首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
热激蛋白70与热激反应   总被引:6,自引:0,他引:6  
热激反应是细胞保护的最原始机制之一。近年来,越来越多的研究证明热激蛋白作为一种自然机制参与细胞保护,而热激蛋白70家族在其中起重要作用,从而成为恶劣条件、手术过程以及同病原体的斗争中器官保护的重要机制之一。  相似文献   

3.
热激蛋白90与热激应答   总被引:1,自引:0,他引:1  
李娟  杨惠  周元国 《生命的化学》2008,28(3):299-301
热激蛋白90(heat shock protein 90,HSP90)作为机体重要的分子伴侣之一,主要是维持机体内环境的稳态.在机体遭受内外界刺激时,体内氧化-抗氧化平衡失调诱发机体热激应答,诱导HSP90高表达来抵御刺激对机体造成的损伤.  相似文献   

4.
G. McColl  A. A. Hoffmann    S. W. McKechnie 《Genetics》1996,143(4):1615-1627
To identify genes involved in stress resistance and heat hardening, replicate lines of Drosophila melanogaster were selected for increased resistance to knockdown by a 39° heat stress. Two selective regimes were used, one with and one without prior hardening. Mean knockdown times were increased from ~5 min to >20 min after 18 generations. Initial realized heritabilities were as high as 10% for lines selected without hardening, and crosses between lines indicated simple additive gene effects for the selected phenotypes. To survey allelic variation and correlated selection responses in two candidate stress genes, hsr-omega and hsp68, we applied denaturing gradient gel electrophoresis to amplified DNA sequences from small regions of these genes. After eight generations of selection, allele frequencies at both loci showed correlated responses for selection following hardening, but not without hardening. The hardening process itself was associated with a hsp68 frequency change in the opposite direction to that associated with selection that followed hardening. These stress loci are closely linked on chromosome III, and the hardening selection established a disequilibrium, suggesting an epistatic effect on resistance. The data indicate that molecular variation in both hsr-omega and hsp68 contribute to natural heritable variation for hardened heat resistance.  相似文献   

5.
6.
Heat Shock Response in Lactobacillus plantarum   总被引:2,自引:0,他引:2       下载免费PDF全文
Heat stress resistance and response were studied in strains of Lactobacillus plantarum. Stationary-phase cells of L. plantarum DPC2739 had decimal reduction times (D values) (D value was the time that it took to reduce the number of cells by 1 log cycle) in sterile milk of 32.9, 14.7, and 7.14 s at 60, 72, and 75°C, respectively. When mid-exponential-phase cells were used, the D values decreased. The temperature increases which caused a 10-fold reduction in the D value ranged from 9 to 20°C, depending on the strain. Part of the cell population treated at 72°C for 90 s recovered viability during incubation at 7°C in sterile milk for 20 days. When mid-exponential- or stationary-phase cells of L. plantarum DPC2739 were adapted to 42°C for 1 h, the heat resistance at 72°C for 90 s increased ca. 3 and 2 log cycles, respectively. Heat-adapted cells also showed increased growth at pH 5 and in the presence of 6% NaCl. Two-dimensional gel electrophoresis of proteins expressed by control and heat-adapted cells revealed changes in the levels of expression of 31 and 18 proteins in mid-exponential- and stationary-phase cells, respectively. Twelve proteins were commonly induced. Nine proteins induced in the heat-adapted mid-exponential- and/or stationary-phase cells of L. plantarum DPC2739 were subjected to N-terminal sequencing. These proteins were identified as DnaK, GroEL, trigger factor, ribosomal proteins L1, L11, L31, and S6, DNA-binding protein II HlbA, and CspC. All of these proteins have been found to play a role in the mechanisms of stress adaptation in other bacteria. Antibodies against GroES detected a protein which was induced moderately, while antibodies against DnaJ and GrpE reacted with proteins whose level of expression did not vary after heat adaptation. This study showed that the heat resistance of L. plantarum is a complex process involving proteins with various roles in cell physiology, including chaperone activity, ribosome stability, stringent response mediation, temperature sensing, and control of ribosomal function. The physiological mechanisms of response to pasteurization in L. plantarum are fundamental for survival in cheese during manufacture.  相似文献   

7.
生物的热休克反应研究进展   总被引:6,自引:0,他引:6  
介绍了生物应激反应的基本概念、基本知识、研究概况、热休克蛋白的作用及与细胞凋亡的关系。  相似文献   

8.
The heat shock response (HSR) is responsible for maintaining cellular and organismal health through the regulation of proteostasis. Recent data demonstrating that the mammalian HSR is regulated by SIRT1 suggest that this response may be under metabolic control. To test this hypothesis, we have determined the effect of caloric restriction in Caenorhabditis elegans on activation of the HSR and have found a synergistic effect on the induction of hsp70 gene expression. The homolog of mammalian SIRT1 in C. elegans is Sir2.1. Using a mutated C. elegans strain with a sir2.1 deletion, we show that heat shock and caloric restriction cooperate to promote increased survivability and fitness in a sir2.1-dependent manner. Finally, we show that caloric restriction increases the ability of heat shock to preserve movement in a polyglutamine toxicity neurodegenerative disease model and that this effect is dependent on sir2.1.  相似文献   

9.
When sorghum seedlings were rapidly shifted from the cultural temperature of 30℃ to 40℃ and 45℃, a set of abnormal proteins, generally referred to as heat shock proteins were induced. They are a group of high molecular weight proteins (about 66–117 kD), a few intermediate molecular weight proteins (33–66kD) and a low molecular weight protein of 18 kD. At the same time, the synthesis of normal proteins was relatively depressed. The res ponse of the shoot tissues of sorghum seedings to heat shock is similar to that of the root tissues, but there are some differences in more detail between the two tissues. The synthesis of heat shock proteins in sorghum seedlings was rapid. After one-hour exposure at 45℃ their synthesis in the roots was detectable. Maximum induction took place in the second hour of exposure, thereafter their synthesis began to decline markedly. Finally, there appear to be some proteins whose synthesis was not supressed during heat shock, It is not yet known why the synthesis of these proteins is so stable.  相似文献   

10.
11.
12.
The cellular heat shock response (HSR) protects cells from toxicity associated with defective protein folding, and this pathway is widely viewed as a potential pharmacological target to treat neurodegenerative diseases linked to protein aggregation. Here we show that the HSR is not activated by mutant huntingtin (HTT) even in cells selected for the highest expression levels and for the presence of inclusion bodies containing aggregated protein. Surprisingly, HSR activation by HSF1 overexpression or by administration of a small molecule activator lowers the concentration threshold at which HTT forms inclusion bodies in cells expressing aggregation-prone, polyglutamine-expanded fragments of HTT. These data suggest that the HSR does not mitigate inclusion body formation.  相似文献   

13.
14.
15.
The effects of heat shock (HS) (40°C for 1 h) on the level of malondialdehyde (MDA), the terminal product of lipid peroxidation, superoxide dismutase (SOD) activity, catalase activity, and total peroxidase activity (TPA) were studied in root meristems and chloroplasts of several sunflower (Helianthus annuusL.) lines that carried nuclear or plastome chlorophyll mutations. HS either lowered or did not affect the MDA level in the root meristem and in the chloroplasts from the first true leaf, as compared to the untreated plants. In both treatments, the root and leaf enzyme activities varied in the sunflower lines. In the root meristem, catalase was the most sensitive to HS, whereas, in the chloroplasts from HS-treated sunflower lines, HS activated either TPA or SOD.  相似文献   

16.
植物热激反应的信号转导机理   总被引:15,自引:0,他引:15  
  相似文献   

17.
The production of HSP by periodontopathic Gram-negative bacteria was examined by SDS-PAGE, two dimensional gel electrophoresis, and Western blotting using monoclonal antibodies against HSPs. Strains of Actinobacillus actinomycetemcomitans, Eikenella corrodens, Fusobacterium nucleatum, Prevotella intermedia, Prevotella nigrescens, Prevotella melaninogenica, and Treponema socranskii species produced HSP which reacted with anti-Yersinia enterocolitica HSP 60 and/or mycobacterial 65-kDa HSP monoclonal antibodies. It was found that gingival homogenate samples from patients with adult periodontitis reacted with anti-human HSP 60 and bovine brain HSP 70 monoclonal antibodies. Antibodies which reacted with bacterial HSP were also found in a serum sample from a periodontitis patient. The present study suggests that HSPs are implicated in the human periodontal disease process.  相似文献   

18.
Thermotolerance was studied in a wide spectrum of Drosophilaspecies and strains originating from different climatic zones and considerably differing from one another in the ambient temperature of their habitats. The species that lived in hot climate have a higher thermotolerance. Most species of the virilisgroup exhibited positive correlation between the HSP70 accumulation after heat exposure and thermotolerance; however, this correlation was absent in some species and strains. For example, the D. melanogasterOregon R strain, which had the highest sensitivity to heat shock (HS) among all strains and species studied, displayed the maximum level of HSP70 proteins after HS. The patterns of induction of various heat shock protein (HSP) families after heat exposure in a wide spectrum of Drosophila species were compared. The results obtained suggest that the HSP40 and low-molecular-weight HSPs (lmwHSPs) play a significant role in thermotolerance and adaptation to hot climate. Polymorphism in hsp70 gene clusters ofDrosophila and variation in the numbers of gene copies andhsp70 isoforms in group viriliswere found. The evolutionary role of the variation in the number of hsp70 gene copies observed in the strains and species of genusDrosophilais discussed.  相似文献   

19.
Heat stress tolerance was examined in the thermophilic enteric yeast Arxiozyma telluris. Heat shock acquisition of thermotolerance and synthesis of heat shock proteins hsp 104, hsp 90, hsp 70, and hsp 60 were induced by a mild heat shock at temperatures from 35 to 40°C for 30 min. The results demonstrate that a yeast which occupies a specialized ecological niche exhibits a typical heat shock response.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号