首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
We studied whether the previously reported intensified beta-endorphin response to exercise after training might result from a training-induced general increase in anterior pituitary secretory capacity. Identical hypoglycemia was induced by insulin infusion in 7 untrained (VO2max 49 +/- 4 ml X (kg X min)-1, mean and SE) and 8 physically trained (VO2max 65 +/- 4 ml X (kg X min)-1) subjects. In response to hypoglycemia, levels of beta-endorphin and prolactin immunoreactivity in serum increased similarly in trained (from 41 +/- 2 pg X ml-1 and 6 +/- 1 pg X ml-1 before hypoglycemia to 103 +/- 11 pg X ml-1 and 43 +/- 9 pg X ml-1 during recovery, P less than 0.05) and untrained (from 35 +/- 7 pg X ml-1 and 7 +/- 2 pg X ml-1 to 113 +/- 18 pg X ml-1 and 31 +/- 8 pg X ml-1, P less than 0.05) subjects. Growth hormone (GH) was higher 90 min after glucose nadir in trained (61 +/- 13 mU X l-1) than in untrained (25 +/- 6 mU X l-1) subjects (P less than 0.05). Levels of thyrotropin (TSH) changed in neither of the groups. It is concluded that, in contrast to what has been formerly proposed, training does not result in a general increase in secretory capacity of the anterior pituitary gland. TSH responds to hypoglycemia neither in trained nor in untrained subjects. Finally, differences in beta-endorphin responses to exercise between trained and untrained subjects cannot be ascribed to differences in responsiveness to hypoglycemia.  相似文献   

2.
The effects of glucose ingestion on the changes in blood glucose, FFA, insulin and glucagon levels induced by a prolonged exercise at about 50% of maximal oxygen uptake were investigated. Healthy volunteers were submitted to the following procedures: 1. a control test at rest consisting of the ingestion of 100 g glucose, 2. an exercise test without, or 3. with ingestion of 100 g of glucose. Exercise without glucose induced a progressive decrease in blood glucose and plasma insulin; plasma glucagon rose significantly from the 60th min onward (+45 pg/ml), the maximal increase being recorded during the 4th h of exercise (+135 pg/ml); plasma FFA rose significantly from the 60th min onward and reached their maximal values during the 4th h of exercise (2177 +/- 144 muEq/l, m +/- SE). Exercise with glucose ingestion blunted almost completely the normal insulin response to glucose. Under these conditions, exercise did not increase plasma glucagon before the 210th min; similarly, the exercise-induced increase in plasma FFA was markedly delayed and reduced by about 60%. It is suggested that glucose availability reduces exercise-induced glucagon secretion and, possibly consequently, FFA mobilization.  相似文献   

3.
Eight athletes (T), studied the third morning after the last exercise session, and seven sedentary males (C) (maximal O2 consumption 65 +/- 4 vs. 49 +/- 4 (SE) ml X kg-1 X min-1, for T and C men, respectively) had insulin infused until plasma glucose, at an insulin level of 1,600 pmol X l-1, was 1.9 mmol X l-1. Glucose turnover was determined by primed constant rate infusion of 3-[3H]glucose. Basal C-peptide (0.46 +/- 0.04 vs. 0.73 +/- 0.06 pmol X ml-1) and glucagon (4 +/- 0.4 vs. 10 +/- 2 pmol X l-1) were lower (P less than 0.05) and epinephrine higher (0.30 +/- 0.06 vs. 0.09 +/- 0.03 nmol X l-1) in T than in C subjects. During and after insulin infusion production, disappearance and clearance of glucose changed identically in T and C subjects. However, in spite of identical plasma glucose concentrations, epinephrine (7.88 +/- 0.99 vs. 3.97 +/- 0.40 nmol X l-1), growth hormone (97 +/- 17 vs. 64 +/- 6 mU X l-1), and pancreatic polypeptide (361 +/- 84 vs. 180 +/- 29 pmol X l-1) reached higher levels (P less than 0.05) and glucagon (28 +/- 3 vs. 47 +/- 10 pmol X l-1) lower levels in T than in C subjects. Blood pressures changed earlier in athletes during insulin infusion, and early recovery of heart rate, free fatty acid, and glycerol was faster. Responses of norepinephrine, cortisol, C-peptide, and lactate were similar in the two groups. Training radically changes hormonal responses but not glucose kinetics in insulin hypoglycemia.  相似文献   

4.
Oxytocin has been suggested to have glucoregulatory functions in rats, man and other mammals. The hyperglycemic actions of oxytocin are believed to be mediated indirectly through changes in pancreatic function. The present study examined the interaction between glucose and oxytocin in normal and streptozotocin (STZ)-induced diabetic rats, under basal conditions and after injections of oxytocin. Plasma glucose and endogenous oxytocin levels were significantly correlated in cannulated lactating rats (r = 0.44, P less than 0.01). To test the hypothesis that oxytocin was acting to elevate plasma glucose, adult male rats were injected with 10 micrograms/kg oxytocin and killed 60 min later. Oxytocin increased plasma glucose from 6.1 +/- 0.1 to 6.8 +/- 0.2 mM (P less than 0.05), and glucagon from 179 +/- 12 to 259 +/- 32 pg/ml (P less than 0.01, n = 18). There was no significant effect of oxytocin on plasma insulin, although the levels were increased by 30%. A lower dose (1 microgram/kg) of oxytocin had no significant effect on plasma glucose or glucagon. To eliminate putative local inhibitory effects of insulin on glucagon secretion, male rats were made diabetic by i.p. injection of 100 mg/kg STZ, which increased glucose to greater than 18 mM and glucagon to 249 +/- 25 pg/ml (P less than 0.05). In these rats, 10 micrograms/kg oxytocin failed to further increase plasma glucose, but caused a much greater increase in glucagon (to 828 +/- 248 pg/ml) and also increased plasma ACTH. A specific oxytocin analog, Thr4,Gly7-oxytocin, mimicked the effect of oxytocin on glucagon secretion in diabetic rats. The lower dose of oxytocin also increased glucagon levels (to 1300 +/- 250 pg/ml), but the effect was not significant. A 3 h i.v. infusion of 1 nmol/kg per h oxytocin in conscious male rats significantly increased glucagon levels by 30 min in normal and STZ-rats; levels returned to baseline by 30 min after stopping the infusion. Plasma glucose increased in the normal, but not STZ-rats. The relative magnitude of the increase in glucagon was identical for normal and diabetic rats, but the absolute levels of glucagon during the infusion were twice as high in the diabetics. To test whether hypoglycemia could elevate plasma levels of oxytocin, male rats were injected i.p. with insulin and killed from 15-180 min later. Plasma glucose levels dropped to less than 2.5 mM by 15 min. Oxytocin levels increased by 150-200% at 30 min; however, the effect was not statistically significant.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

5.
We wished to determine the effect of a 25% hematocrit reduction on glucoregulatory hormone release and glucose fluxes during exercise. In five anemic dogs, plasma glucose fell by 21 mg/dl and in five controls by 7 mg/dl by the end of the 90-min exercise period. After 50 min of exercise, hepatic glucose production (Ra) and glucose metabolic clearance rate (MCR) began to rise disproportionately in anemics compared with controls. By the end of exercise, the increase in Ra was almost threefold higher (delta 15.1 +/- 3.4 vs. delta 5.2 +/- 1.3 mg X kg-1 X min-1) and MCR nearly fourfold (delta 24.6 +/- 8.8 vs. delta 6.5 +/- 1.3 ml X kg-1 X min-1). Exercise with anemia, in relation to controls resulted in elevated levels of glucagon [immunoreactive glucagon (IRG) delta 1,283 +/- 507 vs delta 514 +/- 99 pg/ml], norepinephrine (delta 1,592 +/- 280 vs. delta 590 +/- 155 pg/ml), epinephrine (delta 2,293 +/- 994 vs. delta 385 +/- 186 pg/ml), cortisol (delta 6.7 +/- 2.2 vs. delta 2.1 +/- 1.0 micrograms/dl) and lactate (delta 12.1 +/- 2.2 vs. delta 4.2 +/- 1.8 mg/dl) after 90 min. Immunoreactive insulin and free fatty acids were similar in both groups. In conclusion, exercise with a 25% hematocrit reduction results in 1) elevated lactate, norepinephrine, epinephrine, cortisol, and IRG levels, 2) an increased Ra which is likely related to the increased counterregulatory response, and 3) we speculate that a near fourfold increase in MCR is related to metabolic changes due to hypoxia in working muscle.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
The effect of maximal treadmill exercise on plasma concentrations of vasopressin (AVP); renin activity (PRA); and aldosterone (ALDO) was studied in nine female college basketball players before and after a 5-month basketball season. Pre-season plasma AVP increased (p less than 0.05) from a pre-exercise concentration of 3.8 +/- 0.5 to 15.8 +/- 4.8 pg X ml-1 following exercise. Post-season, the pre-exercise plasma AVP level averaged 1.5 +/- 0.5 pg X ml-1 and increased to 16.7 +/- 5.9 pg X ml-1 after the exercise test. PRA increased (p less than 0.05) from a pre-exercise value of 1.6 +/- 0.6 to 6.8 +/- 1.7 ngAI X ml-1 X hr-1 5 min after the end of exercise during the pre-season test. In the post-season, the pre-exercise PRA was comparable (2.4 +/- 0.6 ngAI X ml- X hr-1), as was the elevation found after maximal exercise (8.3 +/- 1.9 ngAI X ml- X hr-1). Pre-season plasma ALDO increased (p less than 0.05) from 102.9 +/- 30.8 pg X ml-1 in the pre-exercise period to 453.8 +/- 54.8 pg X ml-1 after the exercise test. In the post-season the values were 108.9 +/- 19.4 and 365.9 +/- 64.4 pg X ml-1, respectively. Thus, maximal exercise in females produced significant increases in plasma AVP, renin activity, and ALDO that are comparable to those reported previously for male subjects. Moreover, this response is remarkably reproducible as demonstrated by the results of the two tests performed 5 months apart.  相似文献   

7.
Helodermin stimulates glucagon secretion in the mouse   总被引:1,自引:0,他引:1  
B Ahrén 《Peptides》1989,10(3):709-711
Helodermin is structurally similar to VIP (vasoactive intestinal peptide) and PHI (peptide histidine isoleucine). Since VIP and PHI both stimulate insulin and glucagon secretion, we investigated the effects of helodermin on insulin and glucagon secretion in the mouse, both in the basal state and during administration of glucose and the cholinergic agonist carbachol. After intravenous injection at dose levels between 0.5 and 8.0 nmol/kg, helodermin markedly enhanced basal plasma glucagon levels, for example at 8 nmol/kg from 139 +/- 14 to 421 +/- 86 pg/ml (p less than 0.001) after 6 minutes, without affecting basal plasma insulin levels. Together with glucose (2.8 mmol/kg), helodermin (2 and 8 nmol/kg) augmented plasma glucagon levels but had no effect on plasma insulin levels. When injected together with the cholinergic agonist carbachol (0.16 mumol/kg), helodermin markedly potentiated the increase in plasma glucagon levels (more than three-fold; p less than 0.001), again without affecting the plasma insulin levels. Combined alpha- and beta-adrenoceptor blockade (yohimbine + L-propranolol) reduced the augmenting effect of helodermin on glucagon secretion by approximately 60%. It is concluded helodermin stimulates glucagon secretion in the mouse by an effect that is partially antagonized by combined alpha- and beta-adrenoceptor antagonism.  相似文献   

8.
The present study examines the effect of subcutaneous pancreatic tissue grafts (SPTG) on endocrine and metabolic functions in streptozotocin (STZ)-induced diabetic rats using radioimmunoassay and biochemical techniques. SPTG survived even after 15 weeks of transplantation and significantly improved the weight of STZ-diabetic rats over a 15-week period. Although blood glucose-, cholesterol-, and glycosylated-haemoglobin (GHb) levels were not significantly lower in STZ-diabetic rats treated with SPTG, the values of these biochemical parameters were lower than those in untreated diabetic rats. Plasma and pancreatic immunoreactive C-peptide (IRCP) levels did not improve after SPTG (IRCP expressed as mean +/- standard deviation were 0.22 +/- 0.07, 0.072 +/- 0.02 and 0.08 +/- 0.03 pg ml-1 in the plasma non-diabetic diabetic and treated rats respectively, while IRCP levels in the pancreas of the non-diabetic, diabetic and treated rats were 433.8 +/- 0.1, 22.9 +/- 0.01 and 10.4 +/- 0.01 pg mg tissue-1 respectively). SPTG, however, improved plasma immunoreactive insulin (IRI) levels in both plasma and pancreas. IRI values in plasma were 54.7 +/- 13.6, 18.0 +/- 5.0 and 22.1 +/- 4.3 microUI ml-1 in non-diabetic, diabetic and treated rats respectively and were 277.3 +/- 37.1, 14.7 +/- 1.8 and 30.3 +/- 15.9 microIU micrograms tissue-1 in the pancreas of non-diabetic, diabetic and treated rats respectively. There was improvement in immunoreactive glucagon (IRG) levels after SPTG. IRG values in the plasma of non-diabetic, diabetic and treated rats were 147.0 +/- 10.7, 408.0 +/- 76.5 and 247.7 +/- 3 pg ml-1 respectively whereas, IRG measured in the pancreas was 1642.25 +/- 424.23, 1899.0 +/- 290.4 and 1714.1 +/- 301.98 pg micrograms tissue-1 in non-diabetic, diabetic and treated rats, respectively. The pancreas:plasma ratio of pancreatic hormones was deranged in untreated diabetes but improved after SPTG. In conclusion, SPTG significantly improved the weight gain, pancreatic insulin content, plasma IRG and pancreas: plasma ratio of IRCP, IRI and IRG. It also reduced blood glucose-, cholesterol-, and glycosylated-hemoglobin levels in STZ-diabetic rats.  相似文献   

9.
Exogenous glucagon-like peptide 1(GLP-1) bioactivity is preserved in type 2 diabetic patients, resulting the peptide administration in a near-normalization of plasma glucose mainly through its insulinotropic effect. GLP-1 also reduces meal-related insulin requirement in type 1 diabetic patients, suggesting an impairment of the entero-insular axis in both diabetic conditions. To investigate this metabolic dysfunction, we evaluated endogenous GLP-1 concentrations, both at fasting and in response to nutrient ingestion, in 16 type 1 diabetic patients (age = 40.5 +/- 14yr, HbA1C = 7.8 +/- 1.5%), 14 type 2 diabetics (age = 56.5 +/- 13yr, HbA1C = 8.1 +/- 1.8%), and 10 matched controls. In postabsorptive state, a mixed breakfast (230 KCal) was administered to all subjects and blood samples were collected for plasma glucose, insulin, C-peptide and GLP-1 determination during the following 3 hours. In normal subjects, the test meal induced a significant increase of GLP-1 (30', 60': p < 0.01), returning the peptide values towards basal concentrations. In type 2 diabetic patients, fasting plasma GLP-1 was similar to controls (102.1 +/- 1.9 vs. 97.3 +/- 4.01 pg/ml), but nutrient ingestion failed to increase plasma peptide levels, which even decreased during the test (p < 0.01). Similarly, no increase in postprandial GLP-1 occurred in type 1 diabetics, in spite of maintained basal peptide secretion (106.5 +/- 1.5 pg/ml). With respect to controls, the test meal induced in both diabetic groups a significant increase in plasma glucagon levels at 60' (p < 0.01). In conclusion, either in condition of insulin resistance or insulin deficiency chronic hyperglycemia, which is a common feature of both metabolic disorders, could induce a progressive desensitization of intestinal L-cells with consequent peptide failure response to specific stimulation.  相似文献   

10.
Chronic total parenteral nutrition (TPN) markedly augments net hepatic glucose uptake (NHGU). This adaptive increase is impaired by an infection despite accompanying hyperinsulinemia. In the nonadapted state, NHGU is dependent on the prevailing glucose levels. Our aims were to determine whether the adaptation to TPN alters the glucose dependence of NHGU, whether infection impairs this dependence, and whether insulin modulates the glucose dependence of NHGU during infection. Chronically catheterized dogs received TPN for 5 days. On day 3 of TPN, dogs received either a bacterial fibrin clot to induce a nonlethal infection (INF, n = 9) or a sterile fibrin clot (Sham, n = 6). Forty-two hours after clot implantation, somatostatin was infused. In Sham, insulin and glucagon were infused to match the level seen in Sham (9 +/- 1 microU/ml and 23 +/- 4 pg/ml, respectively). In infected animals, either insulin and glucagon were infused to match the levels seen in infection (25 +/- 2 microU/ml and 101 +/- 15 pg/ml; INF-HI; n = 5) or insulin was replaced to match the lower levels seen in Sham (13 +/- 2 microU/ml), whereas glucagon was kept elevated (97 +/- 9 pg/ml; INF-LO; n = 4). Then a four-step (90 min each) hyperglycemic (120, 150, 200, or 250 mg/dl) clamp was performed. NHGU increased at each glucose step in Sham (from 3.6 +/- 0.6 to 5.4 +/- 0.7 to 8.9 +/- 0.9 to 12.1 +/- 1.1 mg.kg(-1).min(-1)); the slope of the relationship between glucose levels and NHGU (i.e., glucose dependence) was higher than that seen in nonadapted animals. Infection impaired glucose-dependent NHGU in both INF-HI (1.3 +/- 0.4 to 2.9 +/- 0.5 to 5.5 +/- 1.0 to 7.7 +/- 1.6 mg.kg(-1).min(-1)) and INF-LO (0.5 +/- 0.7 to 2.2 +/- 0.6 to 4.2 +/- 1.0 to 5.8 +/- 0.8 mg.kg(-1).min(-1)). In summary, TPN augments glucose-dependent NHGU, the presence of infection decreases glucose-dependent NHGU, and the accompanying hyperinsulinemia associated with infection does not sustain the glucose dependence of NHGU.  相似文献   

11.
Hypoglycemia-induced counterregulatory failure is a dangerous complication of insulin use in diabetes mellitus. Controlled hypoglycemia studies in gene knockout models, which require the use of mice, would aid in identifying causes of defective counterregulation. Because stress can influence counterregulatory hormones and glucose homeostasis, we developed glucose clamps with remote blood sampling in conscious, unrestrained mice. Male C57BL/6 mice implanted with indwelling carotid artery and jugular vein catheters were subjected to 2 h of hyperinsulinemic glucose clamps 24 h apart, with a 6-h fast before each clamp. On day 1, blood glucose was maintained (euglycemia, 178 +/- 4 mg/dl) or decreased to 62 +/- 1 mg/dl (hypoglycemia) by insulin (20 mU x kg(-1) x min(-1)) and variable glucose infusion. Donor blood was continuously infused to replace blood sample volume. Baseline plasma epinephrine (32 +/- 8 pg/ml), corticosterone (16.1 +/- 1.8 microg/dl), and glucagon (35 +/- 3 pg/ml) were unchanged during euglycemia but increased significantly during hypoglycemia, with a glycemic threshold of approximately 80 mg/dl. On day 2, all mice underwent a hypoglycemic clamp (blood glucose, 64 +/- 1 mg/dl). Compared with mice that were euglycemic on day 1, previously hypoglycemic mice had significantly higher glucose requirements and significantly lower plasma glucagon and corticosterone (n = 6/group) on day 2. Epinephrine tended to decrease, although not significantly, in repeatedly hypoglycemic mice. Pre- and post-clamp insulin levels were similar between groups. We conclude that counterregulatory responses to acute and repeated hypoglycemia in unrestrained, chronically cannulated mice reproduce aspects of counterregulation in humans, and that repeated hypoglycemia in mice is a useful model of counterregulatory failure.  相似文献   

12.
Effects of asphyxia at birth on postnatal glucose regulation in the rat   总被引:1,自引:0,他引:1  
We have characterized the effect of a period of asphyxia at birth, followed by recovery, upon newborn rats. Asphyxiated pups were subjected to 3 to 5% (v/v) inspired oxygen during the first 20 min of life and then maintained in room air for 6 h. Control pups were maintained in room air throughout the 6-h period. Hypoxia produced severe asphyxia as reflected by a pH of 6.76 +/- 0.05, PaCO2 of 87 +/- 3 mm Hg and PaO2 of 15.4 +/- 4 mm Hg, and by a greatly increased blood lactate/pyruvate ratio. Plasma catecholamine concentrations in asphyxiated pups were elevated (epinephrine 13,866 +/- 250 pg/ml, norepinephrine 9611 +/- 1813 pg/ml) compared to control animals (epinephrine 973 +/- 234 pg/ml, norepinephrine 774 +/- 133 pg/ml) at 20 min. Asphyxia initially increased plasma glucose concentration, and then with recovery it fell below controls. Hepatic glycogen stores did not differ between asphyxiated and control pups. Plasma insulin concentrations remained elevated during asphyxia and the usual neonatal surge of plasma glucagon was significantly delayed. Neonatal asphyxia increases catecholamines, causes lactic acidemia, and alters insulin and glucagon levels. The interactions between these variables alters the normal pattern of glucose availability during the neonatal period.  相似文献   

13.
The concentration of plasma glucose in insulin deprived pancreatectomized dogs was decreased from the basal 385 +/- 44 to 65 +/- 12 mg/dL by the infusion of 7 mU X kg-1 X min-1 insulin. During the infusion, the plasma concentration of immunoreactive glucagon (IRG) did not change and hepatic glucose production was decreased. This is in contrast to earlier findings in alloxan diabetic dogs in which plasma IRG decreased in hypoglycaemia. The hypothesis is put forward that, in contrast to pancreatic alpha cells in which the effect of insulin prevails, neither insulin nor a decrease in the ambient concentration of glucose exerts any effect on the secretion of glucagon from extrapancreatic alpha cells.  相似文献   

14.
Seven healthy untrained men were studied to determine if sustained hyperglycemia is a stimulus to enhanced plasma levels of beta endorphin (beta-EP) and if so whether prior exercise affects that enhancement. After an overnight fast hyperglycemic glucose clamps were performed on 3 separate days: after prior rest, 2 h after exercise, and 48 h after exercise. Subjects exercised on a bicycle ergometer for 1 h at 150 W (64% VO2 max). Plasma glucose concentration was elevated in 4 continuous sequential stages to 7, 11, 20 and 35 mM with each stage lasting 90 min. Plasma glucose concentrations did not differ for each subject across the three clamps. beta-EP immunoreactivity was measured in arterialized venous blood samples using a specific and sensitive radioimmunoassay. Resting beta-EP at basal glucose concentrations was 3.8 +/- 0.7 fmol X ml-1 (mean +/- se) and prior exercise either 2h (3.2 +/- 0.5 fmol X ml-1) or 48 h (4.3 +/- 0.7 fmol X ml-1) before a clamp study did not effect these levels, (p greater than 0.05). At no time during the 3 hyperglycemic clamps did plasma levels of beta-EP differ significantly from resting values. At the highest level of hyperglycemia (35 mM) beta-EP was 3.1 +/- 0.2, 4.9 +/- 0.6 and 4.8 +/- 0.7 fmol X ml-1 in the resting, 2h and 48 h post exercise clamp studies respectively. The significance of these data is that this lack of a response is in distinct contrast to elevations of this peptide found during hypoglycemic states. We conclude that sustained hyperglycemia is not a stimulus to enhanced secretion of beta-EP into plasma and this lack of a response is not effected by prior exercise.  相似文献   

15.
Glucagon-like peptide-1 (GLP-1) is an intestinal hormone that stimulates insulin secretion and decreases glucagon release. It has been hypothesized that GLP-1 also reduces glycemia independent of its effect on islet hormones. Based on preliminary evidence that GLP-1 has independent actions on endogenous glucose production, we undertook a series of experiments that were optimized to address this question. The effect of GLP-1 on glucose appearance (Ra) and glucose disposal (Rd) was measured in eight men during a pancreatic clamp that was performed by infusing octreotide to suppress secretion of islet hormones, while insulin and glucagon were infused at rates adjusted to maintain blood glucose near fasting levels. After stabilization of plasma glucose and equilibration of [3H]glucose tracer, GLP-1 was given intravenously for 60 min. Concentrations of insulin, C-peptide, and glucagon were similar before and during the GLP-1 infusion (115 +/- 14 vs. 113 +/- 11 pM; 0.153 +/- 0.029 vs. 0.156 +/- 0.026 nM; and 64.7 +/- 11.5 vs. 65.8 +/- 13.8 ng/l, respectively). With the initiation of GLP-1, plasma glucose decreased in all eight subjects from steady-state levels of 4.8 +/- 0.2 to a nadir of 4.1 +/- 0.2 mM. This decrease in plasma glucose was accounted for by a significant 17% decrease in Ra, from 22.6 +/- 2.8 to 19.1 +/- 2.8 micromol. kg-1. min-1 (P < 0.04), with no significant change in Rd. These findings indicate that, under fasting conditions, GLP-1 decreases endogenous glucose production independent of its actions on islet hormone secretion.  相似文献   

16.
S Lindskog  B Ahrén 《Hormone research》1988,29(5-6):237-240
The effects of the two intrapancreatic peptides galanin and pancreastatin on basal and stimulated insulin and glucagon secretion in the mouse were compared. It was found that at 2 min after intravenous injection of galanin or pancreastatin (4.0 nmol/kg), basal plasma glucagon and glucose levels were slightly elevated. Galanin was more potent than pancreastatin to elevate basal plasma glucagon levels: they increased from 60 +/- 15 to 145 +/- 19 pg/ml (p less than 0.01) after galanin compared to from 35 +/- 5 to 55 +/- 8 pg/ml (p less than 0.05) after pancreastatin. Plasma insulin levels were lowered by galanin (p less than 0.05), but not by pancreastatin. CCK-8 (6.3 nmol/kg) or terbutaline (3.6 mumol/kg) markedly increased the plasma insulin levels. Galanin (4.0 nmol/kg) completely abolished the insulin response to CCK-8 (p less than 0.001), but pancreastatin (4.0 nmol/kg) was without effect. Galanin inhibited the insulin response to terbutaline by approximately 60% (p less than 0.01), but pancreastatin inhibited the insulin response to terbutaline by approximately 35% only (p less than 0.05). CCK-8 and terbutaline did both elevate plasma glucagon levels by moderate potencies: neither pancreastatin nor galanin could affect these responses. Thus, in the mouse, galanin and pancreastatin both inhibit basal and stimulated insulin secretion, and stimulate basal glucagon secretion. Galanin is thereby more potent than pancreastatin. The study also showed that galanin potently inhibits insulin secretion stimulated by the octapeptide of cholecystokin and by the beta 2-adrenoceptor agonist terbutaline, and that pancreastatin inhibits terbutaline-induced insulin secretion.  相似文献   

17.
Glucose clamp experiments were performed in 27 chronically catheterized, late-gestation fetal lambs in order to measure the effect of fetal insulin concentration on fetal glucose uptake at a constant glucose concentration. Fetal arterial blood glucose concentration was measured over a 30-min control period and then maintained at the control value by a variable glucose infusion into the fetus while insulin was infused at a constant rate into the fetus. Plasma insulin concentration increased from 21 +/- 10 (SD) to 294 +/- 179 (SD) microU X ml-1. The exogenous glucose infusion rate necessary to maintain constant glycemia during the plateau hyperinsulinemia averaged 4.3 +/- 1.6 (SD) mg X min-1 X kg-1. In a subset of 13 animals, total fetal exogenous glucose uptake (FGU; sum of glucose uptake from the placenta via the umbilical circulation plus the steady-state exogenous glucose infusion rate) was measured during the control and hyperinsulinemia period. FGU was directly related to insulin concentration (y = 4.24 + 0.07x) at insulin levels less than 100 microU/ml and increased 132% above control at insulin levels above 100 microU/ml. Hyperinsulinemia did not affect fetal glucose uptake from the placenta via the umbilical circulation. These studies demonstrate that insulin concentration is a major factor controlling glucose uptake in the near-term fetal lamb, and that an increase of fetal insulin does not affect the transport of glucose to the fetus from the placenta.  相似文献   

18.
Studies concerning the importance of glucagon secretion in hypoglycemic counterregulation have assumed that peripheral levels of glucagon are representative of rates of pancreatic glucagon secretion. The measurement of peripheral levels of this hormone, however, may be a poor reflection of secretion rates because of glucagon's metabolism by the liver. Therefore, in order to understand the relationship between pancreatic glucagon secretion and levels of glucagon in the peripheral blood during hypoglycemia, we evaluated hepatic glucagon metabolism during insulin induced hypoglycemia. Four dogs received an insulin infusion to produce glucose levels less than 50 mg/dl for 45 minutes. In response to this, the delivery of glucagon to the liver increased from 36.7 +/- 5.9 ng/min in the baseline to 322.6 +/- 6.3 ng/min during hypoglycemia. Hepatic glucagon uptake increased proportionally from 13.6 +/- 7.2 ng/min to 103.1 +/- 28.3 ng/min and the percentage of delivered hormone that was extracted did not change (30.8 +/- 13.8% vs 32.9 +/- 11.6%). The absolute amount of glucagon metabolized by the liver was dependent on the rate of delivery and was not directly affected by plasma glucose level per se. To directly study the effect of hypoglycemia on hepatic glucagon metabolism, five dogs were given an exogenous infusion of somatostatin followed by an infusion of glucagon and then administered insulin to produce hypoglycemia. The percent of glucagon extracted by the liver (19.5 +/- 4.9% and 21.3 +/- 6.4%) was not affected by a fall in the plasma glucose level.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
Important role of glucagon during exercise in diabetic dogs   总被引:2,自引:0,他引:2  
To define the role of immunoreactive glucagon (IRG) during exercise in diabetes, 12 insulin-deprived alloxan-diabetic (A-D) dogs were run for 90 min (100 m/min, 12 degrees) with or without somatostatin (St 0.5 microgram . kg-1 . min-1). Compared with normal dogs, A-D dogs were characterized by similar hepatic glucose production (Ra), lower glucose metabolic clearance, and higher plasma glucose and free fatty acid levels during rest and exercise. In A-D dogs IRG was greater at rest and exhibited a threefold greater exercise increment than controls, whereas immunoreactive insulin (IRI) was reduced by 68% at rest but had similar values to controls during exercise. Basal norepinephrine, epinephrine, cortisol, and lactate levels were similar in normal and A-D dogs. However, exercise increments in norepinephrine, cortisol, and lactate were higher in A-D dogs. When St was infused during exercise in the A-D dogs, IRG was suppressed by 432 +/- 146 pg/ml below basal and far below the exercise response in A-D controls (delta = 645 +/- 153 pg/ml). IRI was reduced by 1.8 +/- 0.2 microU/ml with St. With IRG suppression the increase in Ra seen in exercising A-D controls (delta = 4.8 +/- 1.6 mg . kg-1 . min-1) was virtually abolished, and glycemia fell by 104 to 133 +/- 37 mg/dl. Owing to this decrease in glycemia, the increase in glucose disappearance was attenuated. Despite the large fall in glucose during IRG suppression, counterregulatory increases were not excessive compared with A-D controls. In fact, as glucose levels approached euglycemia, the increments in norepinephrine and cortisol were reduced to levels similar to those seen in normal exercising dogs. In conclusion, IRG suppression during exercise in A-D dogs almost completely obviated the increase in Ra, resulting in a large decrease in plasma glucose. Despite this large fall in glucose, there was no excess counterregulation, since glucose concentrations never reached the hypoglycemic range.  相似文献   

20.
A direct radioimmunoassay of plasma somatostatin-like immunoreactivity (SRIF-LI) was developed and validated. The sensitivity was 16.0 pg/ml, and the specificity was good. The recovery of plasma SRIF-LI was 98.8 +/- 6.3%. The Scatchard plot of the antiserum binding data revealed a straight line, with a binding affinity of 3.52 X 10(-12) M and a binding capacity 4.06 X 10(-10) M. Synthetic SRIF (Stilamin), 250 micrograms, was infused intravenously over a 30-min period in 9 healthy volunteers. Plasma glucose, insulin (IRI), glucagon (IRG) and SRIF-LI were measured. A two-compartment open model was adopted to analyze the pharmacokinetic data of SRIF-LI. The results showed that plasma SRIF-LI rose from 192.2 +/- 16.2 pg/ml to a plateau of 2,129.8 +/- 288.2 pg/ml within 5-10 min after starting the infusion. The half disappearance time from plasma (Ta1/2) was 1.36 +/- 0.18 min, the half disappearance time from the 'remote' compartment (Tb1/2) was 49.6 +/- 10.9 min and the net half disappearance time from the two compartments together (Tn1/2) was 9.19 +/- 1.49 min. The metabolic clearance rate was 50.3 +/- 7.0 ml/kg/min. The plasma IRI, IRG and the IRI/IRG molar ratio were all suppressed during the infusion period. The recovery time of plasma IRG was mildly delayed in comparison to that of IRI. This indicates that there are dissociations between IRI and IRG in the extent and the duration of suppression caused by somatostatin infusion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号