetylation of core histone tails. In addition, removal of the tails has been useful in understanding general tail function. Thus, removal of native core histone tails by trypsinization is a widely used method. In addition, many in vitro studies now employ core histones site-specifically modified with photo activatable cross-linking probes or fluorescent probes. However, in our experience, standard methods employing trypsinized donor chromatin for reconstitution of nucleosomes containing certain chemically modified histones lacking the core histone tail domains are not uniformly applicable. Here, we describe various methods for preparing nucleosomes containing a core histone modified with a cross-linking agent, APB, and lacking the core histone tail domains.  相似文献   

5.
Eukaryotic chromatin is a hierarchical collection of nucleoprotein structures that package DNA to form chromosomes. The initial levels of packaging include folding of long strings of nucleosomes into secondary structures and array–array association into higher-order tertiary chromatin structures. The core histone tail domains are required for the assembly of higher-order structures and mediate short- and long-range intra- and inter-nucleosome interactions with both DNA and protein targets to direct their assembly. However, important details of these interactions remain unclear and are a subject of much interest and recent investigations. Here, we review work defining the interactions of the histone N-terminal tails with DNA and protein targets relevant to chromatin higher-order structures, with a specific emphasis on the contributions of H3 and H4 tails to oligonucleosome folding and stabilization. We evaluate both classic and recent experiments determining tail structures, effect of tail cleavage/loss, and posttranslational modifications of the tails on nucleosomes and nucleosome arrays, as well as inter-nucleosomal and inter-array interactions of the H3 and H4 N-terminal tails.  相似文献   

6.
The core histone tail domains play important roles in different stages of chromatin condensation. The tails are required for folding nucleosome arrays into secondary chromatin structures such as the approximately 30 nm diameter chromatin fiber and for mediating fiber-fiber interactions important for formation of tertiary chromatin structures. Crosslinking studies have demonstrated that inter-nucleosomal tail-DNA contacts appear in conjunction with salt-induced folding of nucleosome arrays into in higher order chromatin structures. However, since both folding of nucleosome arrays and fiber-fiber interactions take place simultaneously in >2-3 mM MgCl(2) such inter-nucleosome interactions may reflect short range (intra-array) or longer range (inter-array) interactions. Here, we describe a novel technique to specifically identify inter-array interactions mediated by the histone tail domains. In addition, we describe a new method for the preparation of H3/H4 tetramers.  相似文献   

7.
The core histone tail domains play a central role in chromatin structure and epigenetic processes controlling gene expression. Although little is known regarding the molecular details of tail interactions, it is likely that they participate in both short-range and long-range interactions between nucleosomes. Previously, we demonstrated that the H3 tail domain participates in internucleosome interactions during MgCl(2)-dependent condensation of model nucleosome arrays. However, these studies did not distinguish whether these internucleosome interactions represented short-range intra-array or longer-range interarray interactions. To better understand the complex interactions of the H3 tail domain during chromatin condensation, we have developed a new site-directed cross-linking method to identify and quantify interarray interactions mediated by histone tail domains. Interarray cross-linking was undetectable under salt conditions that induced only local folding, but was detected concomitant with salt-dependent interarray oligomerization at higher MgCl(2) concentrations. Interestingly, lysine-to-glutamine mutations in the H3 tail domain to mimic acetylation resulted in little or no reduction in interarray cross-linking. In contrast, binding of a linker histone caused a much greater enhancement of interarray interactions for unmodified H3 tails compared to "acetylated" H3 tails. Collectively these results indicate that H3 tail domain performs multiple functions during chromatin condensation via distinct molecular interactions that can be differentially regulated by acetylation or binding of linker histones.  相似文献   

8.
Widlund HR  Vitolo JM  Thiriet C  Hayes JJ 《Biochemistry》2000,39(13):3835-3841
Modulation of nucleosome stability in chromatin plays an important role in eukaryotic gene expression. The core histone N-terminal tail domains are believed to modulate the stability of wrapping nucleosomal DNA and the stability of the chromatin filament. We analyzed the contribution of the tail domains to the stability of nucleosomes containing selected DNA sequences that are intrinsically straight, curved, flexible, or inflexible. We find that the presence of the histone tail domains stabilizes nucleosomes containing DNA sequences that are intrinsically straight or curved. However, the tails do not significantly contribute to the free energy of nucleosome formation with flexible DNA. Interestingly, hyperacetylation of the core histone tail domains does not recapitulate the effect of tail removal by limited proteolysis with regard to nucleosome stability. We find that acetylation of the tails has the same minor effect on nucleosome stability for all the selected DNA sequences. A comparison of histone partitioning between long donor chromatin, acceptor DNA, and free histones in solution shows that the core histone tails mediate internucleosomal interactions within an H1-depleted chromatin fiber amounting to an average free energy of about 1 kcal/mol. Thus, such interactions would be significant with regard to the free energies of sequence-dependent nucleosome positioning. Last, we analyzed the contribution of the H2A/H2B dimers to nucleosome stability. We find that the intact nucleosome is stabilized by 900 cal/mol by the presence of the dimers regardless of sequence. The biological implications of these observations are discussed.  相似文献   

9.
Histones are the fundamental structural proteins intimately associated with eukaryotic DNA to form a highly ordered and condensed nucleoproteic complex termed chromatin. They are the targets of various posttranslational modifications including acetylation, methylation, phosphorylation and ubiquitination that modulate the structure/function of chromatin. The combinatorial nature of histone modifications is hypothesized to define a "histone code" that considerably extends the information potential of the genetic code, giving rise to epigenetic information. Moreover, most core histones consist of several nonallelic variants that can mark specific loci and could play an important role in establishment and maintenance of epigenetic memory. Here we will briefly present our current knowledge about histone posttranslational modifications and their implications in the regulation of epigenetic information. We will next describe core histone variants, insisting on their mode of incorporation into chromatin to discuss their epigenetic function and inheritance.  相似文献   

10.
11.
12.
The basic unit of chromatin is the nucleosomal core particle, containing 147 bp of DNA that wraps twice around an octamer of core histones. The core histones bear a highly dynamic N-terminal amino acid tail around 20-35 residues in length and rich in basic amino acids. These tails extending from the surface of nucleosome play an important role in folding of nucleosomal arrays into higher order chromatin structure, which plays an important role in eukaryotic gene regulation. The amino terminal tails protruding from the nuclesomes get modified by the addition of small groups such as methyl, acetyl and phosphoryl groups. In this review, we focus on these complex modi- fication patterns and their biological functions. Moreover, these modifications seem to be part of a complex scheme where distinct histone modifications act in a sequential manner or in combination to form a "histone code" read by other proteins to control the structure and/or function of the chromatin fiber. Errors in this histone code may be involved in many human diseases especially cancer, the nature of which could be therapeutically exploited. Increasing evidence suggests that many proteins bear multiple, distinct modifications, and the ability of one modification to antagonize or synergize the deposition of another can have significant biological consequences.  相似文献   

13.
BACKGROUND: The discovery of histone-like proteins in Archaea urged studies into the possible organization of archaeal genomes in chromatin. Despite recent advances, a variety of structural questions remain unanswered. RESULTS: We have used the atomic force microscope (AFM) with traditional nuclease digestion assays to compare the structure of nucleoprotein complexes reconstituted from tandemly repeated eukaryal nucleosome-positioning sequences and histone octamers, H3/H4 tetramers, and the histone-fold archaeal protein HMf. The data unequivocally show that HMf reconstitutes are indeed organized as chromatin fibers, morphologically indistinguishable from their eukaryal counterparts. The nuclease digestion patterns revealed a clear pattern of protection at regular intervals, again similar to the patterns observed with eukaryal chromatin fibers. In addition, we studied HMf reconstitutes on mononucleosome-sized DNA fragments and observed a great degree of similarity in the internal organization of these particles and those organized by H3/H4 tetramers. A difference in stability was observed at the level of mono-, di-, and triparticles between the HMf particles and canonical octamer-containing nucleosomes. CONCLUSIONS: The in vitro reconstituted HMf-nucleoprotein complexes can be considered as bona fide chromatin structures. The differences in stability at the monoparticle level should be due to structural differences between HMf and core histone H3/H4 tetramers, i.e., to the complete absence in HMf of histone tails beyond the histone fold. We speculate that the existence of core histone tails in eukaryotes may provide a greater stability to nucleosomal particles and also provide the additional ability of chromatin structure to regulate DNA function in eukaryotic cells by posttranslational histone tail modifications.  相似文献   

14.
The structural unit of eukaryotic chromatin is a nucleosome, comprising two histone H2A/H2B heterodimers and one histone (H3/H4)2 tetramer, wrapped around by ∼146-bp core DNA and linker DNA. Flexible histone tails sticking out from the core undergo posttranslational modifications that are responsible for various epigenetic functions. Recently, the functional dynamics of histone tails and their modulation within the nucleosome and nucleosomal complexes have been investigated by integrating NMR, molecular dynamics simulations, and cryo-electron microscopy approaches. In particular, recent NMR studies have revealed correlations in the structures of histone N-terminal tails between H2A and H2B, as well as between H3 and H4 depending on linker DNA, suggesting that histone tail networks exist even within the nucleosome.  相似文献   

15.
16.
During interphase, histone amino-terminal tails play important roles in regulating the extent of DNA compaction. Post-translational modifications of the histone tails are intimately associated with regulating chromatin structure: phosphorylation of histone H3 is associated with proper chromosome condensation and dynamics during mitosis, while multiple H2B, H3, and H4 tail acetylations destabilize the chromatin fiber and are sufficient to decondense chromatin fibers in vitro. In this study, we investigate the spatio-temporal dynamics of specific histone H3 phosphorylations and acetylations to better understand the interplay of these post-translational modifications throughout the cell cycle. Using a panel of antibodies that individually, or in combination, recognize phosphorylated serines 10 and 28 and acetylated lysines 9 and 14, we define a series of changes associated with histone H3 that occur as cells progress through the cell cycle. Our results establish that mitosis appears to be a period of the cell cycle when many modifications are highly dynamic. Furthermore, they suggest that the upstream histone acetyltransferases/deacetylases and kinase/phosphatases are temporally regulated to alter their function globally during specific cell cycle time points.  相似文献   

17.
Histone tails and their posttranslational modifications play important roles in regulating the structure and dynamics of chromatin. For histone H4, the basic patch K(16)R(17)H(18)R(19) in the N-terminal tail modulates chromatin compaction and nucleosome sliding catalyzed by ATP-dependent ISWI chromatin remodeling enzymes while acetylation of H4 K16 affects both functions. The structural basis for the effects of this acetylation is unknown. Here, we investigated the conformation of histone tails in the nucleosome by solution NMR. We found that backbone amides of the N-terminal tails of histones H2A, H2B, and H3 are largely observable due to their conformational disorder. However, only residues 1-15 in H4 can be detected, indicating that residues 16-22 in the tails of both H4 histones fold onto the nucleosome core. Surprisingly, we found that K16Q mutation in H4, a mimic of K16 acetylation, leads to a structural disorder of the basic patch. Thus, our study suggests that the folded structure of the H4 basic patch in the nucleosome is important for chromatin compaction and nucleosome remodeling by ISWI enzymes while K16 acetylation affects both functions by causing structural disorder of the basic patch K(16)R(17)H(18)R(19).  相似文献   

18.
The core histones are the primary protein component of chromatin, which is responsible for the packaging of eukaryotic DNA. The NH(2)-terminal tail domains of the core histones are the sites of numerous post-translational modifications that have been shown to play an important role in the regulation of chromatin structure. In this study, we discuss the recent application of modern analytical techniques to the study of histone modifications. Through the use of mass spectrometry, a large number of new sites of histone modification have been identified, many of which reside outside of the NH(2)-terminal tail domains. In addition, techniques have been developed that allow mass spectrometry to be effective for the quantitation of histone post-translational modifications. Hence, the use of mass spectrometry promises to dramatically alter our view of histone post-translational modifications.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号