首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nitric oxide is produced from the amino acid L-arginine by nitric oxide synthase, which has three known isoforms: (1) endothelial nitric oxide synthase and (2) brain nitric oxide synthase, both of which are constitutive nitric oxide synthase; and (3) inducible nitric oxide synthase. The authors' hypothesis is that after reperfusion injury, endothelial cell dysfunction leads to disruption of nitric oxide synthase-mediated nitric oxide production and that this may in part explain the deleterious effects of ischemia-reperfusion injury on tissue survival and blood reflow in flaps. An experiment was designed to study the effects of ischemia-reperfusion injury on the bioactivity of all three isoforms of nitric oxide synthase. Buttock skin flaps and latissimus dorsi myocutaneous flaps were elevated in eight pigs. Flaps on one side of the animal were randomized to receive 6 hours of arterial ischemia, whereas flaps on the other side served as controls. At 6 hours of ischemia and at 1, 4, and 18 hours after reflow, tissue biopsy specimens were obtained and were processed for both constitutive nitric oxide synthase and inducible nitric oxide synthase enzyme activity on the basis of the L-citrulline assay. In addition, specimens were processed for Western blot analysis of the three isoforms. The authors' results revealed three key findings: first, there was a statistically significant (p < 0.001) decrease in constitutive nitric oxide synthase activity of ischemia-reperfusion-injured flaps as compared with controls in both skin and muscle for all time intervals measured. Second, Western blot analyses of endothelial nitric oxide synthase and brain nitric oxide synthase showed a significant decrease in the signal intensity in ischemic and reperfused tissue as compared with controls. Third, the inducible nitric oxide synthase isoform's activity and protein remained undetectable in both tissue types for all time points measured. The authors' data demonstrated that following ischemia-reperfusion injury in the pig flap model there was a disruption of constitutive nitric oxide synthase expression and activity, which may lead to decreased nitric oxide production. The significant decrease in nitric oxide synthase activity found in the current study may partly explain the mechanism of tissue damage in flaps subjected to ischemia-reperfusion injury. Knowledge of the kinetics of nitric oxide synthase activity under conditions of ischemia-reperfusion injury has important implications for the choice and timing of delivery of therapeutic agents whose goal is to increase the bioavailability of nitric oxide in reperfused tissue.  相似文献   

2.
In a blinded study, 24 pigs were randomized to a 5-day preoperative treatment regimen of cyclophosphamide (n = 12) or placebo (n = 12). At operation, buttock cutaneous and latissimus dorsi myocutaneous flaps were created and then subjected to 6 hours of global ischemia. After 24 hours of reperfusion, flap skin and muscle survivals were determined. All cyclophosphamide-treated animals were rendered neutropenic (less than 500 neutrophils/mm3 of peripheral blood). The results show that neutropenia had no effect on postischemic buttock cutaneous flap survival. In contrast, cyclophosphamide-induced neutropenia demonstrated a significant protective effect on postischemic latissimus dorsi myocutaneous flap survival. This study further implicates the neutrophil as a significant factor in the mediation of ischemia/reperfusion injury of myocutaneous flaps.  相似文献   

3.
In this study, the authors tested the hypothesis that there is a significant difference in spatial patterns of reflow in skin as opposed to skeletal muscle after an ischemic insult. The authors believe that this pathophysiologic difference between the two flap types has significant implications for flap salvage strategies. Bilateral buttock skin flaps (10 x 18 cm) and latissimus dorsi myocutaneous flaps (10 x 20 cm) were elevated in Landrace pigs (n = 7). Flaps on one side of the animal were randomly assigned to 6 hours of arterial occlusion, with the contralateral side acting as control. At 15 minutes, 1 hour, and 4 hours after reflow, radioactive microspheres (15 microm) were injected into the left ventricle. After 18 hours of reperfusion, skin and muscle viability were estimated by intravenous fluorescein and soaking in nitroblue tetrazolium, respectively. Flow rates in the skin with an ischemia-reperfusion injury were significantly reduced (30 to 53 percent), at all time intervals, compared with controls. The flow rate in the fluorescent skin with ischemia-reperfusion injury of the latissimus dorsi flaps (0.037 ml/min/g at 15 min) was greater than in that of the buttock flaps (0.018 ml/min/g). The muscle flaps with ischemia-reperfusion injury had significantly higher flow rates than control muscle flaps at all time intervals studied (at 1 hour, 0.32 ml/min/g compared with 0.16 ml/min/g, respectively). In flap skeletal muscle, an early hyperemic phase during reperfusion maintains a significant blood flow to all regions, including the area of the flap that is destined for necrosis. In flap skin, however, there is a marked decrease in flow rates. These differences have important implications for the intravascular delivery of therapeutic agents to the damaged portions of the flap. Transdermal drug delivery systems should be explored as an alternative to intravascular regimens for the salvage of flap skin with ischemia-reperfusion injury.  相似文献   

4.
The neutrophil has been implicated as a source of oxygen free radicals provoking the reperfusion injury in various ischemic organs. This provided the motivation to explore the pathophysiologic role of the neutrophil in a swine model of postischemic latissimus dorsi myocutaneous flaps. Neutrophil function, neutrophil sequestration, and the anatomic distribution of muscle injury were estimated following a 6- to 8-hour global ischemic insult. Neutrophil function as measured by phorbol myristate acetate-stimulated superoxide production was found to be enhanced on reperfusion of ischemic flaps (n = 17). Neutrophil sequestration estimated from the arterial-venous difference of flap blood (n = 12) demonstrated that postischemic flaps more avidly sequester neutrophils than nonischemic flaps. The anatomic distribution of muscle injury (n = 7) was predominantly localized to the proximal portion of the ischemic flap. The enhanced functional response exhibited by neutrophils reperfusing an ischemic myocutaneous flap supports an active neutrophil role in the mediation of reperfusion injury.  相似文献   

5.
Neutrophil localization following reperfusion of ischemic skin flaps.   总被引:3,自引:0,他引:3  
A swine model of island latissimus dorsi myocutaneous and buttock cutaneous flaps was used to examine neutrophil localization and flap survival after 6 hours of global ischemia followed by 24 hours of reperfusion. Radioactivity from autotransfused neutrophils labeled with indium-111 enabled their localization. Radioactivity in ischemic latissimus dorsi flaps was increased by 101 +/- 30 percent over contralateral control latissimus dorsi flaps (n = 6, p = 0.01). Radioactivity in ischemic buttock flaps was increased by 142 +/- 40 percent over contralateral control buttock flaps (n = 6, p = 0.008). Despite increased neutrophil localization to ischemic flaps, the magnitude of tissue radioactivity failed to provide sufficient information to predict ischemic injury as measured by flap survival and tissue water content.  相似文献   

6.
The involvement of nitric oxide in ischemia-reperfusion injury remains controversial and has been reported to be both beneficial and deleterious, depending on the tissue and model used. This study evaluated the effects of the nitric oxide synthase inhibitor N(G)-nitro-L-arginine-methyl ester (L-NAME) and the substrate for nitric oxide synthase, L-arginine on skeletal muscle necrosis in a rat model of ischemia-reperfusion injury. The rectus femoris muscle in male Wistar rats (250 to 500 g) was isolated on its vascular pedicle and subjected to 4 hours of complete arteriovenous occlusion. The animals were divided into five groups: (1) sham-raised control, no ischemia, no treatment (n = 6); (2) 4 hours of ischemia (n = 6); (3) vehicle control, 4 hours of ischemia + saline (n = 6); (4) 4 hours of ischemia + L-arginine infusion (n = 6); and (5) 4 hours of ischemia + L-NAME infusion (n = 6). The infusions (10 mg/kg) were administered into the contralateral femoral vein beginning 5 minutes before reperfusion and during the following 30 to 45 minutes. Upon reperfusion, the muscle was sutured in its anatomic position and all wounds were closed. The percentage of muscle necrosis was assessed after 24 hours of reperfusion by serial transections, nitroblue tetrazolium staining, digital photography, and computerized planimetry. Sham (group 1) animals sustained baseline necrosis of 11.9 +/- 3.0 (percentage necrosis +/- SEM). Four hours of ischemia (group 2) significantly increased necrosis to 79.2 +/- 1.4 (p < 0.01). Vehicle control (group 3) had no significant difference in necrosis (81.17 +/- 5.0) versus untreated animals subjected to 4 hours of ischemia (group 2). Animals treated with L-arginine (group 4) had significantly reduced necrosis to 34.6 +/- 7.5 versus untreated (group 2) animals (p < 0.01). Animals infused with L-NAME (group 5) had no significant difference in necrosis (68.2 +/- 6.7) versus untreated (group 2) animals. L-Arginine (nitric oxide donor) significantly decreased the severity of muscle necrosis in this rat model of ischemia-reperfusion injury. L-arginine is known to increase the amount of nitric oxide through the action of nitric oxide synthase, whereas L-NAME, known to inhibit nitric oxide synthase and decrease nitric oxide production, had comparable results to the untreated 4-hour ischemia group. These results suggest that L-arginine, presumably through nitric oxide mediation, appears beneficial to rat skeletal muscle subjected to ischemia-reperfusion injury.  相似文献   

7.
L-精氨酸对任意型皮瓣成活的影响   总被引:1,自引:0,他引:1  
目的 探讨L 精氨酸对任意型皮瓣的成活的影响。方法 以Wistar大鼠为实验对象 ,在其背部设计 7cm×2cm任意型皮瓣 ,于术后给予腹腔注射L 精氨酸 30 0mg/kg ,对照组给予 0 9%生理盐水。术后 7d ,通过图像分析技术观察皮瓣成活率 ;通过生物化学技术、组织学和免疫组织化学技术对不同时间皮瓣组织中一氧化氮含量、组织形态学变化、白细胞计数以及ICAM 1的表达进行观测。结果 外源性L 精氨酸可提高皮瓣组织一氧化氮含量 ,L 精氨酸组ICAM 1表达呈弱阳性、术后 12h皮瓣组织真皮中性粒细胞计数减少 ,L 精氨酸组皮瓣成活率明显高于对照组 (P <0 0 1)。结论 外源性L 精氨酸可提高皮瓣组织NO含量 ,ICAM 1表达下调 ,中性粒细胞浸润减少 ,提高任意皮瓣成活率。  相似文献   

8.
Exogenous administration of vascular endothelial growth factor (VEGF) improves long-term viability of myocutaneous flaps. However, endogenous expression of this substance in flaps following ischemia-reperfusion injury has not been reported previously. Endogenous production of VEGF was measured in myocutaneous pig latissimus dorsi flaps after ischemia-reperfusion injury. Latissimus dorsi myocutaneous flaps (15 x 10 cm) were simultaneously elevated bilaterally in six Yorkshire-type male pigs (25 kg). Before elevation, three flap zones (5 x 10 cm) were marked according to their distance from the vascular pedicle. After isolation of the vascular pedicle, ischemia-reperfusion injury was induced in one flap by occlusion of the thoracodorsal artery and vein for 4 hours, followed by 2 hours of reperfusion. The contralateral flap served as a control. Perfusion in each zone was monitored by laser Doppler flowmetry at baseline, during ischemia, and during reperfusion. At the end of the protocol, skin and muscle biopsies of each flap zone and adjacent tissues were obtained for later determination of VEGF protein levels. VEGF concentrations were quantified using the Quantikine human VEGF immunoassay. Skin perfusion was similar among all flap zones before surgery. Flow fell in all flaps immediately after flap elevation. After 4 hours of ischemia, blood flow in the ischemic flaps was significantly decreased (p < 0.05) compared with nonischemic control flaps. After 2 hours of reperfusion, flow in ischemic flap skin recovered to levels similar to those in control flaps. VEGF protein concentrations in muscle tissue exceeded concentrations in skin and decreased from zones 2 to 3 in control and ischemic flaps. No significant differences in VEGF concentrations between ischemic and control muscle zones were observed. However, the concentration of VEGF in all muscle zones was significantly higher (p < 0.05) than muscle adjacent to the flap. Concentrations in skin zones 1 and 2 were significantly higher (p < 0.05) in ischemic flaps than in control flaps, but levels in zone 3 (most ischemic flaps) showed no significant difference.  相似文献   

9.
Critical ischemia times and survival patterns of experimental pig flaps   总被引:1,自引:0,他引:1  
Previous work on critical ischemia time suggested (1) a greater susceptibility of myocutaneous flaps over skin flaps to the ischemia reperfusion injury and (2) that duration of ischemia may affect the survival area of a flap. Using a pig model, 55 animals were operated on and the critical ischemia times and survival patterns of the buttock skin (n = 85) and latissimus dorsi myocutaneous (n = 88) island flaps were determined after being submitted to 0, 2, 4, 6, 8, 10, 12, 14, and 16 hours of normothermic ischemia. The average critical ischemia times (CIT50) were determined to be 9 and 10 hours for the buttock skin and latissimus dorsi myocutaneous flaps, respectively. Percentage of total area surviving (%TAS) in those flaps which did survive was adversely affected by increases in the ischemic interval in both flap models. A statistically significant decrease in percentage of total area surviving was found after 6 and 8 hours of ischemia for the buttock skin and latissimus dorsi myocutaneous flaps, respectively.  相似文献   

10.
Among numerous inflammatory mediators a nitric oxide molecule is supposed to be important in the modulation of neutrophil survival in vivo and in vitro. The effect of exogenous supply of NO donors such as SNP, SIN-1, and GEA-3162 on the course of human neutrophil apoptosis and the role of extracellular antioxidants in this process was investigated. Isolated from peripheral blood, neutrophils were cultured in the presence or absence of NO donor compounds and antioxidants for 8, 12, and 20 hours. Apoptosis of neutrophils was determined in vitro by flow cytometric analysis of cellular DNA content and Annexin V protein binding to the cell surface. Exposure of human neutrophils to GEA-3162 and SIN-1 significantly accelerates and enhances their apoptosis in vitro in a time-dependent fashion. In the presence of SNP, intensification of apoptosis has not been revealed until 12 hours after the culture. The inhibition of GEA-3162- and SIN-1-mediated neutrophil apoptosis by superoxide dismutase (SOD) but not by catalase (CAT) was observed. Our results show that SOD and CAT can protect neutrophils against NO-donors-induced apoptosis and suggest that the interaction of NO and oxygen metabolites signals may determine the destructive or protective role of NO donor compounds during apoptotic neutrophil death.  相似文献   

11.
Nitric oxide (NO) has been shown to be both an intercellular and intracellular messenger. We propose here that exogenous NO induces chemotactic locomotion of human neutrophils. Indeed, when human neutrophils were placed in a gradient of a nitric oxide donor (S-nitroso-N-acetylpenicillamine; SNAP), a directed locomotion was induced, as evidenced by experiments of chemotaxis under agarose. Degraded SNAP (i.e., SNAP solution which had previously released NO) did not induce directed locomotion. Moreover, oxyhemoglobin, a scavenger of free NO, suppressed the chemotactic effect of SNAP, whereas LY-83583, a soluble guanylate cyclase inhibitor, inhibited the SNAP-mediated chemotaxis in a dose-response manner. Other unrelated NO donors, SIN-1 and S-nitroso-cysteine—a natural S-nitroso-compound, also induced a directed locomotion of neutrophils. Taken together, these in vitro experiments indicate that exogenous NO could mediate the chemotaxis of neutrophils and thus suggest that NO could contribute to neutrophil recruitment in vivo. © 1995 Wiley-Liss Inc.  相似文献   

12.
Nitric oxide (*NO) and its by-products modulate many physiological functions of skeletal muscle including blood flow, metabolism, glucose uptake, and contractile function. However, growing evidence suggests that an overproduction of nitric oxide contributes to muscle wasting in a number of pathologies including chronic heart failure, sepsis, COPD, muscular dystrophy, and extreme disuse. Limited data point to the potential of inhibition various enzymes by reactive nitrogen species (RNS), including (.)NO and its downstream products such as peroxynitrite, primarily in purified systems. We hypothesized that exposure of skeletal muscle to RNS donors would reduce or downregulate activities of the crucial antioxidant enzymes superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPX). Diaphragm muscle fiber bundles were extracted from 4-month-old Fischer-344 rats and, in a series of experiments, exposed to either (a) 0 (control), 1, or 5 mM diethylamine NONOate (DEANO: *NO donor); (b) 0, 100, 500 microM, or 1 mM sodium nitroprusside (SNP: *NO donor); (c) 0 or 2 mM S-nitroso-acetylpenicillamine (SNAP: *NO donor); or (d) 0 or 500 microM SIN-1 (peroxynitrite donor) for 60 min. DEANO resulted in a 50% reduction in CAT, GPX, and a dose-dependent inhibition of Cu, Zn-SOD. SNP resulted in significantly lower activities for total SOD, Mn-SOD isoform, Cu, Zn-SOD isoform, CAT, and GPX in a dose-dependent fashion. Two millimolar SNAP and 500 microM SIN-1 also resulted in a large and significant inhibition of total SOD and CAT. These data indicate that reactive nitrogen species impair antioxidant enzyme function in an RNS donor-specific and dose-dependent manner and are consistent with the hypothesis that excess RNS production contributes to skeletal muscle oxidative stress and muscle dysfunction.  相似文献   

13.
D. A. Lepore 《Nitric oxide》2000,4(6):541-545
Nitric oxide (NO) is an important molecule in many physiological or pathophysiological processes including ischemia--reperfusion injury. The enzymatic nitric oxide synthase (NOS)-dependent pathway was universally accepted as the source of NO in ischemia-reperfusion injury. However, generation of NO that is independent of NOS has also been identified in ischemia--reperfusion injury to both cardiac and skeletal muscle. This review summarizes the evidence for the generation NOS-independent NO in ischemia--reperfusion injury to cardiac and skeletal muscle.  相似文献   

14.
To compare the sensitivity of different mammalian cell types towards the cytotoxic action of nitric oxide, freshly isolated rat pancreatic islet cells, hepatocytes, resident and activated macrophages, cultured aortic endothelial cells and two murine tumor cell lines were tested for susceptibility towards exogenous nitric oxide. As sources for nitric oxide nitroprusside, S-nitroso-N-acetyl-penicillamine and the sydnonimine-derivative SIN-1 were used. These generate nitric oxide by different mechanisms and kinetics. Among the cell types tested we found large differences in their susceptibility towards the three nitric oxide donors. Islet cells were by far the most sensitive of the investigated cells and were completely lysed by all three nitric oxide donors. Hepatocytes and endothelial cells were sensitive towards nitroprusside but relatively resistant towards toxicity of SIN-1 and S-nitroso-N-acetyl-penicillamine. Activated and resident macrophages were lysed by SIN-1, whereas high concentrations of nitroprusside and S-nitroso-N-acetyl-penicillamine led to partial cell lysis only. The tumor cell lines were both lysed by SIN-1 but showed differences in their sensitivity towards S-nitroso-N-acetyl-penicillamine. Nitric oxide, which is produced in large amounts during infection and inflammation, may play an important role in the destruction of islet cells during insulitis leading to insulin-dependent diabetes mellitus.  相似文献   

15.
Inflammatory responses to ischemia,and reperfusion in skeletal muscle   总被引:16,自引:0,他引:16  
Skeletal muscle ischemia and reperfusion is now recognized as one form of acute inflammation in which activated leukocytes play a key role. Although restoration of flow is essential in alleviating ischemic injury, reperfusion initiates a complex series of reactions which lead to neutrophil accumulation, microvascular barrier disruption, and edema formation. A large body of evidence exists which suggests that leukocyte adhesion to and emigration across postcapillary venules plays a crucial role in the genesis of reperfusion injury in skeletal muscle. Reactive oxygen species generated by xanthine oxidase and other enzymes promote the formation of proinflammatory stimuli, modify the expression of adhesion molecules on the surface of leukocytes and endothelial cells, and reduce the bioavailability of the potent antiadhesive agent nitric oxide. As a consequence of these events, leukocytes begin to form loose adhesive interactions with postcapillary venular endothelium (leukocyte rolling). If the proinflammatory stimulus is sufficient, leukocytes may become firmly adherent (stationary adhesion) to the venular endothelium. Those leukocytes which become firmly adherent may then diapedese into the perivascular space. The emigrated leukocytes induce parenchymal cell injury via a directed release of oxidants and hydrolytic enzymes. In addition, the emigrating leukocytes also exacerbate ischemic injury by disrupting the microvascular barrier during their egress across the vasculature. As a consequence of this increase in microvascular permeability, transcapillary fluid filtration is enhanced and edema results. The resultant increase in interstitial tissue pressure physically compresses the capillaries, thereby preventing microvascular perfusion and thus promoting the development of the no-reflow phenomenon. The purpose of this review is to summarize the available information regarding these mechanisms of skeletal muscle ischemia/reperfusion injury.  相似文献   

16.
The vascular territory of the pectoralis major muscle and overlying skin was studied by selective intraarterial dye injections in fresh cadavers. The area of skin overlying the anterior chest and abdominal wall beyond the limits of the pectoralis major muscle that can be elevated as an extended myocutaneous flap was determined. The cadaver injections were evaluated to determine the size and shape of the skin island used to reconstruct defects of the head, neck, and upper trunk with an extended skin paddle off the pectoralis major muscle. Pectoralis muscle flaps with variously shaped skin paddles, some extending beyond the limits of the muscle, were used in 27 patients to cover large soft-tissue defects of the upper thorax, face, and floor of the mouth and as a skin tube to reconstruct the cervical esophagus. The size of the skin paddle ranged from 5 x 7 cm to 26 x 16 cm. All flaps survived completely, and there were no major donor-site complications.  相似文献   

17.
This study evaluated the effects of exogenous vascular endothelial growth factor (VEGF) on the regulation of cytokines in a rat dorsal ischemic skin flap model. Exogenous VEGF (1 microg/ml) was injected subdermally into the flaps of 12 rats before the flaps were sutured back in place. Another 12 rats with flaps received saline injections, as a control group. Biopsy specimens were obtained from the flaps treated with VEGF or saline solution, at positions 2.5, 5.5, and 8.5 cm from the distal edge of the flaps, at 12 hours (n = 6 for each group) and 24 hours (n = 6 for each group) after suturing of the flaps. Expression of cytokine, growth factor, and inducible nitric oxide synthase was measured. The results demonstrated that expression of tumor necrosis factor-alpha and nitric oxide synthase in the distal part of the VEGF-treated flaps was significantly decreased, compared with the control values, at 12 and 24 hours postoperatively. It was concluded that administration of exogenous VEGF could protect flaps from ischemia-reperfusion injury through the regulation of proinflammatory cytokines and the inhibition of cytotoxic nitric oxide production.  相似文献   

18.
We have used electron paramagnetic resonance to investigate the time course of nitric oxide (NO) generation and its susceptibility to inhibitors of nitric oxide synthase (NOS) in ischemia-reperfusion (IR) injury to rat skeletal muscle in vivo. Significant levels of muscle nitroso-heme complexes were detected 24 h postreperfusion, but not after at 0.05, 3, and 8 h of reperfusion. The levels of muscle nitroso-heme complexes were not decreased by the NOS inhibitor N-nitro-L-arginine methyl ester as a single dose (30 mg/kg) prior to reperfusion or as multiple doses continued throughout the reperfusion (total administered, 120 mg/kg) or by the potent NOS inhibitor S-methylisothiourea (3 mg/kg). In contrast, nitroso-heme levels were reduced by the glucocorticoid dexamethasone (2.5 mg/kg). Muscle necrosis in vitro did not result in the formation of nitroso-heme complexes. The finding that reperfusion after ischemia is necessary for NO formation suggests that an inflammatory pathway is responsible for NOS-independent NO formation in IR injury to skeletal muscle.  相似文献   

19.
R K Upmacis  R S Deeb  D P Hajjar 《Biochemistry》1999,38(38):12505-12513
Nitric oxide and its derivatives have been shown to both activate and inhibit prostaglandin H(2) synthase 1 (PGHS-1). We set out to determine the mechanisms by which different nitrogen oxide derivatives modulate PGHS-1 activity. To this end, we show that 3-morpholinosydnonimine hydrochloride (SIN-1), a compound capable of generating peroxynitrite, activates purified PGHS-1 and also stimulates PGE(2) production in arterial smooth muscle cells in the presence of exogenous arachidonic acid. The effect of SIN-1 in smooth muscle cells was abrogated by superoxide and peroxynitrite inhibitors, which supports the hypothesis that peroxynitrite is an activating species of PGHS-1. Indeed, authentic peroxynitrite also induced PGE(2) production in arachidonic acid-stimulated cells. In contrast, when cells were exposed to the nitric oxide-releasing compound 1-hydroxy-2-oxo-3-[(methylamino)propyl]-3-methyl-1-triazene (NOC-7), PGHS-1 enzyme activity was inhibited in the presence of exogenous arachidonic acid. Finally, in lipid-loaded smooth muscle cells, we demonstrate that SIN-1 stimulates arachidonic acid-induced PGE(2) production; albeit, the extent of activation is reduced compared to that under normal conditions. These results indicate that formation of peroxynitrite is a key intermediary step in PGHS-1 activation. However, other forms of NO(x)() inhibit PGHS-1. These results may have implications in the regulation of vascular function and tone in normal and atherosclerotic arteries.  相似文献   

20.
The therapeutic effects of isoxsuprine on skin capillary blood flow and viability were studied in arterial buttock flaps, latissimus dorsi myocutaneous flaps, and random skin flaps in pigs. It was observed that parenteral isoxsuprine increased capillary blood flow to the skin of arterial buttock flaps and the skin and muscle of latissimus dorsi myocutaneous flaps in a dose-response manner, with a maximum vascular effect observed at 1.0 mg/kg. However, this maximum effective dose of isoxsuprine did not have any significant effect on skin viability in the cutaneous and myocutaneous flaps compared with the control. Examination of the distribution of capillary blood flow within the flaps at varying distances from the pedicle revealed that isoxsuprine did not increase capillary blood flow or perfusion distance in the distal portion of the skin of arterial buttock flaps, latissimus dorsi myocutaneous flaps, and random skin flaps. The increased capillary blood flow as a result of isoxsuprine treatment was limited only to the arterial portion of the arterial buttock flaps and latissimus dorsi flaps. Therefore, it is concluded that isoxsuprine alone is not effective in augmentation of skin viability in cutaneous and myocutaneous flaps. The pharmacologic action of isoxsuprine on the vasculature in the skin and muscle of flaps was also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号