首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
The 2.3 A resolution crystal structure of a [2Fe-2S] cluster containing ferredoxin from Aquifex aeolicus reveals a thioredoxin-like fold that is novel among iron-sulfur proteins. The [2Fe-2S] cluster is located near the surface of the protein, at a site corresponding to that of the active-site disulfide bridge in thioredoxin. The four cysteine ligands are located near the ends of two surface loops. Two of these ligands can be substituted by non-native cysteine residues introduced throughout a stretch of the polypeptide chain that forms a protruding loop extending away from the cluster. The presence of homologs of this ferredoxin as components of more complex anaerobic and aerobic electron transfer systems indicates that this is a versatile fold for biological redox processes.  相似文献   

4.
The electron transfer system of the biphenyl dioxygenase BphA, which is derived from Acidovorax sp. (formally Pseudomonas sp.) strain KKS102, is composed of an FAD-containing NADH-ferredoxin reductase (BphA4) and a Rieske-type [2Fe-2S] ferredoxin (BphA3). Biochemical studies have suggested that the whole electron transfer process from NADH to BphA3 comprises three consecutive elementary electron-transfer reactions, in which BphA3 and BphA4 interact transiently in a redox-dependent manner. Initially, BphA4 receives two electrons from NADH. The reduced BphA4 then delivers one electron each to the [2Fe-2S] cluster of the two BphA3 molecules through redox-dependent transient interactions. The reduced BphA3 transports the electron to BphA1A2, a terminal oxygenase, to support the activation of dioxygen for biphenyl dihydroxylation. In order to elucidate the molecular mechanisms of the sequential reaction and the redox-dependent interaction between BphA3 and BphA4, we determined the crystal structures of the productive BphA3-BphA4 complex, and of free BphA3 and BphA4 in all the redox states occurring in the catalytic cycle. The crystal structures of these reaction intermediates demonstrated that each elementary electron transfer induces a series of redox-dependent conformational changes in BphA3 and BphA4, which regulate the interaction between them. In addition, the conformational changes induced by the preceding electron transfer seem to induce the next electron transfer. The interplay of electron transfer and induced conformational changes seems to be critical to the sequential electron-transfer reaction from NADH to BphA3.  相似文献   

5.
Knowing the manner of protein-protein interactions is vital for understanding biological events. The plant-type [2Fe-2S] ferredoxin (Fd), a well-known small iron-sulfur protein with low redox potential, partitions electrons to a variety of Fd-dependent enzymes via specific protein-protein interactions. Here we have refined the crystal structure of a recombinant plant-type Fd I from the blue green alga Aphanothece sacrum (AsFd-I) at 1.46 Å resolution on the basis of the synchrotron radiation data. Incorporating the revised amino-acid sequence, our analysis corrects the 3D structure previously reported; we identified the short α-helix (67-71) near the active center, which is conserved in other plant-type [2Fe-2S] Fds. Although the 3D structures of the four molecules in the asymmetric unit are similar to each other, detailed comparison of the four structures revealed the segments whose conformations are variable. Structural comparison between the Fds from different sources showed that the distribution of the variable segments in AsFd-I is highly conserved in other Fds, suggesting the presence of intrinsically flexible regions in the plant-type [2Fe-2S] Fd. A few structures of the complexes with Fd-dependent enzymes clearly demonstrate that the protein-protein interactions are achieved through these variable regions in Fd. The results described here will provide a guide for interpreting the biochemical and mutational studies that aim at the manner of interactions with Fd-dependent enzymes.  相似文献   

6.
The ferredoxin of the extreme haloarchaeon Halobacterium salinarum requires high (>2 M) concentration of salt for its stability. We have used a variety of spectroscopic probes for identifying the structural elements which necessitate the presence of high salt for its stability. Titration of either the fluorescence intensity of the tryptophan residues or the circular dichroism (CD) at 217 nm with salt has identified a structural form at low (<0.1 M) concentration of salt. This structural form (L) exhibits increased solvent exposure of W side chain(s) and decreased level of secondary structure compared to the native (N) protein at high concentrations of salt. The L-form, however, contains significantly higher levels of both secondary and tertiary structures compared to the form (U) found in highly denaturing conditions such as 8 M urea. The structural integrity of the L-form was highly pH dependent while that of N- or U-form was not. The pH dependence of either fluorescence intensity or CD of the L-form showed the presence of two apparent pK values: approximately 5 and approximately 10. The structural integrity of the L-form at low (<5) pH was very similar to that of the N-form. However, titration with denaturants showed that the low pH L-form is significantly less stable than the N-form. The increased destabilization of the L-form with the increase in pH was interpreted to be due to mutual Coulombic repulsion of carboxylate side chains (pK approximately 6) and due to the disruption of salt bridge(s) between ionized carboxylates and protonated amino groups (pK approximately 10). Estimation of solvent accessibility of W residues by fluorescence quenching, and measurement of decay kinetics of fluorescence intensity and anisotropy strongly support the above model. Polylysine interacted stoichiometrically with the L-form of ferredoxin resulting in nativelike structure. In conclusion, our studies show that high concentration of salt stabilizes the haloarchaeal ferredoxin in two ways: (i) neutralization of Coulombic repulsion among carboxyl groups of the acidic residues, and (ii) salting out of hydrophobic residues leading to their burial and stronger interaction.  相似文献   

7.
Xiao Y  Tan ML  Ichiye T  Wang H  Guo Y  Smith MC  Meyer J  Sturhahn W  Alp EE  Zhao J  Yoda Y  Cramer SP 《Biochemistry》2008,47(25):6612-6627
We have used (57)Fe nuclear resonance vibrational spectroscopy (NRVS) to study the Fe(2)S(2)(Cys)(4) sites in oxidized and reduced [2Fe-2S] ferredoxins from Rhodobacter capsulatus (Rc FdVI) and Aquifex aeolicus (Aa Fd5). In the oxidized forms, nearly identical NRVS patterns are observed, with strong bands from Fe-S stretching modes peaking around 335 cm(-1), and additional features observed as high as the B(2u) mode at approximately 421 cm(-1). Both forms of Rc FdVI have also been investigated by resonance Raman (RR) spectroscopy. There is good correspondence between NRVS and Raman frequencies, but because of different selection rules, intensities vary dramatically between the two kinds of spectra. For example, the B(3u) mode at approximately 288 cm(-1), attributed to an asymmetric combination of the two FeS(4) breathing modes, is often the strongest resonance Raman feature. In contrast, it is nearly invisible in the NRVS, as there is almost no Fe motion in such FeS(4) breathing. NRVS and RR analysis of isotope shifts with (36)S-substituted into bridging S(2-) ions in Rc FdVI allowed quantitation of S(2-) motion in different normal modes. We observed the symmetric Fe-Fe stretching mode at approximately 190 cm(-1) in both NRVS and RR spectra. At still lower energies, the NRVS presents a complex envelope of bending, torsion, and protein modes, with a maximum at 78 cm(-1). The (57)Fe partial vibrational densities of states (PVDOS) were interpreted by normal-mode analysis with optimization of Urey-Bradley force fields. Progressively more complex D(2h) Fe(2)S(2)S'(4), C(2h) Fe(2)S(2)(SCC)(4), and C(1) Fe(2)S(2)(Cys)(4) models were optimized by comparison with the experimental spectra. After modification of the CHARMM22 all-atom force field by the addition of refined Fe-S force constants, a simulation employing the complete protein structure was used to reproduce the PVDOS, with better results in the low frequency protein mode region. This process was then repeated for analysis of data on the reduced FdVI. Finally, the degree of collectivity was used to quantitate the delocalization of the dynamic properties of the redox-active Fe site. The NRVS technique demonstrates great promise for the observation and quantitative interpretation of the dynamical properties of Fe-S proteins.  相似文献   

8.
 The [2Fe-2S] protein from Azotobacter vinelandii that was previously known as iron-sulfur protein I, or Shethna protein I, has been shown to be encoded by a gene belonging to the major nif gene cluster. Overexpression of this gene in Escherichia coli yielded a dimeric protein of which each subunit comprises 106 residues and contains one [2Fe-2S] cluster. The sequence of this protein is very similar to that of the [2Fe-2S] ferredoxin from Clostridium pasteurianum (2FeCpFd), and the four cysteine ligands of the [2Fe-2S] cluster occur in the same positions. The A. vinelandii protein differs from the C. pasteurianum one by the absence of the N-terminal methionine, the presence of a five-residue C-terminal extension, and a lesser number of acidic and polar residues. The UV-visible absorption and EPR spectra, as well as the redox potentials of the two proteins, are nearly identical. These data show that the A. vinelandii FeS protein I, which is therefore proposed to be designated 2FeAvFdI, is the counterpart of the [2Fe-2S] ferredoxin from C. pasteurianum. The occurrence of the 2FeAvFdI-encoding gene in the nif gene cluster, together with the previous demonstration of a specific interaction between the 2FeCpFd and the nitrogenase MoFe protein, suggest that both proteins might be involved in nitrogen fixation, with possibly similar roles. Received: 21 December 1998 / Accepted: 1 March 1999  相似文献   

9.
Amino acid sequence of [2Fe-2S] ferredoxin from Clostridium pasteurianum   总被引:4,自引:0,他引:4  
The complete amino acid sequence of the [2Fe-2S] ferredoxin from the saccharolytic anaerobe Clostridium pasteurianum has been determined by automated Edman degradation of the whole protein and of peptides obtained by tryptic and by staphylococcal protease digestion. The polypeptide chain consists of 102 amino acids, including 5 cysteine residues in positions 11, 14, 24, 56, and 60. The sequence has been analyzed for hydrophilicity and for secondary structure predictions. In its native state the protein is a dimer, each subunit containing one [2Fe-2S] cluster, and it has a molecular weight of 23,174, including the four iron and inorganic sulfur atoms. The extinction coefficient of the native protein is 19,400 M-1 cm-1 at 463 nm. The positions of the cysteine residues, four of which are most probably the ligands of the [2Fe-2S] cluster, on the polypeptide chain of this protein are very different from those found in other [2Fe-2S] proteins, and in other ferredoxins in general. In addition, whole sequence comparisons of the [2Fe-2S] ferredoxin from C. pasteurianum with a number of other ferredoxins did not reveal any significant homologies. The likely occurrence of several phylogenetically unrelated ferredoxin families is discussed in the light of these observations.  相似文献   

10.
The soluble methane monooxygenase (sMMO) from Methylococcus capsulatus (Bath) is a multicomponent enzyme system required for the conversion of methane to methanol. It comprises a hydroxylase, a regulatory protein, and a reductase. The reductase contains two domains: an NADH-binding and FAD-containing flavin domain and a ferredoxin (Fd) domain carrying a [2Fe-2S] cofactor. Here, we report the solution structure of the reduced form of the 98-amino acid Fd domain (Blazyk, J. L., and Lippard, S. J. Unpublished results) determined by nuclear magnetic resonance (NMR) spectroscopy and restrained molecular dynamics calculations. The structure consists of six beta strands arranged into two beta sheets as well as three alpha helices. Two of these helices form a helix-proline-helix motif, unprecedented among [2Fe-2S] proteins. The [2Fe-2S] cluster is coordinated by the sulfur atoms of cysteine residues 42, 47, 50, and 82. The 10.9 kDa ferredoxin domain of the reductase protein transfers electrons to carboxylate-bridged diiron centers in the 251 kDa hydroxylase component of sMMO. The binding of the Fd domain with the hydroxylase was investigated by NMR spectroscopy. The hydroxylase binding surface on the ferredoxin protein has a polar center surrounded by patches of hydrophobic residues. This arrangement of amino acids differs from that by which previously studied [2Fe-2S] proteins interact with their electron-transfer partners. The critical residues on the Fd domain involved in this binding interaction map well onto the universally conserved residues of sMMO enzymes from different species. We propose that the [2Fe-2S] domains in these other sMMO systems have a fold very similar to the one found here for M. capsulatus (Bath) MMOR-Fd.  相似文献   

11.
The [2Fe-2S] ferredoxin from Clostridium pasteurianum had previously been shown to interact specifically with the nitrogenase MoFe protein, and electrostatic forces were found to be important contributors to the interaction. This phenomenon has now been analyzed in detail by using ferredoxin variants in which charge inversions or cancellations were introduced on all charged residues. The mutated forms of the ferredoxin were covalently cross-linked to the MoFe protein. The reaction products were analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and their nitrogenase activity was measured. The latter displayed a consistent inverse correlation with the amount of cross-linked MoFe protein. The data allowed an unambiguous identification of the ferredoxin residues (glutamates 31, 34, 38, 39, 84, 85) that are involved in the interaction with the MoFe protein. Furthermore, whereas the wild-type ferredoxin yielded approximately equal amounts of cross-linked products with the alpha and beta subunits of the MoFe protein, some of its molecular variants displayed a differential decrease of reactivity towards one or the other of these subunits. The positions on the ferredoxin molecule of the residues interacting with the MoFe protein were determined using the recently elucidated crystal structure of the homologous [2Fe-2S] ferredoxin from Aquifex aeolicus.  相似文献   

12.
Aquifex aeolicus is the only hyperthermophile that is known to contain a plant- and mammalian-type [2Fe-2S] ferredoxin (Aae Fd1). This unique protein contains two cysteines, in addition to the four that act as ligands of the [2Fe-2S] cluster, which form a disulfide bridge. We have investigated the stability of Aae Fd1 with (wild-type) and without (C87A variant) the disulfide bond, with respect to pH, thermal and chemical perturbation, and compared the results to those for the mesophilic [2Fe-2S] ferredoxin from spinach. Unfolding reactions of all three proteins are irreversible due to cluster decomposition in the unfolded state. Wild-type and C87A Aae Fd1 proteins are extremely stable: unfolding at 20 degrees C requires high concentrations of the chemical denaturant and long incubation times. Moreover, their thermal-unfolding midpoints are 40-50 degrees higher than that for spinach ferredoxin (pH 7). The stability of the Aae Fd1 protein is significantly lower at pH 2.5 than pH 7 and 10, suggesting that ionic interactions play a role in structural integrity. Interestingly, the iron-sulfur cluster in C87A Aae Fd1 rearranges into a transient species with absorption bands at 520 and 610 nm, presumably a linear three-iron cluster, in the high-pH unfolded state.  相似文献   

13.
Escherichia coli contains a soluble, [2Fe-2S] ferredoxin of unknown function (Knoell, H.-E., and Knappe, J. (1974) Eur. J. Biochem. 50, 245-252). Using antiserum to the purified protein to screen E. coli genomic expression libraries, we have cloned a gene (designated fdx) encoding this protein. The DNA sequence of the gene predicts a polypeptide of 110 residues after removal of the initiator methionine (polypeptide M(r) = 12,186, holoprotein M(r) = 12,358). The deduced amino acid sequence is strikingly similar to those of the ferredoxins found in animal mitochondria which function with cytochrome P450 enzymes and to the ferredoxin from Pseudomonas putida which functions with P450cam. The overall sequence identity is approximately 36% when compared with human mitochondrial and P. putida ferredoxins, and the identities include 4 cysteine residues proposed to coordinate the iron cluster. The protein was overproduced approximately 500-fold using an expression plasmid, and the holoprotein was assembled and accumulated in amounts exceeding 30% of the total cell protein. The overexpressed ferredoxin exhibits absorption, circular dichroism, and electron paramagnetic resonance spectra closely resembling those of the animal ferredoxins and P. putida ferredoxin.  相似文献   

14.
15.
Iron-sulfur proteins are among the sensitive targets of the nitric oxide cytotoxicity. When Escherichia coli cells are exposed to nitric oxide, iron-sulfur clusters are modified forming protein-bound dinitrosyl iron complexes. Such modified protein dinitrosyl iron complexes are stable in vitro but are efficiently repaired in aerobically growing E. coli cells even without any new protein synthesis. Here we show that cysteine desulfurase encoded by the gene iscS of E. coli can directly convert the ferredoxin dinitrosyl iron complex to the ferredoxin [2Fe-2S] cluster in the presence of L-cysteine in vitro. A reassembly of the [2Fe-2S] cluster in the ferredoxin dinitrosyl iron complex does not require any addition of iron or other protein components. Furthermore, a complete removal of the dinitrosyl iron complex from ferredoxin prevents reassembly of the [2Fe-2S] cluster in the protein. The results suggest that cysteine desulfurase (IscS) together with L-cysteine can efficiently repair the nitric oxide-modified ferredoxin [2Fe-2S] cluster and that the iron center in the dinitrosyl iron complex may be recycled for the reassembly of iron-sulfur clusters in proteins.  相似文献   

16.
J M Moulis  J Meyer 《Biochemistry》1982,21(19):4762-4771
The sulfur atoms of the two [4Fe-4S] clusters present in the ferredoxin from Clostridium pasteurianum have been replaced by selenium. The substitution is readily carried out by incubating the apoferredoxin with excess amounts of Fe3+, selenite, and dithiothreitol under anaerobic conditions. The UV-visible absorption spectrum of the Se-substituted ferredoxin, the core extrusion of its active sites, and analyses of its iron and selenium contents show that it contains two [4Fe-4Se] clusters. The Se-substituted ferredoxin is considerably less resistant to oxygen or to acidic and alkaline pH than the native ferredoxin: the half-lives of the former are 20-500 times shorter than those of the latter. The native ferredoxin and the Se-substituted ferredoxin display similar kinetic properties when used as electron donors to the hydrogenase from C. pasteurianum. It is of note, however, that the Km and Vmax values are lower for the 2[4Fe-4Se] ferredoxin than for the 2[4Fe-4S] ferredoxin. Reductive and oxidative titrations with dithionite and with thionine, respectively, show that both ferredoxins are two-electron carriers. The redox potentials of the ferredoxins have been measured by equilibrating them with the H2/H+ couple via hydrogenase: values of -423 and -417 mV have been found for the 2[4Fe-4S] ferredoxin and 2[4Fe-4Se] ferredoxin, respectively. Ferredoxins containing both chalcogenides in their [4Fe-4X] (X = S, Se) clusters have been prepared by reconstitution reactions involving mixtures of sulfide and selenide: the latter experiments show that sulfide and selenide are equally reactive in the incorporation of [4Fe-4X] (X = S, Se) sites into ferredoxin. The present report, together with former studies, establishes the general feasibility of the Se/S substitution in [2Fe-2S] and in [4Fe-4S] clusters of proteins and of synthetic analogues.  相似文献   

17.
Putidaredoxin (Pdx), a vertebrate-type [2Fe-2S] ferredoxin from Pseudomonas putida, transfers electrons from NADH-putidaredoxin reductase to cytochrome P450cam. Pdx exhibits redox-dependent binding affinities for P450cam and is thought to play an effector role in the monooxygenase reaction catalyzed by this hemoprotein. To understand how the reduced form of Pdx is stabilized and how reduction of the [2Fe-2S] cluster affects molecular properties of the iron-sulfur protein, crystal structures of reduced C73S and C73S/C85S Pdx were solved to 1.45 angstroms and 1.84 angstroms resolution, respectively, and compared to the corresponding 2.0 angstroms and 2.03 angstroms X-ray models of the oxidized mutants. To prevent photoreduction, the latter models were determined using in-house radiation source and the X-ray dose received by Pdx crystals was significantly decreased. Structural analysis showed that in reduced Pdx the Cys45-Ala46 peptide bond flip initiates readjustment of hydrogen bonding interactions between the [2Fe-2S] cluster, the Sgamma atoms of the cysteinyl ligands, and the backbone amide nitrogen atoms that results in tightening of the Cys39-Cys48 metal cluster binding loop around the prosthetic group and shifting of the metal center toward the Cys45-Thr47 peptide. From the metal center binding loop, the redox changes are transmitted to the linked Ile32-Asp38 peptide triggering structural rearrangement between the Tyr33-Asp34, Ser7-Asp9 and Pro102-Asp103 fragments of Pdx. The newly established hydrogen bonding interactions between Ser7, Asp9, Tyr33, Asp34, and Pro102, in turn, not only stabilize the tightened conformation of the [2Fe-2S] cluster binding loop but also assist in formation of a specific structural patch on the surface of Pdx that can be recognized by P450cam. This redox-linked change in surface properties is likely to be responsible for different binding affinity of oxidized and reduced Pdx to the hemoprotein.  相似文献   

18.
Evidence for the presence of a [2Fe-2S] ferredoxin in bean sprouts   总被引:3,自引:0,他引:3  
An iron-sulfur protein with properties similar to those of ferredoxins found in the leaves of higher plants has been isolated from bean sprouts--a non-photosynthetic plant tissue. The bean sprout protein has a molecular mass of 12.5 kDa and appears to contain a single [2Fe-2S] cluster. The absorbance and circular dichroism spectra of the bean sprout protein resemble those of spinach leaf ferredoxin and the bean sprout protein can replace spinach ferredoxin as an electron donor for NADP+ reduction, nitrite reduction and thioredoxin reduction by spinach leaf enzymes. Although the reduced bean sprout protein (Em = -440 mV) is a slightly stronger reductant than spinach ferredoxin and appears to be less acidic than spinach ferredoxin, the two proteins are similar enough so that the bean sprout protein is recognized by an antibody raised against spinach ferredoxin.  相似文献   

19.
Boll M  Fuchs G  Tilley G  Armstrong FA  Lowe DJ 《Biochemistry》2000,39(16):4929-4938
A reduced ferredoxin serves as the natural electron donor for key enzymes of the anaerobic aromatic metabolism in the denitrifying bacterium Thauera aromatica. It contains two [4Fe-4S] clusters and belongs to the Chromatium vinosum type of ferredoxins (CvFd) which differ from the "clostridial" type by a six-amino acid insertion between two successive cysteines and a C-terminal alpha-helical amino acid extension. The electrochemical and electron paramagnetic resonance (EPR) spectroscopic properties of both [4Fe-4S] clusters from T. aromatica ferredoxin have been investigated using cyclic voltammetry and multifrequency EPR. Results obtained from cyclic voltammetry revealed the presence of two redox transitions at -431 and -587 mV versus SHE. X-band EPR spectra recorded at potentials where only one cluster was reduced (greater than -500 mV) indicated the presence of a spin mixture of S = (3)/(2) and (5)/(2) spin states of one reduced [4Fe-4S] cluster. No typical S = (1)/(2) EPR signals were observed. At lower potentials (less than -500 mV), the more negative [4Fe-4S] cluster displayed Q-, X-, and S-band EPR spectra at 20 K which were typical of a single S = (1)/(2) low-spin [4Fe-4S] cluster with a g(av) of 1.94. However, when the temperature was decreased stepwise to 4 K, a magnetic interaction between the two clusters gradually became observable as a temperature-dependent splitting of both the S = (1)/(2) and S = (5)/(2) EPR signals. At potentials where both clusters were reduced, additional low-field EPR signals were observed which can only be assigned to spin states with spins of >(5)/(2). The results that were obtained establish that the common typical amino acid sequence features of CvFd-type ferredoxins determine the unusual electrochemical properties of the [4Fe-4S] clusters. The observation of different spin states in T. aromatica ferredoxin is novel among CvFd-type ferredoxins.  相似文献   

20.
The use of standard 2D NMR experiments in combination with 1D NOE experiments allowed the assignment of 51 of the 58 spin systems of oxidised [3Fe-4S] ferredoxin isolated from Desulfovibrio gigas. The NMR solution structure was determined using data from 1D NOE and 2D NOESY spectra, as distance constraints, and information from the X-ray structure for the spin systems not detected by NMR in torsion angle dynamics calculations to produce a family of 15 low target function structures. The quality of the NMR family, as judged by the backbone r.m.s.d. values, was good (0.80?Å), with the majority of φ/ψ angles falling within the allowed region of the Ramachandran plot. A comparison with the X-ray structure indicated that the overall global fold is very similar in solution and in the solid state. The determination of the solution structure of ferredoxin II (FdII) in the oxidised state (FdIIox) opens the way for the determination of the solution structure of the redox intermediate state of FdII (FdIIint), for which no X-ray structure is available.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号